• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 10
  • 4
  • Tagged with
  • 32
  • 32
  • 18
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approche micromécanique du remodelage osseux

Devulder, Anne 29 June 2009 (has links) (PDF)
Dans le cadre de la prédiction du risque fracturaire associée à diverses pathologies, comme l'ostéoporose, cette étude vise à une meilleure compréhension du comportement mécanique de l'os cortical humain, notamment à l'échelle de la microstructure, et, en particulier, du processus biologique de remodelage osseux. Ce phénomène permet, en effet, le renouvellement continuel de la microstructure au cours du temps et contribue ainsi à une diminution de l'endommagement de l'os et, par conséquent, des risques de fracture. Les facteurs déterminants et les conséquences sur les champs mécaniques locaux au sein de la microstructure sont ici recherchés. Une approche couplée, expérimentale et numérique, est proposée. Huit spécimens de fémurs humains, de sexes féminins, âgés de 74 à 101 ans sont analysés. L'analyse expérimentale est réalisée à différentes échelles. A l'échelle macroscopique, le module de Young et les paramètres à la rupture sont déterminés via des essais de compression et les relations potentielles avec les caractéristiques morphométriques, que sont l'âge, la porosité et la densité minérale, sont évaluées. L'analyse de l'évolution des champs de déformations locaux au cours de ces essais de compression et des essais de nanoindentation permet d'accéder à des échelles plus fines (micro- et nanoscopique) afin d'apprécier l'hétérogénéité de la microstructure. On s'intéresse plus particulièrement à l'endommagement de l'os et à l'étape d'initiation de microfissures ainsi qu'à l'hétérogénéité du module de Young. Macroscopiquement, le paramètre le plus influent semble être la porosité. Microscopiquement, les paramètres mécaniques recueillis, notamment les valeurs de déformations pour lesquelles l'os commence à se fissurer, sont intégrés dans les simulations numériques. Un scénario simplifié du remodelage osseux est alors mis en place au sein des microstructures étudiées expérimentalement et, par ailleurs, supposées endommageables. Une loi d'évolution de l'endommagement est introduite et fait l'objet d'un travail d'homogénéisation temporelle afin de considérer l'endommagement par fatigue. Les facteurs d'activation du remodelage et l'évolution des champs mécaniques au cours du processus sont, en particulier, étudiés. L'interaction du phénomène biologique et du comportement mécanique, à l'échelle de l'ostéon, est ainsi mise en évidence.
2

Modélisation mathématique et simulations numériques de la mé́canotransduction dans l'os cortical humain

Stroe, Cristina Mirela 30 November 2010 (has links) (PDF)
Le remodelage osseux est un processus très complexe qui fait intervenir plusieurs phénomènes interdépendants. Ce mémoire de thèse porte sur la modélisation mathématique d'un de ces phénomènes - la mé́canotransduction - et sur les simulations numériques associées. Pour mieux comprendre la nature de l'information que reçoit une cellule afin de reconstruire l'ostéon le mieux adapté aux sollicitations mécaniques locales, plusieurs études ont été réalisées à partir d'une modélisation déjà existante. L'os cortical humain est considéré comme un milieu poreux multi échelle. Trois niveaux architecturaux sont mis en avant et l'utilisation de la théorie de l'homogénéisation permet de déterminer numériquement les tenseurs de perméabilité pour chacun d'eux. Une analyse sur les lois viscoélastiques est développée au niveau nanoscopique. Afin de proposer une explication plausible de la mécanotransduction indépendamment de la localisation dans l'os, une étude permettant de calculer tous les grandeurs physiques existant à une échelle donnée suite à un chargement appliqué à l'échelle macroscopique, a été mise en place. Le seul aspect fluide ne permet pas à la cellule de connaître son environnement et donc d'avoir une réponse cellulaire adaptée. Par contre, cette étude montre que les fibres de collagène, de par leur caractère piézoélectrique, transforment les sollicitations mécaniques existantes dans son entourage en un potentiel électrique auquel la cellule est sensible et peut réagir.
3

Evaluation ultrasonore de l'os cortical en transmission transverse : étude numérique et expérimentale de la propagation d'ondes circonférentielles pour la caractérisation de la résistance mécanique du col fémoral

Grondin, Julien 06 December 2010 (has links) (PDF)
Les mesures ultrasonores en transmission transverse permettent d'évaluer un site osseux. Notre objectif est de mettre en évidence et d'exploiter les ondes qui se propagent circonférentiellement dans la coque corticale du col fémoral pour caractériser la résistance de la hanche à la fracture. Des simulations numériques de la propagation d'ondes dans des sections transverses de col du fémur ont été réalisées pour étudier les phénomènes mis en jeu. Nous avons montré que le premier signal (« first arriving signal », FAS) en transmission transverse est toujours associé aux ondes circonférentielles. Une forte corrélation entre le temps de vol du FAS (TOFFAS) et des paramètres géométriques liés à la résistance osseuse (R² = 0.87 pour le moment d'inertie minimum) a été observée. Les ondes circonférentielles se sont révélées être sensibles à la porosité et à l'élasticité de la coque corticale. Un montage ultrasonore expérimental a été conçu afin d'étudier la relation entre TOFFAS et la résistance à la fracture obtenue par test mécanique. Une première série de mesures sur neuf échantillons a montré que TOFFAS peut prédire la résistance mécanique de l'extrémité supérieure du fémur (R² = 0.79) au moins aussi bien que la technique de référence (R² = 0.78) utilisant les rayons-X. Ce montage expérimental peut être optimisé et combiné au scanner ultrasonore du col du fémur existant pour augmenter le niveau de prédiction du risque de fracture. Nous proposons comme perspective l'utilisation de la méthode DORT pour déterminer les vitesses de phase des ondes circonférentielles dans le col du fémur à partir desquelles la géométrie et les propriétés matérielles de l'os pourraient être déduites.
4

Segmentation de l'os cortical pour la prédiction des fractures ostéoporotiques. Application à l'imagerie in vivo (HRpQCT). / Cortical bone segmentation for the prediction of osteoporotic fractures. Application in vivo (HRpQCT)

Hafri, Mohamed 23 November 2017 (has links)
Cette thèse concerne la segmentation d’images HRpQCT et l’évaluation d’indices morphologiques de l’os cortical pour le diagnostic de l’ostéoporose et la prédiction des fractures osseuses. Dans un premier temps,deux méthodes sont proposées pour la segmentation de l’os cortical. La première utilise une nouvelle approche des contours actifs basée sur la logique floue suivie d’une nouvelle technique de remplissage développée pour imiter le comportement des opérateurs pour séparer l’os cortical de l’os trabéculaire. La deuxième approche est une technique 3D à double contours actifs combinant à la fois les informations locales le long et entre les deux contours. Les deux approches de segmentation sont comparées à celles de l’état de l’art afin de valider leurs performances. Dans un second temps, différents indices extraits de l’os cortical sont utilisés pour déterminer leur potentiel de prédiction des fractures ostéoporotiques. Les résultats obtenus montent que l’analyse globale de l’os cortical masque des variations potentiellement importantes.Par conséquent, une décomposition régionale de l’enveloppe corticale est proposée afin d’améliorer la prédiction du risque fracturaire. / This thesis concerns the segmentation of HRpQCT images and the evaluation of the cortical bone parameters for the osteoporosis characterization and the fracture prediction. Firstly, two approaches were proposed to segment the cortical bone. The first uses a new fuzzy energy active contours approach followed by a new filling technique designed to mimic the behaviour of clinicians while extracting the cortical bone from the trabecularone. The second approach is a local based 3D dual active contours approach proposed to separate between three regions constituting the image. To move, this approach combines the local information along each point in the two contours conjointly with the information between them. The segmentation results of these approaches were confronted to the state of the art methods to validate their performance. Secondly,different parameters were extracted from the segmented cortical bone to monitor the association of these parameters with the osteoporotic fracture prediction. Global analysis of the cortical bone obscures potentially important regional variations. Therefore, regional cortical decomposition was proposed to illustrate that cortical sub-regions could improve the evaluation of fracture risk than the global analysis of the cortical bone.
5

Personnalisation des propriétés mécaniques de l'os vertébral à l'aide d'imagerie à basse dose d'irradiation : prédiction du risque de fracture

Sapin, Emilie 26 November 2008 (has links) (PDF)
Avec le vieillissement de la population, l'ostéoporose et notamment les fractures vertébrales sont devenues un problème de santé publique majeur. Souvent silencieuses, les premières fractures sont difficiles à diagnostiquer par radiographie, et les 40 000 à 70 000 fractures annuelles recensées en France ne représenteraient finalement qu'un tiers du nombre réel. La prise en charge thérapeutique et la gestion de la dépendance, représentent un poids économique important qui doit être réduit, sans pour autant proposer un traitement préventif systématique, lui aussi coûteux. La mesure de densité minérale osseuse par DXA fait référence en clinique mais n'explique que partiellement la résistance des vertèbres. Aussi, des approches basées sur des modèles en éléments finis construits à partir d'imagerie scanner ont été proposées. Elles ne sont malheureusement pas transposables en clinique pour le suivi de patients sur l'ensemble de la colonne vertébrale, du fait de la dose d'irradiation trop importante. Cette recherche avait donc pour objectif de mettre en place une approche se basant sur une modalité basse dose. Afin d'établir un modèle en éléments finis personnalisé, il est nécessaire d'avoir une géométrie et des propriétés mécaniques personnalisées. Le système EOS (imagerie par rayon X basse dose) permet de proposer une géométrie personnalisée pour un patient donné. Le défi scientifique de cette thèse portait principalement sur l'évaluation des propriétés mécaniques personnalisées à partir de cette imagerie basse dose. Une première étude expérimentale, menée sur 19 éprouvettes, a permis de prédire les propriétés mécaniques de l'os spongieux vertébral (en compression) à partir de la densité minérale osseuse mesurée par le système basse dose EOS®. Parallèlement, pour palier au manque de données mécaniques sur l'os cortical vertébral, une deuxième étude a été réalisée afin d'évaluer les propriétés mécaniques d'un ensemble cortico-spongieux en compression par simulation numérique et méthode inverse à partir de données d'essais mécaniques. Il s'agit là d'une première pour l'étude des propriétés macroscopiques de l'os cortical vertébral. De plus, des essais mécaniques de compression menés sur 15 vertèbres ont permis de constituer une première base de données pour la validation du modèle. A partir de l'ensemble de ces données, un modèle en éléments finis 3D personnalisé à partir d'imagerie basse dose a été construit. Ce modèle donne une estimation prometteuse de l'effort à la rupture des vertèbres (FMEF = 0,94 Fexp +242,6 ; r² = 0,83, IC95% = ± 674 N) avec un temps de calcul restreint (environ 10 minutes). Ce travail souligne l'intérêt des systèmes d'imagerie basse dose pour la construction d'un modèle en éléments finis personnalisé et ouvre de nombreuses perspectives pour l'utilisation clinique de tels outils, afin de prédire le risque de fracture vertébral.
6

Approche micromécanique du remodelage osseux / Micromechanical approach of the cortical bone remodeling

Devulder, Anne 29 June 2009 (has links)
Dans le cadre de la prédiction du risque fracturaire associée à diverses pathologies, comme l'ostéoporose, cette étude vise à une meilleure compréhension du comportement mécanique de l'os cortical humain, notamment à l'échelle de la microstructure, et, en particulier, du processus biologique de remodelage osseux. Ce phénomène permet, en effet, le renouvellement continuel de la microstructure au cours du temps et contribue ainsi à une diminution de l'endommagement de l'os et, par conséquent, des risques de fracture. Les facteurs déterminants et les conséquences sur les champs mécaniques locaux au sein de la microstructure sont ici recherchés. Une approche couplée, expérimentale et numérique, est proposée. Huit spécimens de fémurs humains, de sexes féminins, âgés de 74 à 101 ans sont analysés. L'analyse expérimentale est réalisée à différentes échelles. A l'échelle macroscopique, le module de Young et les paramètres à la rupture sont déterminés via des essais de compression et les relations potentielles avec les caractéristiques morphométriques, que sont l'âge, la porosité et la densité minérale, sont évaluées. L'analyse de l'évolution des champs de déformations locaux au cours de ces essais de compression et des essais de nanoindentation permet d'accéder à des échelles plus fines (micro- et nanoscopique) afin d'apprécier l'hétérogénéité de la microstructure. On s'intéresse plus particulièrement à l'endommagement de l'os et à l'étape d'initiation de microfissures ainsi qu'à l'hétérogénéité du module de Young. Macroscopiquement, le paramètre le plus influent semble être la porosité. Microscopiquement, les paramètres mécaniques recueillis, notamment les valeurs de déformations pour lesquelles l'os commence à se fissurer, sont intégrés dans les simulations numériques. Un scénario simplifié du remodelage osseux est alors mis en place au sein des microstructures étudiées expérimentalement et, par ailleurs, supposées endommageables. Une loi d'évolution de l'endommagement est introduite et fait l'objet d'un travail d'homogénéisation temporelle afin de considérer l'endommagement par fatigue. Les facteurs d'activation du remodelage et l'évolution des champs mécaniques au cours du processus sont, en particulier, étudiés. L'interaction du phénomène biologique et du comportement mécanique, à l'échelle de l'ostéon, est ainsi mise en évidence. / The understanding of the cortical bone remodelling process at the microscopic scale is essential in the prediction of the risk of fracture. Indeed, bone remodelling allows the perpetual regeneration of damage or old bone. The determining factors as well as the consequences of the phenomenon on the mechanical parameters of the microstructure are assessed. An experimental and numerical approach is proposed. Eight femurs from old women are analysed. Experiments are achieved at different scales. At the macroscopical scale, the Young modulus and the fracture parameters are estimated through compression testing and their eventual relations with the morphometrical characteristics (age, porosity and mineral density) are checked. Analyses of the local deformation evolution and of nanoindentation tests give access to the micro- and nanoscales and reveal the bone heterogeneity. Bone damage, especially the stage of microcracks initiation and the heterogeneity of the Young modulus as well as the mineral density are assessed. Macroscopically, porosity is determining. Microscopically, the mechanical values ob- tained, particularly the deformation value at the stage of microcracks initiation, are implemented in the numerical simulation. A bone remodelling scenario is carried out in the former experimental microstructures, supposed damageable. A damage evolution law is set and is improved by taking into account the fatigue damage through a time homogenization method. The factors of remodelling activation and the mechanical parameters evolution during the remodelling process are investigated. Eventually, the interaction between the biological phenomenon and the mechanical behaviour, at the osteon scale, is revealed.
7

Caractérisation de l’os cortical par IRM à temps d’écho ultra-court (UTE) / Cortical bone characterization using UTE-MRI

Bouazizi Verdier, Khaoula 03 December 2015 (has links)
On utilise en IRM clinique T2, T1 et la densité de protons comme biomarqueurs de diagnostic et de suivi. Cependant, seuls les tissus à T2 long sont visibles par IRM classique. La séquence UTE (Ultra-short TE) a été récemment développée pour des études quantitatives de l’os cortical. Nous avons dans une première étape confronté des mesures de porosité de l’os cortical par IRM-UTE et par microtomographie par rayonnement synchrotron, car la porosité est un paramètre déterminant de la qualité osseuse. L’étude a été menée sur 38 échantillons de diaphyses fémorales humaines en collaboration avec une équipe du B2OA (UMR7052). La porosité par IRM-UTE à 4.7 T (TE = 51 µs) est entre 18 et 43% (moyenne 30%). La porosité par microtomographie (résolution spatiale : 6.5 µm) est entre 3 et 27% (moyenne 14%). Aucune corrélation n’a pu être observée entre les deux mesures. Une importante dispersion a été observée sur les valeurs de T1 entre les échantillons, que nous proposons d’attribuer à des effets de transfert d’aimantation (MT) entre les protons de l’eau liée au collagène et les protons des terminaisons méthylène du collagène. Pour confirmer cette interprétation, nous avons dans une seconde étape confronté plusieurs méthodes d’évaluation de la relaxation longitudinale dans des échantillons d’os bovin. Les mesures réalisées par différentes séquences (inversion-récupération, saturation hors-résonance, saturation par répétition de binomiales et angle de bascule variable) confirment des effets de MT importants. Les méthodes les plus robustes pour évaluer les paramètres sont la saturation hors-résonance et par répétition de binomiales, ce qui suggère leur utilisation pour de futures applications in vivo. / Longitudinal and transverse relaxations are quantitative tools used in MRI for diagnosis and follow up. However only tissues with long T2 can be detected with MRI. Quantitative evaluation of cortical bone porosity is now feasible with UTE.In this work, porosity measurements from UTE in human cortical bone samples were compared with those from micro-computed tomography (µCT). 38 human cortical bone samples (upper diaphysis) were examined in collaboration with a team from B2OA (UMR7052). Porosity from UTE (TE = 51 µs) was between 18% and 43% (mean 30%) and from µCT (spatial resolution = 6.5 µm) between 3% and 27% (mean 14%). No correlation could be established between the two measurements. T1 values from few samples were dispersed; a possible explanation could be the magnetization transfer (MT) between collagen-bound water protons and collagen methylene protons.For a quantitative interpretation of this phenomenon, 11 bovine cortical bone samples were examined. Several sequences (inversion-recovery, off-resonance saturation, repeated binomial excitations, variable flip angle) were implemented at 4.7 T to assess MT parameters. The aim was to compare which method may provide accurate parameter estimation. Off-resonance saturation and repeated binomial excitation seem to be more suitable for in vivo MT quantification.
8

Personnalisation géométrique et mécanique multi-échelles du thorax humain / Mechanical and geometrical multiscale personalisation of the human thorax

Mayeur, Olivier 13 December 2013 (has links)
La recherche en biomécanique des chocs est une nécessité pour améliorer la sécurité dans les transports. Pour une meilleure évaluation des critères lésionnels lors des simulations de crash, le manque de représentativité des modèles EF du thorax humain pourrait être comblé par une démarche de personnalisation aussi bien au niveau géométrique que mécanique. Cette thèse se base sur l’étude de 18 sujets humains post-mortem. A partir des données d’imagerie, les différentes dimensions des côtes sont analysées. La corrélation de ces paramètres aboutit à la prédiction de 192 dimensions à partir d’un unique paramètre d’entrée. A une échelle inférieure, un protocole innovant a permis de coupler des informations microstructurales issues d’un μCT avec la forme extérieure des côtes. 2 hémi-thorax ont été micro-scannés afin de générer une cartographie complète des épaisseurs d’os cortical. Une stratégie a été mise en place pour proposer un algorithme prédisant l’intégralité de cette géométrie locale d’après un seul tronçon de côte. La pertinence de cette personnalisation a été évaluée par une étude de sensibilité sur des modèles EF. Les résultats d’essais de traction sur os cortical montrent un comportement différent entre les éprouvettes prélevées sur la table interne ou externe des côtes. Une caractérisation précise de la structure interne de l’os cortical, couplé à des essais de micro-traction in-situ, a pu apporter des éléments de réponse sur cette différence. Unalgorithme de personnalisation a été aussi proposé pour les propriétés mécaniques, complétant ainsi la démarche d’adapter les modèles EF du thorax à chaque individu afin d’améliorer leur biofidélité. / For a better assessment of injury criteria on the human thorax, realistic numerical simulations need accurate geometrical characterization and an understanding of the mechanical behavior of the rib. Thelack of representation of the FE models of the human thorax could be filled by a personalization of these two aspects. This thesis is based on the study of 18 post-mortem human subjects. From medical data (CT-scans), the different dimensions of the ribs were analyzed. The correlation of the measurements led to the prediction of 192 dimensions from a single input parameter. At a lower scale, an innovative protocol enabled us to combine microstructural information obtained from a μCT with the external shape of the ribs. 2 hemi-thoraxes were scanned to generate a complete map of the thickness of cortical bone and cross-section area evolution. A strategy was implemented to provide an algorithm, predicting this entire local geometry from a single rib’s sample. The relevance of this customization was evaluated by a sensitivity analysis on FE models. The results of tensile tests on cortical bone showed different behaviors between the samples harvested from the inner or outer side of the rib. A precise characterization of the internal structure of the cortical bone, coupled with in-situ micro-tensile device, revealed certain answers about this difference. An algorithm is also proposed topersonalize the mechanical properties, completing the approach of adapting the FE models of the thorax of each individual to improve their biofidelity.
9

Multiscale investigation of the elastic properties of human cortical bone measured by resonant ultrasound spectroscopy / Etude multi-échelle des propriétés élastiques de l'os cortical humain mesurée par spectroscopie par ultrasons résonants

Cai, Xiran 19 June 2018 (has links)
L’os présente la propriété remarquable de s’adapter à son environnement et s’est forgé au cours de l’évolution des caractéristiques exceptionnelles qui fascinent les scientifiques mais aussi les ingénieurs : léger mais d’une rigidité à toute épreuve, une capacité de résistance à la fracture hors norme tout en gardant une certaine flexibilité. Ces propriétés mécaniques de l’os sont l’œuvre d’une optimisation de sa composition et d’une structure fortement hiérarchisée et organisée en multiples niveaux allant de l'échelle nanométrique à l'échelle macroscopique. L’amélioration de la prise en charge des maladies osseuses, l’optimisation des implants orthopédiques et la conception de nouveaux matériaux bio-inspirés passent par une connaissance approfondie des multiples facteurs qui déterminent les propriétés mécaniques de l’os. Dans ce travail, nous mettons l’accent sur les propriétés élastiques de l'os cortical humain à la fois aux échelles millimétrique et micrométrique. Nous avons caractérisé l’élasticité (à l’échelle mésoscopique), la composition et la microstructure de l’os cortical, à partir d’échantillons de fémur, tibia et radius prélevés sur des donneurs âgés, à l’aide d’une batterie de tests expérimentaux comportant des mesures en résonance ultrasonore spectroscopique, micro-tomographie par rayonnement synchrotron, microscopie infrarouge à transformée de Fourier et analyse biochimique. Ces mesures mettent à jour le rôle prépondérant joué par la porosité et le degré de minéralisation dans la détermination de l’élasticité et suffisent à eux seuls à en expliquer les variations. En particulier, les caractéristiques de la microstructure, comme la forme des pores, leur nombre, taille ou connectivité ne semblent pas avoir d’effets mesurables sur l’élasticité à l’échelle mésoscopique. Dans un second temps, une nouvelle approche d’homogénéisation inverse introduite dans cette thèse a permis l’estimation du tenseur des coefficients élastiques de la matrice osseuse à l’échelle microscopique. Connaissant l’élasticité de la matrice, nous avons évalué la gamme des microdéformations qui se produisent localement en réponse à des contraintes physiologiques. Les microdéformations étant à l’origine des signaux qui déclenchent la réponse des cellules mécanosensibles, ce dernier résultat devrait contribuer à une meilleure compréhension du comportement mécanique osseux au niveau microscopique. En conclusion, ce travail de thèse a permis l’obtention d’une base de données unique sur les caractéristiques élastiques de l’os cortical humain et la caractérisation des relations qui existent entre l’élasticité, la microstructure et la composition. / Bone as an important organ in human body is an extraordinary material which exhibits highly optimized properties, strong yet light weight, stiff yet flexible. Its distinct mechanical properties which fascinates not only scientists but also engineers are the results of the highly hierarchized and organized structure and the compositional properties spanning over several lengths from the nanoscale to the macroscale. Hence, a deep understanding of the parameters affecting bone mechanical behavior is necessary to better predict and treat bone diseases, improve orthopedic implants design, and engineer bio-inspired materials. In this work, a special focus is placed on human cortical bone elastic properties both at the millimeter and micrometer scales. Based on a multimodal approach (resonant ultrasound spectroscopy, synchrotron radiation micro-computed tomography, Fourier transform infrared microspectroscopy and biochemistry experiments) involving an exhaustive amount of microstructural and compositional properties, our results provide strong evidence that intra-cortical porosity and degree of mineralization are the most important determinants of bone stiffness at millimeter scale in an elderly population. Further, the other microstructure characteristics independent of porosity have non measurable effects on bone stiffness at this level. At the micrometer scale, a novel inverse homogenization approach is introduced in this work which can evaluate bone matrix anisotropic elastic properties with a good accuracy for all the stiffness constants. Based on the determined bone matrix elasticity data, we investigated the possible range of the magnitude of microstrain experienced by bone matrix. This work opens a way to better evaluate and understand bone mechanical behaviour at the micrometer level, such as the microstrain that can be sensed by osteocytes and builds the bridge to comprehensively investigate the connections between bone anisotropic properties at the millimeter and micrometer scale, and between the anisotropic microelastic properties and the characteristics at the nanometer scale.
10

Traitement et analyse du signal ultrasonore pour la caractérisation de l'os cortical

Sasso, Magali 14 February 2008 (has links) (PDF)
Ce travail de thèse porte sur l'analyse et le traitement des signaux ultrasonores pour la caractérisation de l'os cortical. La première partie est dédiée à l'analyse des signaux acquis par un prototype de sonde de transmission axiale à 1 MHz. Nous montrons qu'une contribution arrivant après le premier signal présente un intérêt pour la caractérisation ultrasonore de l'os cortical. En effet, cette contribution évaluée sur des radius humains in vitro est associée à une onde de flexion propagée dans l'os qui est dépendante de l'épaisseur corticale. L'analyse de cette contribution a nécessité le développement d'une technique de séparation d'ondes. Cette contribution étant plus basse fréquence que le premier signal et associée à un mode de propagation différent, nous montrons ainsi qu'une analyse plus poussée du signal peut permettre une approche multi-modes/multi-fréquences. Dans une seconde partie, nous montrons l'intérêt de l'évaluation de l'atténuation ultrasonore pour la caractérisation de l'os cortical. Lors d'une étude expérimentale in vitro sur des échantillons corticaux bovins, nous montrons la dépendance d'un paramètre d'atténuation aux propriétés osseuses et à la micro-structure. De plus, ce paramètre semble plus sensible aux propriétés osseuses que ne l'est la vitesse de l'onde longitudinale. Ainsi, l'atténuation évaluée en complément de la vitesse pourrait permettre de caractériser de manière plus complète l'os cortical

Page generated in 0.8669 seconds