• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 32
  • 20
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 163
  • 163
  • 163
  • 49
  • 35
  • 32
  • 32
  • 30
  • 28
  • 25
  • 24
  • 24
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

A Study of Smart Ventilation System to Balance Indoor Air Quality and Energy Consumption : A case study on Dalarnas Villa

Zhu, Yurong January 2020 (has links)
It is a dilemma problem to achieve both these two goals: a) to maintain a best indoor air quality and b) to use a most efficient energy for a house at the same time. One of the outstanding components involving these goals is a smart ventilation system in the house. Smart ventilation strategies, including demand-controlled ventilation (DCV), have been of great interests and some studies believe that DCV strategies have the potential for energy reductions for all ventilation systems. This research aims to improve smart ventilation system, in aspects of energy consumption, indoor CO2 concentrations and living comfortness, by analyzing long-term sensor data. Based on a case study on an experimental house -- Dalarnas Villa, this research investigates how the current two ventilations modes work in the house and improves its ventilation system by developing customized ventilation schedules. A variety of data analysis methods were used in this research. Clustering analysis is used to identify the CO2 patterns and hence determine the residents living patterns; correlation analysis and regression analysis are used to quantify a model to estimate fan energy consumption; a mathematical model is built to simulation the CO2 decreasing when the house is under 0 occupancy. And finally, two customized schedules are created for a typical workday and holiday, respectively, which show advantages in all aspects of energy consumption, CO2 concentrations and living comfortness, compared with the current ventilation modes.
152

Synthèse et étude de matériaux nanoporeux fonctionnalisés pour l'émission contrôlée de composés organiques dans l'air / Synthesis and study of functionalized nanoporous materials for the controlled emission of organic compounds in the air

Tran, Clarisse 25 January 2019 (has links)
La pollution de l’air intérieur est aujourd’hui reconnue comme un enjeu de santé publique. La règlementation impose depuis 2012 un étiquetage des matériaux de construction et d’ameublement en matière d’émission de polluants volatils. Bien que les méthodes de mesure d’émission de polluants soient nombreuses, il n’existe aucun matériau-standard émissif de référence pour les polluants de l’air intérieur qui permettrait la comparaison et la validation des mesures d’émission. L’objectif de ce travail est de produire des matériaux émissifs de référence en utilisant des matériaux à porosité contrôlée avec des tailles de pores adaptées à celle du polluant-cible pour un relargage contrôlé en concentration en fonction du temps. Les matériaux étudiés sont des polymères inorganiques ou hybrides organique-inorganiques synthétisés par voie sol-gel sous forme de blocs monolithiques ou déposés sur des substrats solides (verre ou textile). Différents matériaux microporeux ou/et mésoporeux ont été dopés au toluène et au naphtalène par exposition à leur vapeur saturante pendant des durées variables (2h à plusieurs jours). Ceci permet d’étudier l’influence de la taille des pores du matériau sur la vitesse de relargage du polluant. Le suivi cinétique du relargage spontané des polluants est réalisé selon un 1er mode statique avec une mesure optique du spectre d’absorption du polluant gazeux dans l’UV en fonction du temps. Dans le 2ème mode, le relargage dynamique sous balayage d’air du matériau dopé disposé dans une cellule FLEC normalisée est réalisé avec une mesure en continu de la concentration du polluant par chromatographie en phase gazeuse. Nous avons montré qu’il est possible de produire des matériaux à porosité contrôlée avec des gammes de distributions de tailles de pores allant de 0,8 à 12 nm. En choisissant judicieusement la matrice poreuse et la durée de dopage et en contrôlant les conditions de mise en œuvre (température, humidité), nous pouvons imposer la vitesse de relargage du polluant. Les gammes de vitesses d’émission vont de 30 µg.m-3.h-1 (classe A+) à 8.104 µg.m-3.h-1 (classe C) pour le toluène et de 2,6.103 à 2,6.104 µg.m-3.h-1 pour le naphtalène. Ces résultats montrent que ces matériaux pourront être utilisés pour une large gamme de polluants. / Indoor air pollution is now recognized as a public health issue. Since 2012, the regulations have required the labelling of construction and furnishing materials with regard to the emission of volatile pollutants. Although there are many methods for measuring pollutant emissions, there is no standard reference emissive material for indoor air pollutants that would allow for comparison and validation of emission measurements. The objective of this work is to produce reference emissive materials by using porous materials with pore sizes tailored to the doped target pollutant with controlled release in pollutant concentration over time. The materials studied are inorganic or hybrid organic-inorganic polymers synthesized by sol-gel in the form of monolithic blocks or deposited on solid substrates (glass or textile). Various microporous and/or mesoporous materials have been doped with toluene and naphthalene pollutants by exposure to the latters’ saturated vapour for varying periods of time (2 hours to several days). The influence of the size of the pores of the material on the release of the pollutant has been studied. The kinetic monitoring of the spontaneous release of pollutants is carried out in two independent modes. A 1st static mode involves an optical measurement of the absorption spectrum of the gaseous pollutant in the UV as a function of time. In the 2nd mode, the dynamic air-sweeping release of the doped material placed in a standard FLEC cell is carried out with continuous measurement of the pollutant concentration by gas chromatography. We have shown that it is possible to produce materials with controlled porosity with narrow pore size distributions over the 0.8 to 12 nm domain. Further, by choosing judiciously the porous matrix and doping time and controlling the experimental conditions of release (temperature, humidity), we can impose the rate of release of the pollutant. The emission velocity ranges from 30 µg.m-3.h-1 (class A+) to 8.104 µg.m-3.h-1 (class C) for toluene and from 2.6.103 to 2.6.104 µg.m-3.h-1 for naphthalene. These results indicate that these materials can be used for a wide range of pollutants.
153

Development and Evaluation of an Integrated Approach to Study In-Bus Exposure Using Data Mining and Artificial Intelligence Methods

Kadiyala, Akhil 24 September 2012 (has links)
No description available.
154

A Sociological Approach to Indoor Environment in Dwellings : Risk factors for Sick Building Syndrome (SBS) and Discomfort

Engvall, Karin January 2003 (has links)
<p>The principal aim was to study selected aspects of indoor environment in dwellings and their association with symptoms compatible with the sick building syndrome (SBS). A validated questionnaire was developed specifically for residential indoor investigations, using sociological principles and test procedures. The questionnaire was mailed to 14,243 multi-family dwellings in Stockholm, selected by stratified random sampling. Females, subjects with a history of atopy, those above 65 y, and those in new buildings reported more symptoms. Subjects owning their own dwelling had less symptoms. A multiple regression model was developed, to identify residential buildings with a higher than expected occurrence of SBS. In total, 28.5% reported at least one sign of building dampness in their home (condensation on windows, humidity in the bathroom, mouldy odour, water leakage). All indicators of dampness were related to symptoms, even when adjusting for demographic data, and other building characteristics (OR=2.9-6.0). Associations between symptoms and other building data was evaluated in older houses, built before 1961. Subjects in older buildings with a mechanical ventilation system had fewer symptoms. Heating by electric radiators, and wood heating was associated with an increase of most types of symptoms (OR=1.2-5.0). Multiple sealing measures (OR=1.3), and major reconstruction (OR=1.1-1.9), was associated with an increase of symptoms. The effect of seasonal adapted ventilation (SAV) was studied in a small experimental study. A 20% reduction of ventilation flow from 0.5-0.8 ac/h to 0.4-0.5 ACH during the heating season increased the perception of poor indoor air quality in the dwelling in general, and in the bedroom. In conclusion, low building age, and building dampness in the dwelling are associated with SBS. In older houses, mechanical ventilation is beneficial. The thesis did not support the view that energy saving measures in general is an important risk factor for SBS, but major reconstruction and multiple sealing measures can be risk factor for symptoms. Reducing the outdoor ventilation flow below the current Swedish ventilation standard (0.5 ACH) may increase the perception of impaired air quality. </p>
155

A Sociological Approach to Indoor Environment in Dwellings : Risk factors for Sick Building Syndrome (SBS) and Discomfort

Engvall, Karin January 2003 (has links)
The principal aim was to study selected aspects of indoor environment in dwellings and their association with symptoms compatible with the sick building syndrome (SBS). A validated questionnaire was developed specifically for residential indoor investigations, using sociological principles and test procedures. The questionnaire was mailed to 14,243 multi-family dwellings in Stockholm, selected by stratified random sampling. Females, subjects with a history of atopy, those above 65 y, and those in new buildings reported more symptoms. Subjects owning their own dwelling had less symptoms. A multiple regression model was developed, to identify residential buildings with a higher than expected occurrence of SBS. In total, 28.5% reported at least one sign of building dampness in their home (condensation on windows, humidity in the bathroom, mouldy odour, water leakage). All indicators of dampness were related to symptoms, even when adjusting for demographic data, and other building characteristics (OR=2.9-6.0). Associations between symptoms and other building data was evaluated in older houses, built before 1961. Subjects in older buildings with a mechanical ventilation system had fewer symptoms. Heating by electric radiators, and wood heating was associated with an increase of most types of symptoms (OR=1.2-5.0). Multiple sealing measures (OR=1.3), and major reconstruction (OR=1.1-1.9), was associated with an increase of symptoms. The effect of seasonal adapted ventilation (SAV) was studied in a small experimental study. A 20% reduction of ventilation flow from 0.5-0.8 ac/h to 0.4-0.5 ACH during the heating season increased the perception of poor indoor air quality in the dwelling in general, and in the bedroom. In conclusion, low building age, and building dampness in the dwelling are associated with SBS. In older houses, mechanical ventilation is beneficial. The thesis did not support the view that energy saving measures in general is an important risk factor for SBS, but major reconstruction and multiple sealing measures can be risk factor for symptoms. Reducing the outdoor ventilation flow below the current Swedish ventilation standard (0.5 ACH) may increase the perception of impaired air quality.
156

Multiscale modeling and event tracking wireless technologies to improve efficiency and safety of the surgical flow in an OR suite / Modélisation multi-échelle assistée d’un système de détection d’événements : optimisation du fonctionnement et de la sécurité au sein des blocs opératoires

Joerger, Guillaume 16 June 2017 (has links)
Améliorer la gestion et l’organisation des blocs opératoires est une tâche critique dans les hôpitaux modernes, principalement à cause de la diversité et l’urgence des activités impliquées. Contrairement à l’aviation civile, qui a su optimiser organisation et sécurité, le management de bloc opératoire est plus délicat. Le travail ici présenté abouti au développement et à l’installation de nouvelles technologies assistées par ordinateur résolvant les problèmes quotidiens des blocs opératoires. La plupart des systèmes existants modélisent le flux chirurgical et sont utilisés seulement pour planifier. Ils sont basés sur des procédés stochastiques, n’ayant pas accès à des données sûres. Nous proposons une structure utilisant un modèle multi-agent qui comprend tous les éléments indispensables à une gestion efficace et au maintien de la sécurité dans les blocs opératoires, allant des compétences communicationnelles du staff, au temps nécessaire à la mise en place du service de nettoyage. Nous pensons que la multiplicité des ressources humaines engagées dans cette structure cause des difficultés dans les blocs opératoires et doit être prise en compte dans le modèle. En parallèle, nous avons construit un modèle mathématique de flux d’air entre les blocs opératoires pour suivre et simuler la qualité de l’environnement de travail. Trois points sont nécessaires pour la construction et le bon fonctionnement d’un ensemble de bloc opératoire : 1) avoir accès au statut du système en temps réel grâce au placement de capteurs 2) la construction de modèles multi-échelles qui lient tous les éléments impliqués et leurs infrastructures 3) une analyse minutieuse de la population de patients, du comportement des employés et des conditions environnementales. Nous avons développé un système robuste et invisible qui permet le suivi et la détection automatique d’événements dans les blocs. Avec ce système nous pouvons suivre l’activité à la porte d’entrée des blocs, puis l’avancement en temps réel de la chirurgie et enfin l’état général du bloc. Un modèle de simulation numérique de mécanique des fluides de plusieurs blocs opératoires est utilisé pour suivre la dispersion de fumée chirurgicale toxique, ainsi qu’un modèle multi-domaine qui évalue les risques de propagation de maladie nosocomiale entre les blocs. La combinaison de ces trois aspects amène une nouvelle dimension de sensibilisation à l’environnent des blocs opératoires et donne au staff un système cyber-physique capable de prédire des événements rares impactant la qualité, l’efficacité, la rentabilité et la sécurité dans l’hôpital. / Improving operating room management is a constant issue for modern large hospital systems who have to deal with the reality of day to day clinical activity. As opposed to other industrial sectors such as air civil aviation that have mastered the topic of industry organization and safety, progress in surgical flow management has been slower. The goal of the work presented here is to develop and implement technologies that leverage the principles of computational science to the application of OR suite problems. Most of the currently available models of surgical flow are used for planning purposes and are essentially stochastic processes due to uncertainties in the available data. We propose an agent-based model framework that can incorporate all the elements, from communication skills of the staff to the time it takes for the janitorial team to go clean an OR. We believe that human factor is at the center of the difficulty of OR suite management and should be incorporated in the model. In parallel, we use a numerical model of airflow at the OR suite level to monitor and simulate environment conditions inside the OR. We hypothesize that the following three key ingredients will provide the level of accuracy needed to improve OR management : 1) Real time updates of the model with ad hoc sensors of tasks/stages 2) Construction of a multi-scale model that links all key elements of the complex surgical infrastructure 3) Careful analysis of patient population factors, staff behavior, and environment conditions. We have developed a robust and non-obtrusive automatic event tracking system to make our model realistic to clinical conditions. Not only we track traffic through the door and the air quality inside the OR, we can also detect standard events in the surgical process. We propose a computational fluid dynamics model of a part of an OR suite to track dispersion of toxic surgical smoke and build in parallel a multidomain model of potential nosocomial contaminant particles flow in an OR suite. Combining the three models will raise the awareness of the OR suite by bringing to the surgical staff a cyber-physical system capable of prediction of rare events in the workflow and the safety conditions.
157

Optimisation numérique et expérimentale de stratégies d’effacement énergétique / Numerical and experimental optimization of peak power reduction control strategies

Stathopoulos, Nikolaos 27 February 2015 (has links)
Dans le contexte énergétique français actuel, deux principaux enjeux émergent. À court terme, des pointes de consommation électrique croissantes sont observées les dernières années pendant la période hivernale. Ces pointes sont fortement liées au chauffage électrique et ont des conséquences économiques, environnementales et sociales importantes. Dans un long terme, des objectifs environnementaux ambitieux ont été fixés au niveau national et européen, nécessitant la technologie de stockage thermique et une gestion efficace de l'environnement bâti. Les Matériaux à Changement de Phase (MCP) ainsi que les dispositifs de type échangeurs thermiques offrent des résultats promettant grâce au stockage thermique et le déplacement des consommations. Dans ce cadre, l’objectif de cette thèse est de développer des solutions de déplacement des consommations énergétiques qui prennent en compte le confort thermique des occupants et la qualité de l’air intérieur. Pour ce faire, deux outils sont nécessaires: un échangeur thermique expérimental (prototype) et un modèle numérique capable de simuler son comportement. L'échangeur contient du MCP macroencapsulé (paraffine) et est conçu de manière à faciliter son intégration dans un système de ventilation. Il a comme but de décaler la consommation due au chauffage électrique vers la période hors pointe. Le dispositif a été caractérisé expérimentalement lors des cycles thermiques complets (charge et décharge) en utilisant une quantité importante de capteurs. Il a ensuite été couplé à une cellule expérimentale, afin de tester des stratégies de contrôle préliminaires. Le modèle numérique est basé sur la discrétisation spatiale et l’établissement du bilan de chaleur des couches considérées, la méthode de la capacité thermique apparente, ainsi que l’utilisation des différences finies. Après validation à l’aide des données expérimentales, le modèle a été utilisé pour optimiser la performance de l'échangeur. Plusieurs paramètres ont été étudiés, y compris les dimensions de l'échangeur, la quantité et les propriétés du MCP, en cherchant la configuration avec le compromis optimal entre la chaleur emmagasinée et le temps nécessaire pour la charge et la décharge. Le modèle numérique a été couplé à un modèle de simulation du bâtiment et un logement de 80m2 a été conçu pour la mise en oeuvre et l'évaluation des stratégies de contrôle, en investiguant différents scénarios sur une période hivernal d’un mois. Les scénarios varient avec une complexité croissante, d'abord en considérant l’effacement énergétique et le confort thermique, ensuite en ajoutant le prix final de la consommation électrique et enfin en prenant compte la qualité de l'air intérieur avec la présence d'une famille de quatre personnes. 6 Cette étude a été menée dans le cadre d'un projet financé par l'Agence National de la Recherche (Stock-Air: ANR-Stock-E) et a également été soutenu par le ministère de l'Ecologie, du Développement durable et de l'Energie. / Considering the current French energy context, two major challenges are emerging. In the short term, significant peak power consumption has been observed in the past few years during the winter season. These peaks are strongly linked to electrical space heating and have important economic, environmental and social implications. In the long term, ambitious environmental goals have been set at national and European levels, requiring thermal storage technology and efficient management of the built environment. As part of the solution, Phase Change Materials (PCM) and heat exchanger applications offer promising results through thermal storage and load shifting techniques. Within this framework, the objective of this thesis is to develop load shifting solutions which also take into account the thermal comfort of the occupants and the indoor air quality. To achieve this, two tools were necessary: an experimental heat exchanger unit (prototype) and a numerical model that accurately simulates its behavior. The exchanger contains macroencapsumated PCM (paraffin) and is conceived in a way that facilitates its integration in a ventilation system. It is aimed to shift space heating electrical consumption from peak to off-peak period. The unit was experimentally characterized, using an important amount of sensors through full thermal cycles (charging and discharging) and was coupled to an experimental test cell, which led to the testing of preliminary control strategies. The numerical model is based on the heat balance approach and the apparent heat capacity method, using finite differences for differential equation solution under Matlab/Simulink environment. After validation with experimental data, the model was used to optimize the performance of the exchanger. Several parameters were investigated, including heat exchanger dimensions, PCM quantity and properties, seeking the configuration with the optimal compromise between stored heat and the time needed for the charging / discharging process. The numerical model was coupled to a building simulation model and an 80m2 dwelling was conceived for control strategies implementation and evaluation, by investigating different scenarios over a one- month winter period. The scenarios vary with increasing complexity, first considering load shifting and thermal comfort, then adding the final price of electricity consumption and finally taking into account the indoor air quality with the presence of a four-person family. This study has been conducted within the framework of a project funded by the French National Research Agency (Stock-Air: ANR-Stock-E) and was also financially supported by the French Ministry of Sustainable Development.
158

An assessment of indoor and outdoor air quality in a university environment : a case of University of Limpopo, South Africa

Mundackal, Antony Jino 23 June 2021 (has links)
Air pollution of late has been the focus of many studies due to the detrimental health risks that it poses to individuals. University environments have several academic departments with peculiar activities that could be affecting the indoor and outdoor air quality (AQ) of these environments. University settings differ from other environments because of the variety of activities and different lines of work that go on inside buildings housing academic departments and their surroundings, which are likely to have an impact on indoor air quality (IAQ) and outdoor air quality (OAQ) in this environment. Only a few AQ studies have been done in university sites and surrounds worldwide and in these studies, IAQ was given primary importance; whereas, the outdoor environment was and is often neglected. A study comparing both IAQ and OAQ is critical to further understand the relationship between IAQ and OAQ within a university campus. The University of Limpopo (UL) in the Mankweng township of South Africa has been undergoing some refurbishments with numerous construction activities going on in addition to the academic activities of UL. These activities may be affecting the AQ in this unique environment. The main aim of this study was to determine differences between indoor and outdoor AQ in a university environment and to understand how AQ in this unique environment varies with seasons and building function. The study was carried out in three buildings housing three different academic departments in UL namely: Department of Physiology and Environmental Health (PEH), Department of Biochemistry, Microbiology, and Biotechnology (BMBT) and the Department of Biodiversity (BIOD). Twenty indoor and 20 outdoor measuring sites were identified per departmental building from where real-time measurements of 11 AQ parameters (linear air velocity (LAV), dry-bulb temperature (Tdb), relative humidity (RH), carbon monoxide (CO), carbon dioxide (CO2), ozone (O3), sulphur dioxide (SO2), nitrogen dioxide (NO2), hydrogen sulphide (H2S), non-methane hydrocarbons (NMHCs) and volatile organic compounds (VOCs)) were taken over three consecutive days per season. Thus, a total of 60 indoor and 60 outdoor measurements were taken for each parameter in each of the three buildings of interest per season, leading to 360 measurements per season and 1440 measurement per parameter over the one-year period of study across the study area. A hot-wire anemometer was used to measure LAV, whereas the Q-Trak indoor AQ monitor was used in the measurement of Tdb, RH, CO and CO2. Aeroqual AQ monitors were employed in the measurement of O3, SO2, NO2, H2S, NMHCs and VOCs. The Wilcoxon signed ranks test was used to determine differences between indoor and outdoor environments. Significant differences were found between the indoor and outdoor environments for LAV (all three buildings), Tdb (PEH and BMBT), RH (BIOD), O3 (all three buildings), NO2 (all three buildings), CO (all three buildings), CO2 (all three buildings), NMHCs (BMBT and BIOD), and VOCs (all three buildings) (p < 0.05). Linear air velocity, O3, SO2, CO, CO2, and H2S values/concentrations across the indoor/outdoor environments were within the ASHRAE/DEA/WHO guidelines/standards, whereas Tdb, RH and NO2 values/concentrations were not. Air quality in the study area varied with building, with the best AQ across both the indoor and outdoor environments being within the BIOD building, whilst the worst AQ across both environments was encountered in the PEH building. Seasonal differences between buildings were also identified between indoor and outdoor environments among the PEH, BMBT and BIOD buildings (p < 0.008). Across the indoor environment, the winter season was found to be the season with the best AQ, since all the pollutants were found at minimum concentrations. Factors affecting AQ in the study area included thermal comfort, occupant densities, building function, laboratory emissions, renovation activities, generators, vehicular emissions, among others. The best AQ across the outdoor environment occurred during the autumn season, since all the air pollutants were present at minimal concentrations during this time. The best predictors of LAV, Tdb, CO, CO2, NO2, and NMHCs were seasons (R2 = 1.000, p < 0.01). For the parameters RH, H2S, and VOCs, the best predictor was building type (R2 = 1.000, p < 0.01). The indoor and outdoor environment were the best predictors for SO2 (R2 = 0.999, p < 0.01). Ozone had no single predictor that was found to significantly influence its concentration in this study. In relation to an air pollution index (API), generally all pollutant indices fell within the fair, good to very good range when using mean and maxima concentrations, whereas, corresponding NO2 concentrations throughout the study fell within the poor to very poor range (105.660–250.000). University management should take into consideration ventilation in laboratories, occupant densities and location of standby generators and car parks in the management of AQ on the university campus. All heating, ventilation and air conditioning (HVAC) systems need to be upgraded and work in tandem with natural ventilation when having high occupant densities within buildings. Future studies in this sector could incorporate larger sample sizes, be designed as a longitudinal study, and make use of questionnaires and sample more AQ parameters to get a detailed understanding of a university site and its surrounds. / Environmental Sciences / Ph. D. (Environmental Science)
159

Kontrollierte natürliche Lüftung in Büro- und Verwaltungsgebäuden: Ein Beitrag zur Steigerung von Energieeffizienz und Nutzerbehaglichkeit

Scheuring, Leonie 26 August 2022 (has links)
Es ist ein politisch erklärtes Ziel, den Ausstoß von klimaschädlichen Treibhausgasen weltweit zu verringern. Eine wesentliche Stellschraube im Gebiet des Bauwesens stellt hierbei die Einsparung von Energien zur Raumkonditionierung dar. Diese wird unter anderem über das Lüftungskonzept beeinflusst. Die Belüftung von Gebäuden ist zwingend notwendig, um die Emissionen der Baustoffe und die der Menschen, beispielsweise ihren CO2-Ausstoß über die Atmung, abzuführen und der Schimmelbildung vorzubeugen. Erfolgt die Belüftung über öffenbare Fenster – natürliche Lüftung – wird so allerdings energetisch aufwändig temperierte Raumluft mit untemperierter Außenluft ausgetauscht. Daraus können Wärmeverluste und thermisches Unbehagen resultieren. Energieeffiziente Technologien sind ventilatorgestützte Lüftungssysteme mit Wärmerückgewinnung. Doch nicht für alle Gebäudekonzepte und Nutzer stellen diese Lüftungskonzepte einen hohen Nutzerkomfort dar. Korrelationen zwischen Gebäuden mit ventilatorgestützten Lüftungsystemen und dem Sick-Building-Syndrom sind in der Literatur beschrieben, während hier für natürliche Lüftungskonzepte keine Korrelation besteht. Stattdessen wird in Nutzerbefragungen der natürlichen Lüftung eine hohe Akzeptanz zugeschrieben. Mit elektrisch angetriebenen Fenstern kann die natürliche Lüftung nutzerunabhängig gesteuert und so Wärmeverluste und thermisches Unbehagen kontrolliert werden. Bisher sind die Auslegungen solcher kontrollierten natürlichen Lüftungskonzepte noch sehr planungsintensiv. Das Ziel der Arbeit ist es, für Büro- und Verwaltungsgebäude Öffnungs- und Schließsignale einer kontrollierten natürlichen Lüftung zu geben. Diese zeichnen sich darüber aus, dass sie ein gesundes Raumklima, eine hohe Nutzerbehaglichkeit und Energieeffizienz über den Jahresverlauf schaffen und auf ihre Robustheit gegenüber Änderungen von Gebäuderandbedingungen überprüft sind. Für das Ziel wird ein über CO2- und Temperatursensoren gesteuertes Fenstersystem mittels dynamisch thermischer Gebäudesimulationen in vier Varianten von Schließsignalen auf thermische Behaglichkeit und Energiebedarf untersucht. Die Grundlage dazu stellt die bezüglich Entwurf, Konstruktion und Nutzung allgemeingültige Entwicklung eines Büroraums dar. Der Büroraum wird im Simulationsmodell abgebildet und in Realität errichtet. Die Kombination von Simulationsmodell und realem, als experimentellem Teststand ausgeführtem Büroraum ermöglicht verifizierte Ergebnisse. So werden vier Berechnungsmodelle für Luftvolumenströme von Fenstern über den Teststand verifiziert. Dazu dienen Luftwechselmessungen nach der Konstantinjektionsmethode an 173 Fensteröffnungen für fünf Außentemperatur- und elf Windgeschwindigkeitsbereiche. Das Berechnungsmodell nach DIN EN 16798-7 zeigt sich als realitätsnah. Da dieses Berechnungsmodell nicht im Gebäudesimulationsprogramm implementiert ist, wird eine Methode zur Implementierung entwickelt. Über das entwickelte Simulationsmodell zeigt sich, dass eine kombinierte CO2- und temperaturgesteuerte kontrollierte natürliche Lüftung nur zweimal im Jahr ihre Grenzwerte zur Fensteröffnung und -schließung variieren muss, um ganzjährig eine hohe Energieeffizienz und Nutzerbehaglichkeit zu schaffen. Die Schließsignale des sensorgesteuerten Fenstersystems werden in eine Zeitsteuerung überführt. Es zeigt sich, dass für die kühlen Monate jede Öffnung mit identischer Dauer angesetzt werden darf. In wärmeren Monaten muss die Öffnungsdauer in Abhängigkeit der Außentemperatur angepasst werden, so dass eine Zeitsteuerung mit einer Außentemperaturmessung gekoppelt werden muss. Die Ergebnisse zeigen, dass über eine Variation der Schließsignale einer kontrollierten natürlichen Lüftung die Energieeffizienz und die thermische Behaglichkeit wesentlich gesteigert werden und dass selbst bei geringen Windgeschwindigkeiten und Temperaturdifferenzen die Raumluftqualität stets gewährleistet ist. Für nahezu alle Standorte in Deutschland kann die kontrollierte natürliche Lüftung so den Kühlbedarf der untersuchten Büroräume eliminieren, ohne in einer sommerlichen Überhitzung der Räume zu resultieren. Die entwickelten und bezüglich Raumluftqualität und thermischer Behaglichkeit charakterisierten Sensor- und Zeitsteuerungen tragen dazu bei, die kontrollierte natürliche Lüftung als wartungsarme, technikreduzierte Alternative zu der ventilatorgestützten Lüftung zu etablieren.:1 Einleitung 2 Natürliche Lüftung 3 Kontrollmöglichkeiten der natürlichen Lüftung 4 Entwicklung der Untersuchungsmodelle 5 Voruntersuchungen 6 Sensorsteuerung für den Basisraum 7 Zeitsteuerung für den Basisraum 8 Übertragung auf unterschiedliche Gebäuderandbedingungen 9 Diskussion und Empfehlungen 10 Zusammenfassung und Ausblick 11 Literatur 12 Abbildungsnachweis 13 Bezeichnungen 14 Anhang / It is a politically declared goal to reduce the emission of climate-damaging greenhouse gases worldwide. To support this goal by the building industry a key driver is the saving of energy for room conditioning. Among other factors, this is influenced by the ventilation concept. Also the ventilation of buildings is absolutely necessary in order to remove the emissions of the building materials and those of the people, for example their CO2 emissions through breathing as well as to prevent mould. However, if ventilation is carried out via openable windows - natural ventilation - then energetically expensive tempered room air is exchanged with cold outside air. This could result in heat loss and thermal discomfort. Mechanical ventilation systems with heat recovery are energy-efficient technologies. However, these ventilation concepts do not represent a high level of user comfort for all building concepts and users. Correlations between buildings with mechanical ventilation systems and sick building syndrome are described in the literature, while there is no such correlation for natural ventilation concepts. Instead, a high level of acceptance is attributed to it in user surveys. With electrically driven and controlled windows, natural ventilation can be controlled independently from the user, thus minimizing heat loss and thermal discomfort. So far, the design of such controlled natural ventilation concepts is still very planning-intensive. The aim of this work is to provide opening and closing signals for controlled natural ventilation in office buildings. These are characterized for their capability to create a high indoor air quality, high user comfort and high energy efficiency over the course of the year and are tested for their robustness against changes in building characteristics. To achieve this goal, a window system controlled by CO2 and temperature sensors is examined for its impact on thermal comfort and energy demand by means of building simulation tools with four variants of closing signals. As a basis for this examination an office room is utilized that conforms to the current standards in terms of design, construction and use. The office space is transferred to a simulation model and constructed in reality. The combination of the simulation model and the real office space, which is designed as an experimental test rig, enables verified results. Thus, four calculation models for air flow volumes of windows are verified via the test rig. Air exchange measurements according to the constant injection method on 173 window openings for five outdoor temperature and eleven wind speed ranges are used for this purpose. The calculation model according to DIN EN 16798-7 proves to be close to reality. Since this calculation model is not implemented in the building simulation program, a method for its implementation is developed. Using the developed simulation model, it is shown that a combined CO2- and temperature-controlled natural ventilation creates a high energy efficiency and user comfort throughout the year by varying its limit values for window opening and closing only twice a year. The closing signals of the sensor controlled window system are transferred to a time control system. It turns out that for the cold months, each opening could be set to the same opening time. In warmer months, the opening time must be adjusted depending on the outside temperature. Thus, a time control should be coupled with an outside air temperature measurement. The results show that by varying the closing signals of a controlled natural ventilation system, the energy efficiency and thermal comfort is significantly increased and that a high indoor air quality is always guaranteed even at low wind speeds and low temperature differences. For almost all locations in Germany, controlled natural ventilation can thus eliminate the cooling requirements in the office spaces studied without overheating in the summer. The developed sensor and time control systems are characterized by high indoor air quality and good thermal comfort. Thus, these systems are a contribution to promote controlled natural ventilation as a low-maintenance and technically reduced alternative to mechanical ventilation.:1 Einleitung 2 Natürliche Lüftung 3 Kontrollmöglichkeiten der natürlichen Lüftung 4 Entwicklung der Untersuchungsmodelle 5 Voruntersuchungen 6 Sensorsteuerung für den Basisraum 7 Zeitsteuerung für den Basisraum 8 Übertragung auf unterschiedliche Gebäuderandbedingungen 9 Diskussion und Empfehlungen 10 Zusammenfassung und Ausblick 11 Literatur 12 Abbildungsnachweis 13 Bezeichnungen 14 Anhang
160

Evaluation of Indoor Air Quality in Four Nursing Home Facilities in Northwest Ohio

Tebbe, Hope M. 18 October 2017 (has links)
No description available.

Page generated in 0.0677 seconds