Spelling suggestions: "subject:"nan"" "subject:"inan""
11 |
Synthèse par faisceaux d'ions de nanocristaux semi-conducteurs fonctionnels en technologie silicium / Ion beam synthesis of functional semiconductor nanocrystals in silicon technologyKhelifi, Rim 05 March 2015 (has links)
Les boîtes quantiques sous formes de nanocristaux semi-conducteurs permettent de réaliser des matériaux à énergie de gap variable, propriété très intéressante pour les composants optoélectroniques. Ce travail est dédié à la création de nanocristaux de silicium dopés enfouis dans SiO2 et de nanocistaux binaires (InAs et GaAs) et ternaires d’InxGa1-xAs enfouis dans Si et à leurs caractérisations structurales, électriques et optiques. La synthèse par faisceaux d’ions permet d’avoir un contrôle de la quantité et de la taille des nanocristaux synthétisés. Des caractérisations structurales ont pu démontrer le dopage des nanocristaux de silicium avec le phosphore et l’arsenic à une concentration atomique moyenne de 8 %. Nous avons également montré la possibilité de moduler la taille et la composition chimique des nanocristaux d’InxGa1-xAs sur une large gamme à l’aide de la dose d’implantation et de la température de recuit. / Semiconductor nanocrystals can be used as quantum dots to produce band gap engineering by varying the nanocrystals size, which is a very interesting property for optoelectronic components. This work is dedicated to the creation of doped silicon nanocrystals embedded in SiO2 and binary (InAs and GaAs) and ternary nanocrystals of InxGa1-xAs embedded in Si and also to investigate their structural, electrical and optical properties. Ion beam synthesis allows a control of the nanocrystals amount and size. Structural characterizations were able to demonstrate the doping of silicon nanocrystals with phosphorus and arsenic at an average atomic concentration of 8 %. We have also shown the ability to modulate the size and the chemical composition of InxGa1-xAs nanocrystals in a large range by varying the implantation dose and the annealing temperature.
|
12 |
Croissance et spectroscopie de boîtes quantiques diluées d'InAs/InP(001) pour des applications nanophotoniques à 1,55 [micro]mDupuy, Emmanuel January 2010 (has links)
This thesis focus on the epitaxial growth and optical characterization of diluted InAs/InP(001) quantum dots for the realisation of new nanophotonic devices emitting at 1.55 [micro]m. The structural and optical properties of the quantum islands are correlated to different growth parameters of a solid source molecular beam epitaxy system. Our results highlight the influence of InAs surface reconstructions on the island shape. Dots rather than elongated dashes usually observed can be directly formed by adequate growth conditions. Dash to dot shape transition is also demonstrated by post-growth treatments. Low dot densities are obtained for small InAs deposited thickness. Their emission wavelength is easily tuned to 1.55 [micro]m using the"double cap" procedure for the growth of the InP capping layer. Optical properties of such single InAs/InP quantum dots are then evaluated. Micro-photoluminescence studies reveal sharp and well separated emission lines near 1.55 [micro]m from single dots confirming their atom-like properties. Last, we propose for the first time a high spatial resolution method to study the carrier transport in the vicinity of a single quantum dot using a low-voltage cathodoluminescence technique. A direct measurement of the carrier diffusion length before capture into one dot has been obtained. These results open the way to the integration of these single dots into optical micro-cavities for the realisation of quantum light sources at 1.55 [micro]m.
|
13 |
Towards InAs nanowire double quantum dots for quantum information processingFung, Jennifer Sy-Wei January 2010 (has links)
Currently, a major challenge for solid-state spin qubit systems is achieving one-qubit operations on a timescale shorter than the spin coherence time, T2*, a goal currently two orders of magnitude away. By taking advantage of the quasi-one-dimensional structure of a nanowire and the strong spin-orbit interaction of InAs, it is estimated that π-rotations can be implemented using electric dipole spin resonance on the order of 10 ns. To this end, a procedure for the fabrication of homogeneous InAs nanowire quantum dot devices is presented herein for future investigations of solid state spin qubits as a test bed for quantum computing.
Both single and double quantum dot systems are formed using local gating of InAs nanowires. Single quantum dot systems were characterized through electron transport measurements in a dilution refrigerator; in one case, the charging energy was measured to be 5.0 meV and the orbital energy was measured to be 1.5-3.5 meV. The total capacitance of the single quantum dot system was determined to be approximately 30 aF. An estimate of the quantum dot geometry resulting from confinement suggests that the quantum dot is approximately 115 nm long. The coupling energy of the double quantum dot system was measured to be approximately 4.5 meV. The electron temperature achieved with our circuitry in the dilution refrigerator is estimated to be approximately 125 mK.
|
14 |
The Study of Carrier Dynamics in Multi-Stacked InAs/GaAs Quantum DotsWang, Fu-Yun 08 August 2012 (has links)
This paper is using the Time-resolved Pump-Probe spectroscopy to study the quantum dots samples. The samples are InAs/GaAs multi-stacked quantum dots that with different spacer layer (10~30 nm). The stain between the InAs quantum dots and GaAs spacer layer that makes the valence band to split into heavy-hole and light-hole energy band. From the photoluminescence (PL), we see the heavy-hole and light-hole energy band are blue shift in InAs quantum dot, when the GaAs spacer layer decrease. We use the optic property of Pump-Probe spectroscopy of the change in the refraction index £Gn to investigate the shift of heavy-hole energy band, when the GaAs spacer layer decrease. We see the heavy-hole energy band of GaAs is blue shift when the GaAs spacer layer decrease. When we change the pump energy, the TRPP spectroscopy signal will change from positive to negative. This is the band-filling effect changes the refraction index £Gn , when the energy close to the GaAs heavy hole energy state. When the energy is above the GaAs heavy hole energy state, the TRPP signal is positive. When the excited carrier density decrease and the delay time increase, TRPP signal will change the positive value to negative value. These are band-gap renormalization and free-carrier absorption effect change the refraction index £Gn, when the carrier density decrease.
|
15 |
The Time-Resolved Photoluminescence Study of InN Film and InAs/GaAs QDsWu, Chieh-lung 29 July 2004 (has links)
Abstract
We have extended the spectral range of the current PL-upconversion apparatus to be operated in infrared. Using the IRPL-upconversion¡Awe study the behavior of carrier cooling of InN film and the relationship between the spacer and lifetime in InAs/GaAs stacked QDs .
We excited InN film of the band gap of 0.74eV with ultrafast Ti:sapphire laser of the wavelength 404nm. We found the phonon emission time by hot carriers of InN is 14fs. The hot carriers release their excess energy to the lattice of 35K with a timescale of 100ps. We observed in InAs/GaAs QDs that the shorter life time for samples with thin spacer is due to tunneling effect.
|
16 |
The Study of Carrier Relaxation in Multi-Stacked InAs/GaAs Quantum DotsLu, Shu-kai 11 August 2006 (has links)
Carrier dynamics of mullti-stacked quantum dots (MSQDs) have been studied by means of time-integrated and time-resolved photoluminescence (PL). The MSQD with different spacer thickness of 10, 15, 20 and 30 nm were grown by molecular beam epitaxy. Time-integrated PL exhibit red shift as spacer thickness increases. The red shift originated from the vertical coupling relaxes the strain in the MSQDs, leading to a decrease in the PL peak energy. From time-resolved PL, the MSQD with spacer thickness increased reveals the shorter lifetime of PL peak among samples studies. We attribute the maximum of lifetime to a better vertical alignment. We report on a measurement of the rise and decay of luminescence intensity in the MSQDs excited at 1.54 eV (808 nm) and 3.09 eV (404 nm). The results show a slow rise time of electrons from the L to the £F valley for high photoexcitation energies. The decay in luminescence is longest with photoexcitation at 3.09 eV, we demonstrate the importance of the penetration depth and carriers tunneling. In addition, the MSQDs strongly depends of on the carrier injection. The rise times decrease with increasing excitation density. The properties are characteristic features of Auger processes.
|
17 |
Towards InAs nanowire double quantum dots for quantum information processingFung, Jennifer Sy-Wei January 2010 (has links)
Currently, a major challenge for solid-state spin qubit systems is achieving one-qubit operations on a timescale shorter than the spin coherence time, T2*, a goal currently two orders of magnitude away. By taking advantage of the quasi-one-dimensional structure of a nanowire and the strong spin-orbit interaction of InAs, it is estimated that π-rotations can be implemented using electric dipole spin resonance on the order of 10 ns. To this end, a procedure for the fabrication of homogeneous InAs nanowire quantum dot devices is presented herein for future investigations of solid state spin qubits as a test bed for quantum computing.
Both single and double quantum dot systems are formed using local gating of InAs nanowires. Single quantum dot systems were characterized through electron transport measurements in a dilution refrigerator; in one case, the charging energy was measured to be 5.0 meV and the orbital energy was measured to be 1.5-3.5 meV. The total capacitance of the single quantum dot system was determined to be approximately 30 aF. An estimate of the quantum dot geometry resulting from confinement suggests that the quantum dot is approximately 115 nm long. The coupling energy of the double quantum dot system was measured to be approximately 4.5 meV. The electron temperature achieved with our circuitry in the dilution refrigerator is estimated to be approximately 125 mK.
|
18 |
Strain-balanced InAs-InAsSb Type-II Superlattices on GaSb Substrates for Infrared Photodetector ApplicationsJanuary 2012 (has links)
abstract: Infrared photodetectors, used in applications for sensing and imaging, such as military target recognition, chemical/gas detection, and night vision enhancement, are predominantly comprised of an expensive II-VI material, HgCdTe. III-V type-II superlattices (SLs) have been studied as viable alternatives for HgCdTe due to the SL advantages over HgCdTe: greater control of the alloy composition, resulting in more uniform materials and cutoff wavelengths across the wafer; stronger bonds and structural stability; less expensive substrates, i.e., GaSb; mature III-V growth and processing technologies; lower band-to-band tunneling due to larger electron effective masses; and reduced Auger recombination enabling operation at higher temperatures and longer wavelengths. However, the dark current of InAs/Ga1-xInxSb SL detectors is higher than that of HgCdTe detectors and limited by Shockley-Read-Hall (SRH) recombination rather than Auger recombination. This dissertation work focuses on InAs/InAs1-xSbx SLs, another promising alternative for infrared laser and detector applications due to possible lower SRH recombination and the absence of gallium, which simplifies the SL interfaces and growth processes. InAs/InAs1-xSbx SLs strain-balanced to GaSb substrates were designed for the mid- and long-wavelength infrared (MWIR and LWIR) spectral ranges and were grown using MOCVD and MBE by various groups. Detailed characterization using high-resolution x-ray diffraction, atomic force microscopy, photoluminescence (PL), and photoconductance revealed the excellent structural and optical properties of the MBE materials. Two key material parameters were studied in detail: the valence band offset (VBO) and minority carrier lifetime. The VBO between InAs and InAs1-xSbx strained on GaSb with x = 0.28 - 0.41 was best described by Qv = ÄEv/ÄEg = 1.75 ± 0.03. Time-resolved PL experiments on a LWIR SL revealed a lifetime of 412 ns at 77 K, one order of magnitude greater than that of InAs/Ga1-xInxSb LWIR SLs due to less SRH recombination. MWIR SLs also had 100's of ns lifetimes that were dominated by radiative recombination due to shorter periods and larger wave function overlaps. These results allow InAs/InAs1-xSbx SLs to be designed for LWIR photodetectors with minority carrier lifetimes approaching those of HgCdTe, lower dark currents, and higher operating temperatures. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012
|
19 |
Numerical Study of Semiconductor Material GrowthSun, Mingkun 23 December 2009 (has links)
No description available.
|
20 |
Fabrication Development of InAs-Pb NanodevicesEdholm, Bo Rasmus January 2022 (has links)
Research groups around the world are looking to develop a qubit protected from decoherence for achieving quantum advantage in computations. This would have huge impact on the modern world. The applications are many from drug development to cryptography and many more elds. Indium-Arsenide Nanowires with an epitaxially matched thin lm of lead grown with Select-Area-Growth could prove to be a platform for building scalable qubits. The work in this thesis is to create a device capable of measuring the superconductivity of the samples InAs-Pb grown at the Center for Quantum Devices, Niels Bohr Institute. The InAs semiconducting nanowires serves as one dimensional system that could host Majorana Zero Modes if coupled to a superconductor such as Pb. The MZMs emerges at the edges of the nanowires. The device created is a 4-probe device that should be used to measure the induced topological superconductivity inside the device. The project was able to such a device using electron beam lithography techniques and development of the fabrication process of InAs-Pb SAG NW Devices was furthered.
|
Page generated in 0.0334 seconds