• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 11
  • 10
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

3.5 GHz Indoor Propagation Modeling and Channel Characterization

Ha, Sean Anthony 29 June 2015 (has links)
In the push for spectrum sharing and open spectrum access, the 3.5 GHz frequency band is under consideration for small cells and general Wireless Local Area Networks (WLAN) in the United States. The same band is beginning to see deployment in China, Japan, and South Korea, for the 4G Long Term Evolution (LTE) cellular standard to increase coverage and capacity in urban areas through small cell deployment. However, since the adoption of this band is new, there is a distinct shortage of propagation data and accurate channel modeling at 3.5 GHz in indoor environments. These models are necessary for cellular coverage planning and evaluating the performance and feasibility of wireless systems. This report presents the results of a fixed wireless channel measurement campaign at 3.5 GHz. Measurements were taken in environments typical of indoor wireless deployment: traditional urban indoor office, hallway, classroom, computer laboratory, and atrium areas, as well as within a hospital. Primarily Non Line of Sight (NLOS) experiments were carried out in areas with a controllable amount of partitions separating the transmitter and receiver in order to document material-based attenuation values. Indoor-to-outdoor measurements were carried out, focusing on attenuation due to common exterior building materials such as concrete, brick, wood, and reinforced glass. Documented metrics include large scale path loss, log-normal shadowing, and channel power delay profiles combined with delay spread characteristics for multipath analysis. The statistical multi-antenna diversity gain was evaluated to gauge the benefit of using multi-antenna systems in an indoor environment, which has much greater spatial diversity than an outdoor environment. Measurements were compared to indoor path loss models used for WLAN planning in the low GHz range to investigate the applicability of extending these models to 3.5 GHz. / Master of Science
12

A Study of Indoor Ultra-wideband Propagation Measurement and Characterization

Bayram, Ahmet 25 May 2004 (has links)
Ultra-wideband (UWB) communication is emerging as a new wireless technology, which promises high data rates with low interference and low power consumption. The development of such UWB systems requires a sufficiently large amount of data to characterize the propagation behavior of UWB signals in indoor environments and develop accurate channel models. This thesis focuses primarily on a frequency-domain approach for propagation measurements and characterization of indoor UWB channels. This approach is based on measurements of the amplitude using a scalar network analyzer and retrieval of the phase from the amplitude data using a Hilbert transform relationship. Extensive propagation data are collected in a frequency range of 1 to 12 GHz in two buildings on Virginia Tech campus. Using the data, channel characterization results are obtained and compared to those based on time-domain measurements. Some statistical results for small-scale fading, path loss exponent, and signal quality are presented. This comparison validates the accuracy of measured results for the UWB measurement campaign. The measured data also reaffirms the immunity of UWB propagation to small-scale fading which is present in narrowband wireless communication systems. In addition to channel propagation measurements, signal distortions in UWB links, due to bandwidth limitations of antenna characteristics as well as the dispersive behavior of building materials, are also examined. In particular, the distortion of radiated signals by TEM horn antennas along off-boresight directions are studied experimentally. Furthermore, pulse distortions resulting from propagation through dispersive walls are demonstrated by simulation. The roles of receive-transmit antennas in a UWB link are examined, and the requirements for gain, input impedance, polarization, and phase of the radiated signal necessary for minimization of signal distortions are pointed out. / Master of Science
13

Smart Antennas & Power Management in Wireless Networks

Srivastava, Vikash Umeshchandra 15 April 2003 (has links)
The proliferation of wireless ad-hoc networks especially wireless LAN (IEEE 802.11b Standard) in the commercial market in recent years has reached a critical mass. The adoption and strong support of wireless IEEE 802.11 standard, coupled with the consequent decline in costs, has made wireless LAN deployment as one of the fastest growth area in communication access technology. With the ever increasing use of wireless LAN technology the various networks are reaching their full capacity in terms of network throughput, number of users and interference level in the wireless channel. In this thesis work I propose to the use smart antenna technology and a power management scheme in the wireless ad-hoc networks to increase the network capacity in terms of throughput, number of simultaneous communication and to lower the average transmit power and consequently co-channel interference. Power management scheme can be used to maximize the power efficiency of the transmitter by choosing an optimum transmit power level. Smart antenna or adaptive antenna array technology has reached a level of sophistication that it is feasible to use it on small mobile terminals like handheld PDA, LAPTOP and other mobile devices with limited battery power. The simulation results of various ad-hoc network scenario shows that there are significant gains to be had if these technologies can be integrated in the existing wireless LAN physical layer and/or in the standard them self. Smart antennas along with slight modification in channel access scheme reduce co-channel interference dramatically and increases the number of simultaneous transmissions hence improves network throughput. Power management algorithm is shown to improve average transmission of a node. We present a mathematical framework to characterize the outage probability of cellular mobile radio system with selective co-channel interference receiver in overloaded array environments. The mathematical framework outlines a general numerical procedure for computing the probability of outage of a cellular mobile radio system that is equipped with a smart antenna to suppress a few strongest co-channel interferers (CCI) out of a total of NI active interferers by null steering. / Master of Science
14

Propagation modeling of wireless systems in shipboard compartments

Chaabane, Adnen 03 1900 (has links)
Approved for public release, distribution is unlimited / In today's navy, it is becoming more and more important to reach all areas onboard a ship with key technical resources. In order to accomplish this goal, the already existing physical networks need to be complemented with wireless capability. A sophisticated Wireless Local Area Network (WLAN) can provide that vital connectivity to the ship's network resources from almost anywhere on the ship. It would allow sailors to access critical information and immediately communicate with others throughout the ship from any standard wireless device (PDA, laptop and many other hand-held devices). In addition, WLANs greatly mitigate problems due to physical damage to wires or fiber optic cables that are used today. Because the navy's emphasis is on building ships with reduced manning, advanced technology, and lower cost in mind, the idea of a WLAN, which has a deep impact on all those areas, has been of a growing interest to the Navy. The purpose of this thesis is to analyze, model, and simulate a wireless environment on board a variety of naval ship compartments, using the Urbana code. Starting from known inputs (frequency, ship compartment geometry, material properties, propagation computation model, and antenna type), analytical results reflecting the propagation mechanisms, coverage area, and security posture of the WLAN are presented. Variable inputs can then be optimized to achieve a desired signal distribution and to meet security requirements for a specific shipboard environment. / Lieutenant Junior Grade, Tunisian Navy
15

Spatiotemporal characterization of indoor wireless channels

Gurrieri, Luis 29 October 2010 (has links)
The continuous advancement in wireless communications technology demands new approaches to improving the capacity of existing radio links. The high data throughput required can be achieved by the complete utilization of space, time and polarization diversities inherent in any propagation environment. Among the different propagation scenarios, the indoor channels represent a particularly challenging problem given the number and complexity of interactions between the transmitted signal and the environment. This dissertation explores the interrelation between propagation physics and space-time-polarization diversity based on a novel high resolution channel sounding and reconstruction technique. First, a method to reconstruct the indoor complex channel response based on a limited set of samples and the elimination of the interference using deconvolution techniques is presented. Then, the results for the joint angle-of-arrival, delay characterization and depolarization of electromagnetic waves are presented. Finally, a novel approach to using depolarized multipath signals to boost the receiver signal-to-noise performance is presented. The current study shows that full utilization of the diversities of channel novel wireless systems can be proposed with significant improvement in capacity.
16

Spatiotemporal characterization of indoor wireless channels

Gurrieri, Luis 29 October 2010 (has links)
The continuous advancement in wireless communications technology demands new approaches to improving the capacity of existing radio links. The high data throughput required can be achieved by the complete utilization of space, time and polarization diversities inherent in any propagation environment. Among the different propagation scenarios, the indoor channels represent a particularly challenging problem given the number and complexity of interactions between the transmitted signal and the environment. This dissertation explores the interrelation between propagation physics and space-time-polarization diversity based on a novel high resolution channel sounding and reconstruction technique. First, a method to reconstruct the indoor complex channel response based on a limited set of samples and the elimination of the interference using deconvolution techniques is presented. Then, the results for the joint angle-of-arrival, delay characterization and depolarization of electromagnetic waves are presented. Finally, a novel approach to using depolarized multipath signals to boost the receiver signal-to-noise performance is presented. The current study shows that full utilization of the diversities of channel novel wireless systems can be proposed with significant improvement in capacity.
17

Βελτιστοποίηση της ποιότητας παρεχομένων υπηρεσιών σε διαλειπτικά κανάλια (fading channels) για δίκτυα κυτταρικής κινητής τηλεφωνίας τρίτης γενιάς

Κολέττι, Θεοχάρης - Αλέξανδρος 11 January 2011 (has links)
Αντικείμενο της παρούσας διπλωματικής εργασίας είναι η μελέτη των μεθόδων βελτιστοποίησης της ποιότητας των παρεχομένων υπηρεσιών των δικτύων κυτταρικής τηλεφωνίας τρίτης γενιάς σε διαλειπτικό περιβάλλον. Αρχικά γίνεται μια σύντομη ιστορική αναδρομή στην εξέλιξη των συστημάτων κινητών επικοινωνιών και παρουσιάζεται το σημαντικότερο πρότυπο τρίτης γενιάς, το UMTS και τα ιδιαίτερα τεχνικά χαρακτηριστικά του. Στην συνέχεια αναλύεται το LTE το οποίο αποτελεί την τελευταία εξέλιξη των δικτύων τρίτης γενιάς και αναμένεται να αντικαταστήσει το UMTS στο άμεσο μέλλον αποτελώντας στην πραγματικότητα τον πρόδρομο των συστημάτων τέταρτης γενιάς. Στην συνέχεια εστιάζουμε στα διαλειπτικά κανάλια αναλύοντας τα φαινόμενα που παρατηρούνται σε αυτά και τα στατιστικά μοντέλα μέσα από τα οποία περιγράφονται. Παράλληλα διερευνάται η επίδραση των φαινομένων αυτών (θετική ή αρνητική) στο QoS των δικτύων τρίτης γενιάς βάσει των χαρακτηριστικών τους (όπως παρουσιάστηκαν στο κεφάλαιο 1) και οι δυνατότητες για περαιτέρω βελτιστοποίηση κατα τον σχεδιασμό των δικτύων και την σωστή εκμετάλλευση των χαρακτηριστικών του περιβάλλοντος όδευσης. Ιδιαίτερη αναφορά γίνεται στα μοντέλα εσωτερικού χώρου λόγω του μεγάλου φορτίου κίνησης που καλούνται να εξυπηρετήσουν. Στο τελευταίο μέρος παρουσιάζεται η διαδικασία παραμετροποίησης κάποιων σημαντικών μοντέλων και τα αποτελέσματα των εξομοιώσεων που έγιναν στον χώρο του κτηρίου των Ηλεκτρολόγων Μηχανικών. / The subject of this diploma thesis is the study of the optimization techniques of the quality of service for third generation cellular telephony networks in fading enviroment. After a short presentation of the evolution of the systems of wireless telecommunications, it is discussed UMTS the most important third generation system which dominated the european market and its technical features. LTE is also introduced, the system which is expected to replace UMTS in the near future while being the predecessor of the fourth generation systems. Then we focus on the fading channels analysing the phenomena wich are related to them and analysing the statistical models that describe them. It is also studied the effect (positive or negative) of these phenomena on the QoS of the third generation networks and the optimization methods which can be applied during the network designing process with special reference to the indoor propagation models because of the big amount of traffic load that they are asked to serve. At the last chapter of the thesis there is a presentation of the parameter setting procedure for some important models and the outcomes of the simulation that took place in the building of Electronic Engineering.
18

Šíření signálů bezdrátových komunikačních systémů IEEE 802.11 / Signal propagation in wireless communication systems IEEE 802.11

Vyčítal, Jaroslav January 2018 (has links)
This paper deals with the propagation of waves. Here is the wavelength distribution according to the wavelength. It focuses on the UHF and SHF band in which IEEE802.11n operates. Contains model breakdown by cell type. Describes which propagation methods are dominant in the cell type. Several propagation patterns are presented, which are then modeled in Matlab environment.The models are then compared to experimental measurements.
19

Propagation Modeling and Performance Evaluation in an Atrium Building

Lu, Yao January 2014 (has links)
In this thesis electromagnetic wave propagation is investigated in an indoor environment. The indoor environment is a furnished office building with corridors, corners and rooms. Particularly, there is an atrium through the building in the center. For the study there were measurements available from real building in the 2.1 GHz frequency band. One objective is to design a propagation model that should be simple but reflect the trend of the propagation measurements. Furthermore, a system performance evaluation is carried out based on the implemented model. The proposed 3D model is a combination of the Free Space Path Loss model, the Keenan-Motley model and the recursive diffraction model. The channel predictions from the 2D Keenan-Motley algorithm are quite different from the measurements. Therefore, the 3D Keenan-Motley algorithm is designed to depict the atrium effect and speed up the simulation at the same time. Besides a buttery radiation diagram is created to mimic Kathrein 80010709 antenna installed in the building. Finally, a diffracted path is added to improve the received signal strength for the users around the atrium areas. With all the above procedures, the final results from the model are in good quantitative agreement with the measurement data. With the implemented propagation model, a further analysis of the system performance on the Distributed Antenna System (DAS) is performed. A comparison for the system capacity between the closed building and the atrium building is conducted, showing that the former one benefits more when the number of the cells increases. The reason is the atrium cells suffer severe interference from neighbor cells during high traffic demand scenarios. Then some further cell configurations show that the number of the cells, the geometry performance and the balance of the user fraction should be considered to improve the system capacity.
20

Propagation channel models for 5G mobile networks. Simulation and measurements of 5G propagation channel models for indoor and outdoor environments covering both LOS and NLOS Scenarios

Manan, Waqas January 2018 (has links)
At present, the current 4G systems provide a universal platform for broadband mobile services; however, mobile traffic is still growing at an unprecedented rate and the need for more sophisticated broadband services is pushing the limits on current standards to provide even tighter integration between wireless technologies and higher speeds. This has led to the need for a new generation of mobile communications: the so-called 5G. Although 5G systems are not expected to penetrate the market until 2020, the evolution towards 5G is widely accepted to be the logical convergence of internet services with existing mobile networking standards leading to the commonly used term “mobile internet” over heterogeneous networks, with several Gbits/s data rate and very high connectivity speeds. Therefore, to support highly increasing traffic capacity and high data rates, the next generation mobile network (5G) should extend the range of frequency spectrum for mobile communication that is yet to be identified by the ITU-R. The mm-wave spectrum is the key enabling feature of the next-generation cellular system, for which the propagation channel models need to be predicted to enhance the design guidance and the practicality of the whole design transceiver system. The present work addresses the main concepts of the propagation channel behaviour using ray tracing software package for simulation and then results were tested and compared against practical analysis in a real-time environment. The characteristics of Indoor-Indoor (LOS and NLOS), and indoor-outdoor (NLOS) propagations channels are intensively investigated at four different frequencies; 5.8 GHz, 26GHz, 28GHz and 60GHz for vertical polarized directional, omnidirectional and isotropic antennas patterns. The computed data achieved from the 3-D Shooting and Bouncing Ray (SBR) Wireless Insite based on the effect of frequency dependent electrical properties of building materials. Ray tracing technique has been utilized to predict multipath propagation characteristics in mm-wave bands at different propagation environments. Finally, the received signal power and delay spread were computed for outdoor-outdoor complex propagation channel model at 26 GHz, 28 GHz and 60GHz frequencies and results were compared to the theoretical models.

Page generated in 0.081 seconds