Spelling suggestions: "subject:"inertial 1ieasurement unit (IMU)"" "subject:"inertial 1ieasurement knit (IMU)""
1 |
Motion-Logger: An Attitude and Motion Sensing SystemMarquez, Andres Felipe 03 November 2008 (has links)
This thesis proposes a motion sensing system for wheelchairs with the main objective of determining tips, falls and risky situations. The system relies on measurements from an Inertial Measurement Unit, (IMU), consisting of a 3-axis accelerometer and a 2-axis gyroscope as the source of information. The IMU was embedded in a portable device, the "Motion Logger", which collects motion data in a Secure Digital memory card after running a real time preprocessing algorithm. The algorithm was designed to reduce energy consumption and memory usage. Actual signal analysis and attitude estimation is carried out offline.
The motion sensing system was developed for determining wheelchair-related falls as part of a major research effort carried out at the research center of the James A Haley VA Hospital Subject Safety Center, Tampa, Florida. The focus of the study concentrated on achieving a thorough understanding of the demographics, nature, consequences and the creation of prediction models for fall events.
The main goal of the embedded system was to successfully estimate the motion variables relevant to the occurrence of falls, tips and similar risky situations. Currently, off-line smoothing techniques based on Kalman filter concepts allow for optimal estimation of angles in the longitudinal direction, roll, and in the lateral direction, pitch.
Results from both predefined experiments with known outcomes and data collected from actual wheelchair users during pilot and final deployment stages are presented and discussed.
|
2 |
Combination of IMU and EMG for object mass estimation using machine learning and musculoskeletal modeling / Kombination av IMU och EMG för uppskattning av ett objekts massa med maskininlärning och muskuloskeletal modelleringDiaz, Claire January 2020 (has links)
One of the causes of work-related Musculoskeletal Disorders (MSDs) is the manual handling of heavy objects. To reduce the risk of such injuries, workers are instructed to follow general guidelines on how to lift and carry objects depending on their mass. Current ergonomic assessments using wearable sensors can differentiate correct from incorrect body postures but are limited. Being able to estimate the mass of an object during ergonomic assessment would be a great improvement. This work investigates a combination of Inertial Measurement Units (IMUs) and Electromyography (EMG) sensors for offline estimation of an object’s mass for different movements. 10 participants performed 26 lifting and carrying trials with loads from 0 to 19 kg, while wearing a 17IMU motion capture system and EMG sensors on both biceps brachii and both erector spinae. Two methods were considered to estimate the carried mass: (1) supervised machine learning and (2) musculoskeletal modeling. First, the data was used to select features, train, and compare regression models. The lowest Mean Squared Error (MSE) for 10-fold cross-validation for lifting and carrying combined was 5.8113 for a Gaussian Process Regression (GPR) model with an exponential kernel function. Then, a MSE of 4.42 and a Mean Absolute Error (MAE) of 1.63 kg were obtained also with a GPR for Leave-One-Subject-Out Cross-Validation (LOSOCV) only for lifting and frontal carrying trials. For the same trials, the upper-extremity musculoskeletal model, scaled to each participant, estimated the mass with a MSE of 1.78 and a MAE of 0.95 kg. The study was restricted to lifting and frontal carrying, but the combination of the two technologies showed great potential for object mass estimation.
|
3 |
Validation of a new iPhone application for measurements of wrist velocity during actual work tasks / Validering av en ny iphone-applikation för mätning av handledshastighet under verkliga arbetsuppgifterAbaid, Mohammed Abderhman January 2023 (has links)
The breakthrough in mobile technology and the development of smartphones, supplied with sensing devices such as Inertial Measurement Units (IMUs), has made it possible to obtain accurate and reliable data on the angular velocity for different objects. The available technical sensors for wrist movements, such as electrogoniometers, are costly, time-consuming, and need a particular computer program to be analyzed. Therefore, there is a need to develop user-friendly risk assessment methods for wrist angular velocity measurements. This master thesis aimed to validate the accuracy of a newly developed iPhone application (App), "ErgoHandMeter," for wrist velocity in actual work tasks, by comparing the “ErgoHandMeter” to standard electrogoniometers. The project study was performed with four participants, two females and two males, from three jobs performing actual work tasks. The total angular velocity obtained by the mobile application was compared with the angular velocity data from the standard electrogoniometer. The total angular velocities obtained from the smartphone and the goniometer were computed at the 10th, 50th and 90th percentile for the four subjects. The 50th percentile of goniometer-flexion velocity (G-flex) was 7.4 ± 5.4°/s, for the goniometer-total (G-tot) 8.7 ± 6.5)°/s and for App 7.2 ± 4.9°/s. The correlation coefficient for the 50th percentile of goniometer-flexion (G-flex) parameter and smartphone application was 0.994. For the goniometer-total (G-tot) and the application, it was 0.993. In a Bland-Altman plot the mean difference between G-flex and App for the 50th percentile was -0.18 °/s and for G-tot and App was -1.54 °/s, i.e. the App was lower in average. The limit of the agreement between G-Flex and App, and G-tot and App stayed within two standard deviations. For G-Flex and App (mean+1.96SD) was 1.34 °/s, (mean-1.96SD) was -1.71 °/s, while for G-tot and App (mean+1.96SD) was 1.89 °/s, (mean-1.96SD) was -4.96 °/s, indicating an adequate agreement between the two methods. A limitation was that the included occupations were all relatively low velocity. However, in conclusion, the results indicate that the two methods agree adequately and can be used interchangeably. / Genombrottet inom mobiltekniken och utvecklingen av smarttelefoner med sensorer som t.ex. tröghetsmätningsenheter (IMU) har gjort det möjligt att få exakta och tillförlitliga uppgifter om vinkelhastigheten för olika objekt. De tillgängliga tekniska sensorerna för handledsrörelser, t.ex. elektrogoniometrar, är dyra, tidskrävande och de samplade signalerna kräver ett särskilt datorprogram för att analyseras. Det finns därför ett behov av att utveckla användarvänliga riskbedömningsmetoder för mätningar av handledens vinkelhastighet. Syftet med detta examensarbete var att validera noggrannheten hos en nyutvecklad iPhone-applikation (App), "ErgoHandMeter", för handledshastighet i verkliga arbetsuppgifter, genom att jämföra "ErgoHandMeter" med vanliga elektrogoniometrar. Projektstudien genomfördes med fyra deltagare, två kvinnor och två män, från tre yrken som utförde verkliga arbetsuppgifter. Den totala vinkelhastigheten som erhölls av mobilapplikationen jämfördes med vinkelhastighetsdata från standardelektrogoniometern. De totala vinkelhastigheterna som erhållits från smarttelefonen och goniometern beräknades vid den 10:e, 50:e och 90:e percentilen för de fyra försökspersonerna. Den 50:e percentilen för goniometer-flexionshastigheten (G-flex) var i genomsnitt 7,4°/s och för goniometertotalen (G-tot) 8,7°/s. Korrelationskoefficienten (r) för den 50:e percentilen för goniometer-flexionsparametern (G-flex) och smartphone-applikationen var 0,994. För goniometer-total (G-tot) och applikationen var r 0,993. I en Bland-Altman-plot var den genomsnittliga skillnaden mellan G-flex och appen för den 50:e percentilen -0,18°/s och för G-tot och appen -1,54°/s (App var lägre än Gon). Medelvärdet för differensen mellan G-Flex och App och G-tot och App ligger inom två standardavvikelser. För G-Flex och App (medelvärde+1,96SD) var 1,34 °/s, (medelvärde-1,96SD) var -1,71 °/s, medan för G-tot och App (medelvärde+1,96SD) var 1,89 °/s, (medelvärde-1,96SD) var -4,96 °/s. Vilket tyder på en tillräcklig överensstämmelse mellan de två metoderna. En begränsning var att de inkluderade yrkena alla hade relativt låg hastighet. Sammanfattningsvis visar dock resultaten att de två metoderna stämmer väl överens och kan användas på ett utbytbart sätt.
|
4 |
A Study Of Tremor In Parkinsons Disease Using Signals From Wrist-Worn Inertial Measurement SensorsAditya Ajay Shanghavi (19739650) 25 September 2024 (has links)
<p dir="ltr">Parkinson’s Disease (PD) is the second most common neurodegenerative disorder with tremor being its primary motor symptom. Although the MS-UPDRS is the current clinical method for evaluating the severity of tremors in PD, it has several drawbacks resulting from the subjective, visual-based examination, and the ordinal scale used to rate the tremors. Since, the MS-UPDRS is agnostic to the etiology of the tremor, age related increase in naturally occurring physiological tremors may confound the precise rating of PD tremors. However, replacing the judgment of the neurologist in determining the holistic progression of PD and treatment protocol is neither feasible nor advisable. This research used lightweight, wearable, non-invasive sensors to detect, analyze, and differentiate changes in wrist kinematics due to physiological and PD tremors. Findings reveal key differences and similarities in composition between these different types of tremors. Dominant frequency analysis using a data-based approach shows interesting parallels with the frequency range found in literature for these tremors. Finally, using features of tremor signal obtained from the sensors, a novel Tremor Severity Score rating scale was created that shows greater sensitivity in differentiating rest and postural tremors as well as medication effects on these tremors in PD patients compared to the MS-UPDRS. This study offers a simple method for objectively evaluating Parkinsonian tremors, identifying kinematic distinctions between rest and postural tremors, analyzing the effect of anti-parkinsonian medication on these tremors, and sensitively scoring tremors. These objective methods could be valuable for early diagnosis and distinguishing between different tremor causes in both clinical and telehealth settings, as well as for investigating the effects of various treatment methods on tremors.</p>
|
5 |
Analys av accelerometerdata för identifiering av träffpunkt och mätning av resulterande vibrationer i padelrack / Analysis of accelerometer data for identification of impact area and measurement of resulting vibrations in padel racketsBroman, Simon, Franzén, André January 2021 (has links)
Syftet med att mäta vibrationer och rekyler i ett padelrack i detta arbete är att utveckla en prototyp som kan användas som träningsredskap för att minska risken för skador. En vanlig skada som drabbar padelspelare är tennisarmbåge, som enligt studier tros uppkomma genom upprepad exponering av mikrotrauman som vibrationer och rekyler. Genom att utföra en litteraturstudie i ämnet har systemkrav för ett sensorbaserat system definierats. Systemet som mäter vibrationer och rekyler har monterats i handtaget på padelracket. Två olika testmiljöer har utvecklats för att möjliggöra kontrollerade tester. För att identifiera och analysera slag använder systemet frekvensanalyser, korrelationstester och positionsförändring. Vid utveckling av metoden för identifiering av träffpunkt delades racket upp i fem olika zoner. Resultatet indikerar att träffar i två av zonerna ger upphov till mindre mängd vibrationer jämfört med de övriga zonerna. Resultatet för identifiering av träffzon varierar mellan testmiljöerna och enbart identifiering av en zon kan anses vara fungerande i båda fallen. Systemet identifierade träffzonen korrekt i 18 av 25 slag i den ena testmiljön och 9 av 25 i den andra. För att förbättra identifieringen av träffzon behövs flera analyser och korrelationtester utformas. En slutsats för det här examensarbetet är att det här arbetet kan användas som grund för vidare utveckling av ett sensorbaserat system för att identifiera träffzonen och kvantifiera vibrationer i ett padelrack. / The purpose of measuring vibrations and recoils in a padel racket in this thesis is to develop a prototype that can be used as a training equipment to reduce the risk of injury. A common injury for padel players is tennis elbow, studies show that the cause of this injury are microtraumas from vibrations and recoils. Through a literature study in the subject, system demands for a sensor-based system have been defined. The system that has been used to measure vibrations and recoils have been attached to the bottom of the handle on the padel racket. To achieve controlled tests two different test environments have been developed. To identify and analyze impacts the system utilizes frequency analysis, correlation tests and displacement tracking. For identification of the impact area the racket was divided into five zones. The result indicates, that two of the impact zones generate less vibrations than the others. The result also shows that identification of impact zone varies between the test environments and that only the sweet spot can be identified in both cases. The system identified the impact zone correctly in 18 out of 25 strokes in one test environment and 9 out of 25 in the other. To further improve the methods for identification of the impact zone more analyses and correlations tests are required. One conclusion for this thesis is that it can be used as a platform for further development of a sensor-based system that can correctly identify impacts in all zones and quantify the resulting vibrations.
|
6 |
Land Vehicle Navigation With Gps/ins Sensor Fusion Using Kalman FilterAkcay, Emre Mustafa 01 December 2008 (has links) (PDF)
Inertial Measurement Unit (IMU) and Global Positioning System (GPS) receivers are
sensors that are widely used for land vehicle navigation. GPS receivers provide
position and/or velocity data to any user on the Earth&rsquo / s surface independent of his
position. Yet, there are some conditions that the receiver encounters difficulties, such
as weather conditions and some blockage problems due to buildings, trees etc. Due to
these difficulties, GPS receivers&rsquo / errors increase. On the other hand, IMU works with
respect to Newton&rsquo / s laws. Thus, in stark contrast with other navigation sensors (i.e.
radar, ultrasonic sensors etc.), it is not corrupted by external signals. Owing to this
feature, IMU is used in almost all navigation applications. However, it has some
disadvantages such as possible alignment errors, computational errors and
instrumentation errors (e.g., bias, scale factor, random noise, nonlinearity etc.).
Therefore, a fusion or integration of GPS and IMU provides a more accurate
navigation data compared to only GPS or only IMU navigation data.
v
In this thesis, loosely coupled GPS/IMU integration systems are implemented using
feed forward and feedback configurations. The mechanization equations, which
convert the IMU navigation data (i.e. acceleration and angular velocity components)
with respect to an inertial reference frame to position, velocity and orientation data
with respect to any desired frame, are derived for the geographical frame. In other
words, the mechanization equations convert the IMU data to the Inertial Navigation
System (INS) data. Concerning this conversion, error model of INS is developed
using the perturbation of the mechanization equations and adding the IMU&rsquo / s sensor&rsquo / s
error model to the perturbed mechanization equation. Based on this error model, a
Kalman filter is constructed. Finally, current navigation data is calculated using IMU
data with the help of the mechanization equations. GPS receiver supplies external
measurement data to Kalman filter. Kalman filter estimates the error of INS using the
error mathematical model and current navigation data is updated using Kalman filter
error estimates.
Within the scope of this study, some real experimental tests are carried out using the
software developed as a part of this study. The test results verify that feedback
GPS/INS integration is more accurate and reliable than feed forward GPS/INS. In
addition, some tests are carried out to observe the results when the GPS receiver&rsquo / s
data lost. In these tests also, the feedback GPS/INS integration is observed to have
better performance than the feed forward GPS/INS integration.
|
7 |
Sensordatenfusion zur robusten Bewegungsschätzung eines autonomen FlugrobotersWunschel, Daniel 24 October 2011 (has links)
Eine Voraussetzung um einen Flugregler für Flugroboter zu realisieren, ist die Wahrnehmung der Bewegungen dieses Roboters. Diese Arbeit beschreibt einen Ansatz zur Schätzung der Bewegung eines autonomen Flugroboters unter Verwendung relativ einfacher, leichter und kostengünstiger Sensoren. Mittels eines Erweiterten Kalman Filters werden Beschleunigungssensoren, Gyroskope, ein Ultraschallsensor, sowie ein Sensor zu Messung des optischen Flusses zu einer robusten Bewegungsschätzung kombiniert. Dabei wurden die einzelnen Sensoren hinsichtlich der Eigenschaften experimentell untersucht, welche für die anschließende Erstellung des Filters relevant sind. Am Ende werden die Resultate des Filters mit den Ergebnissen einer Simulation und eines externen Tracking-Systems verglichen.
|
Page generated in 0.0959 seconds