Spelling suggestions: "subject:"imersão isométrica"" "subject:"emersão isométrica""
1 |
Imersões isométricas em variedades homogêneas de dimensão 3Silva, Danilo Ferreira da, 981683718 10 August 2017 (has links)
Submitted by Ingrid Lima (ingrdslima@hotmail.com) on 2017-11-03T15:45:01Z
No. of bitstreams: 2
Dissertação_Danilo Ferreira da Silva.pdf: 871410 bytes, checksum: 1b2a6c0bc3b68b5b824982271f3cd6cd (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-11-07T13:56:11Z (GMT) No. of bitstreams: 2
Dissertação_Danilo Ferreira da Silva.pdf: 871410 bytes, checksum: 1b2a6c0bc3b68b5b824982271f3cd6cd (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-11-07T13:59:52Z (GMT) No. of bitstreams: 2
Dissertação_Danilo Ferreira da Silva.pdf: 871410 bytes, checksum: 1b2a6c0bc3b68b5b824982271f3cd6cd (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-11-07T13:59:52Z (GMT). No. of bitstreams: 2
Dissertação_Danilo Ferreira da Silva.pdf: 871410 bytes, checksum: 1b2a6c0bc3b68b5b824982271f3cd6cd (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-08-10 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / A classical problem in geometry is to find conditions for one a manifold to be immersed
isometrically in another. In this work, we present necessary and sufficient conditions for a
simply connected 2-dimensional Riemannian manifold to be immersed isometrically into a
3-dimensional homogeneous simply connected Riemannian manifold with a 4-dimensional
isometry group. We will see that such conditions are expressed in terms of the metric, the
second fundamental form, and data arising from an ambient Killing field.
This result was obtained by Benoît Daniel in the paper entitled "Isometric immersions into
3-dimensional homogeneous manifolds" and has relevant resultads for the differential geometry.
The tools to demonstrate this theorem are based on use of the thechnique of moving frame
and integrable distributions. / Um problema clássico em geometria é encontrar condições para que uma variedade seja
imersa isometricamente em outra. Neste trabalho, apresentamos condições necessárias e
suficientes para que uma variedade Riemanniana simplesmente conexa de dimensão 2 seja
imersa em uma variedade Riemanniana homogênea simplesmente conexa de dimensão 3, com
grupo de isometria de dimensão 4. Veremos que tais condições estão expressas em termos da
métrica, da segunda forma fundamental e de alguns dados envolvendo um certo campo de
Killing definido no espaço ambiente.
Este resultado foi obtido por Benoît Daniel no artigo intitulado: "Isometric immersions
into 3-dimensional homogeneous manifolds"e possui resultados relevantes para a geometria
diferencial. As ferramentas para demonstrar o teorema são baseadas na utilização do método
do referencial móvel e distribuições integráveis.
|
2 |
Superfícies mínimas e curvatura de gauss de conóides em espaços de finsler com (α,β) - métricas / Minimal surfaces and gauss curvature of conoid in finsler spaces with (α,β) - metricsDaza, John Elber Gómez 28 March 2014 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-11-14T20:38:05Z
No. of bitstreams: 2
Dissertação - John Elber Gómez Daza - 2014.pdf: 3536612 bytes, checksum: f7e71dbc62f224cd024c41999d7b2f0c (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-11-18T15:40:54Z (GMT) No. of bitstreams: 2
Dissertação - John Elber Gómez Daza - 2014.pdf: 3536612 bytes, checksum: f7e71dbc62f224cd024c41999d7b2f0c (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-11-18T15:40:54Z (GMT). No. of bitstreams: 2
Dissertação - John Elber Gómez Daza - 2014.pdf: 3536612 bytes, checksum: f7e71dbc62f224cd024c41999d7b2f0c (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-03-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We consider(α,β)−metric F=αφ(β
α), whereα is the euclidean metric,φ is a smooth
positive function on a symmetric interval I=(−b0,b0) and β is a 1-form with the
norm b,0
≤b<b0, on the Finsler manifoldM. We study the minimal surfaces on these
spaces with respect to the Holmes-Thompson volume form and we present the equation
that characterize the minimal hypersurfaces in general Minkowski space. We prove that
the conoids in three-dimensional space are minimal if and only if is a helicoid or a
plane, also we show that the Gauss curvature of conoid in Randers-Minkowski 3-space
is not always nonpositive on minimal surfaces. Finally, an ordinary differential equation
that characterizes minimal surfaces of revolution and an example of minimal surface of
rotationaregiven. / Neste trabalho consideramos (α,β)−métricas do tipo F=αφ(β
α), ondeα é a métrica
euclidiana,φ é uma função positiva suave sobre um intervalo simétrico I=(−b0,b0)
e β é uma 1-forma de norma b,0
≤ b < b0, sobre uma variedade de Finsler M.
Estudamos superfícies mínimas nestes espaços (M,F) com respeito à forma volume
de Holmes-Thompson e apresentamos uma equação que caracteriza as hipersuperfícies
mínimasemumespaçogeral(α,β)−Minkowski.Mostramosqueosconóidesnoespaço
tridimensional comβ na direção do eixo ˜y3 são mínimas se, e somente se, é um
helicóide ou um plano, provamos também que a curvatura de Gauss do conóide em um
espaço tridimensional de Randers-Minkowski pode ser positiva em superfícies mínimas.
Finalmente apresentamos uma equação diferencial ordinária que caracteriza superfícies
mínimas de rotação eum exemplo de superfíciemínimade rotação.
|
3 |
A transformação vetorial de Ribaucour para subvariedades de curvatura constanteGuimarães, Daniel da Silveira 09 June 2015 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2016-09-28T12:25:37Z
No. of bitstreams: 1
TeseDSG.pdf: 1261184 bytes, checksum: e6c2459a186ca8384805217f7ab743e9 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-30T13:57:28Z (GMT) No. of bitstreams: 1
TeseDSG.pdf: 1261184 bytes, checksum: e6c2459a186ca8384805217f7ab743e9 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-30T13:57:39Z (GMT) No. of bitstreams: 1
TeseDSG.pdf: 1261184 bytes, checksum: e6c2459a186ca8384805217f7ab743e9 (MD5) / Made available in DSpace on 2016-09-30T14:04:28Z (GMT). No. of bitstreams: 1
TeseDSG.pdf: 1261184 bytes, checksum: e6c2459a186ca8384805217f7ab743e9 (MD5)
Previous issue date: 2015-06-09 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this work we obtain a reduction of the vectorial Ribaucour transformation
that preserves the class of submanifolds with constant sectional curvature of space forms.
As a consequence, a process is derived to generate a new family of such submanifolds
starting from a given one. We prove a decomposition theorem for this transformation,
from which the classical permutability theorem for the Ribaucour transformation of submanifolds
with constant sectional curvature follows. Given k scalar Ribaucour transforms
of a submanifold with constant sectional curvature, we prove the existence of a Bianchi
k-cube all of whose vertices are submanifolds with the same constant sectional curvature,
each of which is given by means of explicit algebraic formulas. A further reduction of the
transformation is shown to preserve the class of Lagrangian submanifolds of dimension n
and constant sectional curvature c of complex space forms of complex dimension n and
constant holomorphic sectional curvature 4c. In particular, explicit parametrizations in
terms of elementary functions of examples with arbitrary dimension and curvature are
provided. A decomposition theorem and a version of the Bianchi cube for this transformation
are also obtained. / Neste trabalho, obtemos uma redução da transformação vetorial de Ribaucour
que preserva a classe das subvariedades de curvatura seccional constante de formas espaciais.
Como consequência, é obtido um processo para gerar uma nova família de tais
subvariedades a partir de uma dada. Provamos um teorema de decomposição para tal
transformação, do qual decorre, em particular, o teorema clássico de permutabilidade
para a transformação de Ribaucour de subvariedades de curvatura seccional constante.
Mostramos ainda que k tais transformadas escalares de uma subvariedade de curvatura
seccional constante c determinam um único k-cubo de Bianchi cujos vértices são todos
subvariedades com a mesma curvatura seccional constante, cada uma das quais é dada
por meio de fórmulas algébricas explícitas. Uma redução adicional de tal transformação
é obtida para a classe de subvariedades Lagrangianas de dimensão n e curvatura seccional
constante c de uma forma espacial complexa de dimensão n e curvatura seccional
holomorfa 4c. Em particular, parametrizações explícitas, em termos de funções elementares,
de exemplos com dimensão e curvatura arbitrária são fornecidos. Novamente, um
Teorema de decomposição e uma versão do cubo de Bianchi para tal transformação são
apresentados.
|
Page generated in 0.0513 seconds