• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Response-calibration Techniques For Antenna-coupled Infrared Sensors

Krenz, Peter 01 January 2010 (has links)
Infrared antennas are employed in sensing applications requiring specific spectral, polarization, and directional properties. Because of their inherently small dimensions, there is significant interaction, both thermal and electromagnetic, between the antenna, the antenna-coupled sensor, and the low-frequency readout structures necessary for signal extraction at the baseband modulation frequency. Validation of design models against measurements requires separation of these effects so that the response of the antenna-coupled sensor alone can be measured in a calibrated manner. Such validations will allow confident extension of design techniques to more complex infrared-antenna configurations. Two general techniques are explored to accomplish this goal. The extraneous signal contributions can be measured separately with calibration structures closely co-located near the devices to be characterized. This approach is demonstrated in two specific embodiments, for removal of cross-polarization effects arising from lead lines in an antenna-coupled infrared dipole, and for removal of distributed thermal effects in an infrared phased-array antenna. The second calibration technique uses scanning near-field microscopy to experimentally determine the spatial dependence of the electric-field distributions on the signal-extraction structures, and to include these measured fields in the computational electromagnetic model of the overall device. This approach is demonstrated for infrared dipole antennas which are connected to coplanar strip lines. Specific situations with open-circuit and short-circuit impedances at the termination of the lines are investigated.
12

Characterization of gold black and its application in un-cooled infrared detectors

Panjwani, Deep 01 January 2015 (has links)
Gold black porous coatings were thermally evaporated in the chamber backfilled with inert gas pressure and their optical properties were studied in near-far-IR wavelengths. The porosities of coatings were found to be extremely high around ~ 99%. Different approaches of effective medium theories such as Maxwell-Garnett, Bruggeman, Landau-Lifshitz-Looyenga and Bergman Formalism were utilized to calculate refractive index (n) and extinction coefficient (k). The aging induced changes on electrical and optical properties were studied in regular laboratory conditions using transmission electron microscopy, Fourier transform infrared spectroscopy, and fore-probe electrical measurements. A significant decrease in electrical resistance in as deposited coating was found to be consistent with changes in the granular structure with aging at room temperature. Electrical relaxation model was applied to calculate structural relaxation time in the coatings prepared with different porosities. Interestingly, with aging, absorptance of the coatings improved, which is explained using conductivity form of Bergman Formulism. Underlying aim of this work was to utilize gold blacks to improve sensitivity in un-cooled IR sensors consist of pixel arrays. To achieve this, fragile gold blacks were patterned on sub-mm length scale areas using both stenciling and conventional photolithography. Infrared spectral imaging with sub-micron spatial resolution revealed the spatial distribution of absorption across the gold black patterns produced with both the methods. Initial experiments on VOx-Au bolometers showed that, gold black improved the responsivity by 42%. This work successfully establishes promising role of gold black coatings in commercial un-cooled infrared detectors.
13

Alternate configurations for blocked impurity band detectors

Garcia, Jonathan C. 12 1900 (has links)
Approved for public release; distribution in unlimited. / Silicon Blocked Impurity Band (BIB) detectors are highly efficient, radiation-hardened photodetectors that operate in the range of 5-40 æm. To further extend BIB coverage to 40-350 æm, Ge and GaAs BIB detectors are under development; however, these new detectors face fabrication issues that have delayed their introduction. This thesis will describe the use of a numerical model to examine alternate operating modes for GaAs BIB detectors in order to bypass current fabrication issues. The numerical simulations provide an understanding of the fundamental physics that governs detector transport. The proposed alternatives to standard operation are created by reversing the detector's bias and varying the blocking layer thickness. Modeling indicates that reversing the bias on these detectors provides a larger signal current than standard configurations, while preserving the principal benefits gained from a multilayered device. At the same time, the alternate bias configuration allows for the use of thicker blocking layers, while preserving overall detector responsivity and reducing shot noise. This proposed new model of operation should allow for the relaxation of fabrication constraints without sacrificing the inherent benefits associated with BIB detectors. These devices are of potential interest for missile defense and terahertz surveillance applications. / Lieutenant Commander, United States Navy
14

Studies on Performance Enhancement of Infrared and Terahertz Detectors for Space Applications

Sumesh, M A January 2016 (has links) (PDF)
Currently, the concept of multipurpose spacecrafts is being transformed into many small spacecrafts each of them performing specific tasks and thus leading to the realization of pico and nano satellites. No matter what is the application or size, demand for more number of IR channels for earth observation is ever increasing which necessitates significant reduction in the mass, power requirement and cost of the IR detectors. In this scenario, several order of magnitude mass and power savings associated with uncooled IR arrays are advantageous compared to cooled photon detectors. However the poor speed of response of uncooled microbolometer array devices obstruct the total replacement of cooled detectors in thermal imaging applications. This is especially true when the mission requires 50 m to 100 m ground resolution, in which even the "fastest" micro bolometer arrays turns "too slow" to follow the ground trace when looked from low earth orbit (LEO). Hence there is a great and unfulfilled requirement of faster uncooled detector arrays for meeting the demand for future micro and mini satellite projects for advanced missions. The present thesis describes the systematic studies carried out in development of high performance IR and THz detectors for space applications. Ge-Si-O thin films are prepared by ion beam sputtering technique with argon (Ar) alone and argon and oxygen as sputtering species, using sputtering targets of different compositions of Ge and SiO2. The deposited thin films are amorphous in nature and have chemical compositions close to that of the target. The study of electrical properties has shown that the activation energy and hence the thermistor constant (β) and electrical resistivity (ρ) are sensitive to oxygen flow rate, and they are the least for thin films prepared with Ar alone as the sputtering species. Different thermal isolation structures (TIS), consisting of silicon nitride (Si3N4) membrane of different thicknesses, Ge-Si-O thin film and, chromium coating on the rear side of the membrane, are prepared by bulk micro-machining technique, whose thermal conductance (Gth) properties are evaluated from the experimentally determined current-voltage (I-V) characteristics. Gth shows non-linear dependence with respect to raise in temperature of thin film thermistor due to Joule heating. The infrared micro-bolometer detectors, fabricated using one of the TIS structures have shown responsivity (<v) close to 115 V W−1 at a bias voltage of 1.5 V and chopping frequency of 10 Hz, thermal time constant (τth) of 2.5 ms and noise voltage of 255 nV Hz−1⁄2 against the corresponding thermal properties of Gth and thermal capacitance Cth equal to 9.0 × 10−5 W K−1 and 1.95 × 10−7 J K−1 respectively. The detectors are found to have uniform spectral response in the infrared region from 2 µm to 20 µm, and NEDT in the range from 108 mK to 574 mK when used with an F/1 optical system. The detector, in an infrared earth sensor system, is tested before an extended black body which simulates the earth disc in the laboratory and the results are discussed. As an extension of the single element detector to array device, design of a microbolometer array for earth sensor dispensing of scanning mechanisms is presented. It makes use of four microbolometer arrays with in-line staggered configuration that stare at the earth horizons, perceiving IR radiation in the spectral band of 14 µm to 16 µm. Design of the microbolometer has been carried out keeping in mind low power, lightweight, without compromising on the performance. An array configuration of 16 × 2 pixels is designed and developed for this purpose. Finite elemental analysis is carried out for design optimization to yield best thermal properties and thus high performance of the detectors. Suitable optical design configuration was arrived to image the earth horizon on to array. Using this optimum design, prototype arrays have been fabricated, packaged and tested in front of the black body radiation source and found to have Responsivity, NEP, and D∗ of 120 V W−1, 5.0 W Hz−1⁄2, 1.10 × 107 cm Hz1⁄2 W−1 respectively. The pixels show a uniform response within a spread of ±6 % and the pixel resistances are within a range of ±5 %. Optically Immersed Bolometer IR detectors are fabricated using electron beam evaporated Vanadium Oxide as the sensing material. Spin coated polyimide is used as medium to optically immerse the sensing element to the flat surface of a hemispherical germanium lens. This optical immersion layer also serves as the thermal impedance control layer and decides the performance of the devices in terms of responsivity and noise parameters. The devices have been packaged in suitable electro-optical packages and the detector parameters are studied in detail. Thermal time constant varies from 0.57 ms to 6.1 ms and responsivity from 75VW−1 to 757VW−1 corresponding to polyimide thickness in the range 2.0 μm to 70 μm for a detector bias of 9V. Highest D obtained was 1.28 × 108 cm Hz1⁄2W−1. Noise Equivalent Temperature Difference (NETD) of 20mK is achieved for devices with polyimide thickness of 32 μm, whereas the NETD × th product is the lowest for devices with moderate thickness of thermal impedance layer. Bolometric THz detectors were fabricated using V2O5 as sensing element immersed onto germanium hemispherical lens using polyimide as immersion media. These detectors were characterized for their efficiency in detection of THz radiation in the range 10 THz to 35 THz emitted by a black body radiator. The responsivity of the devices determined in four different frequency bands covering the spectrum of interest and a maximum responsivity of 398VW−1 was observed. A variation in the responsivity is observed which is due to the characteristics absorption of polyimide in the THz region of interest and can be avoided by replacing with HDPE which has less attenuation. NEP of 6.8 × 10−10WHz−1⁄2 was observed which is very close to the state of art in the case of uncooled detectors which entitles the detectors for spectroscopic applications. Specific Detectivity D* was observed to be much higher than the conventional detectors thanks to the benefits of immersion. NETD of 26mK was observed which is advantageous of application of these detectors in imaging applications These studies have lead to development of a new technology for fabrication of high performance IR and THz detectors which can be used for spectroscopic and imaging applications. Further, this technology can be scaled for development of linear and area arrays finding applications where the speed of respnose as well as sensitivity are of equal importance. from 0.57 ms to 6.1 ms and responsivity from 75 V W−1 to 757 V W−1 corresponding to polyimide thickness in the range 2.0 µm to 70 µm for a detector bias of 9 V. Highest D∗ obtained was 1.28 × 108 cm Hz1⁄2 W−1. Noise Equivalent Temperature Difference (NETD) of 20 mK is achieved for devices with polyimide thickness of 32 µm, whereas the NETD × τth product is the lowest for devices with moderate thickness of thermal impedance layer. Bolometric THz detectors were fabricated using V2O5 as sensing element immersed onto germanium hemispherical lens using polyimide as immersion media. These detectors were characterized for their efficiency in detection of THz radiation in the range 10 THz to 35 THz emitted by a black body radiator. The responsivity of the devices determined in four different frequency bands covering the spectrum of interest and a maximum responsivity of 398 V W−1 was observed. A variation in the responsivity is observed which is due to the characteristics absorption of polyimide in the THz region of interest and can be avoided by replacing with HDPE which has less attenuation. NEP of 6.8 × 10−10 W Hz−1⁄2 was observed which is very close to the state of art in the case of uncooled detectors which entitles the detectors for spectroscopic applications. Specific Detectivity D* was observed to be much higher than the conventional detectors thanks to the benefits of immersion. NETD of 26 mK was observed which is advantageous of application of these detectors in imaging applications These studies have lead to development of a new technology for fabrication of high performance IR and THz detectors which can be used for spectroscopic and imaging applications. Further, this technology can be scaled for development of linear and area arrays finding applications where the speed of respnose as well as sensitivity are of equal importance.
15

Controlling Light in Organic Microcavities

Mischok, Andreas 25 July 2017 (has links) (PDF)
This thesis deals with the use of microcavity resonators for the control of light in organic active materials. In addition to the vertical confinement provided by highly reflecting mirrors in a vertical cavity surface emitting laser (VCSEL), in-plane patterning facilitates additional ways to manipulate the cavity dispersion and enables the observation of novel photonic modes in highly confined systems and an improved performance of organic solid state lasers. Furthermore, organic microcavities are employed for efficient spectrally sensitive photodetection in the near infrared. In microcavities comprising two dielectric distributed Bragg reflectors sandwiching an organic active blend of the matrix molecule Alq3 and the laser dye DCM, optically pumped lasing is investigated, exhibiting a broad spectral tunability over 90 nm due to the large gain bandwith of the laser dye. To directly influence the microcavity dispersion, different interlayers are introduced into the system, facilitating a red-shift of the cavity resonance due to the formation of Tamm-plasmon-polariton states (when using plasmonic Ag interlayers) or an increase of the optical cavity thickness (when using non-absorbing layers such as SiO2). Both concepts are explored and enable strong spectral shifts on the order of 10 meV-100 meV when using interlayers of only few tens of nm in thickness. In order to enhance the optical quality of metal-organic microcavities, the growth of noble metal layers on top of organic films can be improved by the use of diffusion barriers, stopping the diffusion of metal atoms into the organics, and seed layers which provide an improved surface wetting. Both concepts in total lead to an enhancement of the quality factor of such devices by a factor of two. The manipulation of the cavity resonance using different interlayers provides the ability to structure the photon energy landscape in the device plane on the microscale. Using photolithography, photonic wires and dots are fabricated to laterally restrict the photons in potential wells, leading to the observation of discretised energy spectra in two and three dimensions. To facilitate an in-depth investigation, dispersion tomography is utilised and yields the angle resolved emission of multi-dimensionally confined photons in all directions. In metal-organic photonic dots and triangular wedges, such three-dimensional trapping is exploited to reduce parasitic modes, leading to reduced thresholds of an organic microlaser by one order of magnitude. Complex transversal modes are observed in the device emission as a result of the strong lateral confinement that is achieved by such patterning. The manipulation of the photon energy landscape can not only be utilised for enhanced confinement but also for the introduction of photonic lattices. By adding periodic stripes of either Ag or SiO2 into an organic microcavity, an optical Kronig-Penney potential is realised, directly showing the formation of photonic Bloch states in the microcavity dispersion. Utilising a modified Kronig-Penney theory, photons are assigned a polarisation-dependent effective mass, facilitating a quantitative allocation of calculated and observed modes and explaining the emergence of zero and pi-phase coupling of spatially extended supermodes. Finally, by utilising an two-beam excitation geometry, direct control over lasing from multiple discretised states can be exerted, enabling spectral and angular tunability of devices on the microscale. In an alternative concept, a full microcavity stack is deposited onto a periodic grating which couples the waveguided (WG) modes in the active cavity layer to the vertical emission. Coherent interaction between linear WG and parabolic vertical modes is indicated by anti-crossing points where the dispersion of both overlaps. In this hybrid system, novel lasing modes arise not only at the position of the VCSEL parabola apex but also at points of hybridization, showing a drastically enhanced in-plane spatial coherence of at least 50 micrometer. Finally, the concept of organic microcavities is applied towards efficient and spectrally sensitive photodetectors. Making use of the intermolecular charge transfer (CT) state in donor-acceptor blends of organic solar cells, the strong field enhancement of a microcavity is exploited to significantly increase the external quantum efficiency of the initially weak CT absorption at resonance. Consequently, near-infrared photodetection is enabled by cavity-enhanced CT state absorption, leading to devices showing competitive specific detectivities without the need of an external voltage and an EQE above 20% (18% at 950 nm) with a full width at half maximum of significantly below 50 nm. The detectors are shown to be tunable in a broad spectral range via the angular dispersion of the optical microcavity or a thickness variation of the electron and hole transport layers in the solar cell. These findings not only facilitate interesting applications but also enable the direct excitation and observation of the CT state that is integral to the working principles of organic solar cells. / Die vorliegende Dissertation beschäftigt sich mit der Kontrolle über Emission und Absorption organischer aktiver Materialien mittels Mikrokavitätsresonatoren. Zusätzlich zum vertikalen Einschluss der Photonen zwischen hochreflektierenden Spiegeln in oberflächenemittierenden Mikrokavitäten (VCSEL, s.o.) werden Strukturierungen in der Bauteilebene hinzugefügt, um eine direkte Manipulation der Photonendispersion zu ermöglichen. Resultierend aus diesen Ergebnissen sind die Beobachtung neuartiger photonischer Moden sowie verbesserte Betriebseigenschaften von organischen Festkörperlasern. Desweiteren wird das Konzept der organischen Mikrokavität zur effizienten und spektral sensitiven Detektion von Nahinfrarot-Photonen angewendet. In Mikrokavitäten aus zwei dielektrischen Bragg-Spiegeln (DBR), welche eine organische aktive Schicht aus dem Matrixmaterial Alq3 und dem Laserfarbstoff DCM einschliessen, wird optisch gepumptes Lasing beobachtet. Dabei ist die Emission spektral über einen weiten Bereich von 90 nm stufenlos einstellbar, was durch die hohe optische Gewinnbandbreite des Laserfarbstoffs ermöglicht wird. Um die Dispersion von Photonen in Mikrokavitäten direkt beeinflussen zu können, werden verschiedene Zwischenschichten in den Laser eingebracht, welche eine Rotverschiebung der Emission nach sich ziehen. In metall-organischen Kavitäten kann dieser Effekt durch die Bildung von Tamm-Plasmon-Polariton Quasiteilchen erklärt werden, die durch die Interaktion der optischen Moden mit den Plasmonen in einer dünnen Silberschicht entstehen. Alternativ werden nichtabsorbierende SiO2-Zwischenschichten eingefügt, welche die optische Kavitätsdicke vergrössern und ähnliche starke Rotverschiebungen der Emission von 10 meV-100 meV nach sich ziehen. Um die optische Qualität metall-organischer Kavitäten zu verbessern, wird das Wachstum der edlen Ag-Schicht auf amorphen organischen Schichten mithilfe von Diffusionsbarrieren und Keimschichten kontrolliert. Die Kombination beider Konzepte ermöglicht eine Verbesserung des Qualitätsfaktors solcher Bauteile um den Faktor 2. Durch die Manipulation der Photonendispersion mithilfe dielektrischer und plasmonischer Zwischenschichten wird eine Strukturierung der photonischen Potentiallandschaft in der Bauteilebene auf Mikrometer-Skala ermöglicht. Mittels Photolithographie werden Photonische Drähte und Punkte hergestellt, welche das Licht auch lateral in Potentialtöpfen einschliessen und zur Beobachtung von diskretisierten Emissionspektren in zwei und drei Dimensionen führen. Um diese Untersuchungen zu erweitern, wird eine tomographische Methode entwickelt, um die winkelaufgelöste Dispersion dieser mehrdimensional eingeschlossenen Photonen in allen Richtungen aufzunehmen. Die Ergebnisse dieser Untersuchung werden in metall-organischen photonischen Punkten und Dreieck-Strukturen ausgenutzt und führen dabei zu einer Verringerung der Laserschwelle von bis zu einer Grössenordnung. Die dabei entstehenden komplexen Transversalmoden sind ein Zeichen für die starke Konzentration des Lichts in solchen Strukturen. Die laterale Strukturierung organischer Mikrokavitäten kann nicht nur für den vollständigen Einschluss von Licht ausgenutzt werden, sondern ermöglicht weiterhin die Beobachtung von photonischen Bandstrukturen in periodischen Gittern. Solch periodische Strukturen bestehend entweder aus Silber oder SiO2 ermöglichen die Realisierung eines optischen Kronig-Penney Potentials in Mikrokavitäten was schlussendlich zur Beobachtung optischer Bloch-Zustände in der Dispersion führt. Durch eine Modifizierung der Kronig-Penney Theorie, bei der unter anderem den Photonen eine polarisationsabhängige effektive Masse zugewiesen wird, ist eine quantitative Berechnung der Modenpositionen in solchen Systemen möglich. In Theorie und experimentellen Untersuchungen wird dabei das Auftreten von 0- oder pi-phasengekoppelten räumlich ausgedehnten Supermoden erklärt. Mithilfe der Anregung durch zwei interferierende Laserstrahlen kann desweiteren eine direkte Kontrolle über die Wellenlänge sowie den Auskopplungswinkel der stimulierten Emission ausgeübt werden. In einem alternativen Konzept der lateralen Strukturierung werden organische Mikrokavitäten auf periodische Gitter aufgedampft, was zu einer kohärenten Kopplung von Wellenleitermoden der aktiven Schicht in die vertikale Emission führt. Diese Moden treten als lineare Dispersion in winkelaufgelösten Spektren auf und zeigen eine direkte Interaktion mit der parabolischen Dispersion der VCSEL-Mode an (Anti-)Kreuzungspunkten. In diesem hybriden System lassen sich neuartige Lasermoden beobachten, welche nicht nur am Scheitelpunkt der Kavitätsparabel auftreten, sondern auch an Punkten, die durch die Hybridisierung beider Systeme entstehen. Diese Kopplung von vertikalen und lateralen Lasermoden zeigt eine drastisch erhöhte Kohärenzlänge von mindestens 50 Mikrometern in der Probenebene. Schließlich wird das Konzept einer organischen Mikrokavität noch in absorbierenden Systemen eingesetzt. Durch das Einbringen einer organischen Solarzelle in eine optische Kavität wird eine starke Erhöhung des Felds im spektralen Bereich des sonst nur schwach absorbierenden intermolekularen Ladungstransferzustands in Donator-Akzeptor Mischschichten ermöglicht. Die Ausnutzung dieses Zustands ermöglicht eine spektral scharfe (Halbwertsbreite deutlich unter 50 nm) Detektion von Nahinfrarotphotonen mit einer externen Quanteneffizienz von über 20% (18% für 950 nm) und einer konkurrenzfähigen spezifischen Detektivität. In weiteren Untersuchungen zeigen sich diese Detektoren als spektral durchstimmbar, zum Einen durch die parabolische Dispersion der Mikrokavität, zum Anderen durch die Variation der Dicken der Elektron- und Lochtransportschichten. Diese Ergebnisse ermöglichen nicht nur interessante Anwendungen, sondern auch die direkte Beobachtung und Anregung des Ladungstransferzustandes, welcher eine zentrale Rolle in der Funktion organischer Solarzellen spielt.
16

Controlling Light in Organic Microcavities

Mischok, Andreas 16 June 2016 (has links)
This thesis deals with the use of microcavity resonators for the control of light in organic active materials. In addition to the vertical confinement provided by highly reflecting mirrors in a vertical cavity surface emitting laser (VCSEL), in-plane patterning facilitates additional ways to manipulate the cavity dispersion and enables the observation of novel photonic modes in highly confined systems and an improved performance of organic solid state lasers. Furthermore, organic microcavities are employed for efficient spectrally sensitive photodetection in the near infrared. In microcavities comprising two dielectric distributed Bragg reflectors sandwiching an organic active blend of the matrix molecule Alq3 and the laser dye DCM, optically pumped lasing is investigated, exhibiting a broad spectral tunability over 90 nm due to the large gain bandwith of the laser dye. To directly influence the microcavity dispersion, different interlayers are introduced into the system, facilitating a red-shift of the cavity resonance due to the formation of Tamm-plasmon-polariton states (when using plasmonic Ag interlayers) or an increase of the optical cavity thickness (when using non-absorbing layers such as SiO2). Both concepts are explored and enable strong spectral shifts on the order of 10 meV-100 meV when using interlayers of only few tens of nm in thickness. In order to enhance the optical quality of metal-organic microcavities, the growth of noble metal layers on top of organic films can be improved by the use of diffusion barriers, stopping the diffusion of metal atoms into the organics, and seed layers which provide an improved surface wetting. Both concepts in total lead to an enhancement of the quality factor of such devices by a factor of two. The manipulation of the cavity resonance using different interlayers provides the ability to structure the photon energy landscape in the device plane on the microscale. Using photolithography, photonic wires and dots are fabricated to laterally restrict the photons in potential wells, leading to the observation of discretised energy spectra in two and three dimensions. To facilitate an in-depth investigation, dispersion tomography is utilised and yields the angle resolved emission of multi-dimensionally confined photons in all directions. In metal-organic photonic dots and triangular wedges, such three-dimensional trapping is exploited to reduce parasitic modes, leading to reduced thresholds of an organic microlaser by one order of magnitude. Complex transversal modes are observed in the device emission as a result of the strong lateral confinement that is achieved by such patterning. The manipulation of the photon energy landscape can not only be utilised for enhanced confinement but also for the introduction of photonic lattices. By adding periodic stripes of either Ag or SiO2 into an organic microcavity, an optical Kronig-Penney potential is realised, directly showing the formation of photonic Bloch states in the microcavity dispersion. Utilising a modified Kronig-Penney theory, photons are assigned a polarisation-dependent effective mass, facilitating a quantitative allocation of calculated and observed modes and explaining the emergence of zero and pi-phase coupling of spatially extended supermodes. Finally, by utilising an two-beam excitation geometry, direct control over lasing from multiple discretised states can be exerted, enabling spectral and angular tunability of devices on the microscale. In an alternative concept, a full microcavity stack is deposited onto a periodic grating which couples the waveguided (WG) modes in the active cavity layer to the vertical emission. Coherent interaction between linear WG and parabolic vertical modes is indicated by anti-crossing points where the dispersion of both overlaps. In this hybrid system, novel lasing modes arise not only at the position of the VCSEL parabola apex but also at points of hybridization, showing a drastically enhanced in-plane spatial coherence of at least 50 micrometer. Finally, the concept of organic microcavities is applied towards efficient and spectrally sensitive photodetectors. Making use of the intermolecular charge transfer (CT) state in donor-acceptor blends of organic solar cells, the strong field enhancement of a microcavity is exploited to significantly increase the external quantum efficiency of the initially weak CT absorption at resonance. Consequently, near-infrared photodetection is enabled by cavity-enhanced CT state absorption, leading to devices showing competitive specific detectivities without the need of an external voltage and an EQE above 20% (18% at 950 nm) with a full width at half maximum of significantly below 50 nm. The detectors are shown to be tunable in a broad spectral range via the angular dispersion of the optical microcavity or a thickness variation of the electron and hole transport layers in the solar cell. These findings not only facilitate interesting applications but also enable the direct excitation and observation of the CT state that is integral to the working principles of organic solar cells. / Die vorliegende Dissertation beschäftigt sich mit der Kontrolle über Emission und Absorption organischer aktiver Materialien mittels Mikrokavitätsresonatoren. Zusätzlich zum vertikalen Einschluss der Photonen zwischen hochreflektierenden Spiegeln in oberflächenemittierenden Mikrokavitäten (VCSEL, s.o.) werden Strukturierungen in der Bauteilebene hinzugefügt, um eine direkte Manipulation der Photonendispersion zu ermöglichen. Resultierend aus diesen Ergebnissen sind die Beobachtung neuartiger photonischer Moden sowie verbesserte Betriebseigenschaften von organischen Festkörperlasern. Desweiteren wird das Konzept der organischen Mikrokavität zur effizienten und spektral sensitiven Detektion von Nahinfrarot-Photonen angewendet. In Mikrokavitäten aus zwei dielektrischen Bragg-Spiegeln (DBR), welche eine organische aktive Schicht aus dem Matrixmaterial Alq3 und dem Laserfarbstoff DCM einschliessen, wird optisch gepumptes Lasing beobachtet. Dabei ist die Emission spektral über einen weiten Bereich von 90 nm stufenlos einstellbar, was durch die hohe optische Gewinnbandbreite des Laserfarbstoffs ermöglicht wird. Um die Dispersion von Photonen in Mikrokavitäten direkt beeinflussen zu können, werden verschiedene Zwischenschichten in den Laser eingebracht, welche eine Rotverschiebung der Emission nach sich ziehen. In metall-organischen Kavitäten kann dieser Effekt durch die Bildung von Tamm-Plasmon-Polariton Quasiteilchen erklärt werden, die durch die Interaktion der optischen Moden mit den Plasmonen in einer dünnen Silberschicht entstehen. Alternativ werden nichtabsorbierende SiO2-Zwischenschichten eingefügt, welche die optische Kavitätsdicke vergrössern und ähnliche starke Rotverschiebungen der Emission von 10 meV-100 meV nach sich ziehen. Um die optische Qualität metall-organischer Kavitäten zu verbessern, wird das Wachstum der edlen Ag-Schicht auf amorphen organischen Schichten mithilfe von Diffusionsbarrieren und Keimschichten kontrolliert. Die Kombination beider Konzepte ermöglicht eine Verbesserung des Qualitätsfaktors solcher Bauteile um den Faktor 2. Durch die Manipulation der Photonendispersion mithilfe dielektrischer und plasmonischer Zwischenschichten wird eine Strukturierung der photonischen Potentiallandschaft in der Bauteilebene auf Mikrometer-Skala ermöglicht. Mittels Photolithographie werden Photonische Drähte und Punkte hergestellt, welche das Licht auch lateral in Potentialtöpfen einschliessen und zur Beobachtung von diskretisierten Emissionspektren in zwei und drei Dimensionen führen. Um diese Untersuchungen zu erweitern, wird eine tomographische Methode entwickelt, um die winkelaufgelöste Dispersion dieser mehrdimensional eingeschlossenen Photonen in allen Richtungen aufzunehmen. Die Ergebnisse dieser Untersuchung werden in metall-organischen photonischen Punkten und Dreieck-Strukturen ausgenutzt und führen dabei zu einer Verringerung der Laserschwelle von bis zu einer Grössenordnung. Die dabei entstehenden komplexen Transversalmoden sind ein Zeichen für die starke Konzentration des Lichts in solchen Strukturen. Die laterale Strukturierung organischer Mikrokavitäten kann nicht nur für den vollständigen Einschluss von Licht ausgenutzt werden, sondern ermöglicht weiterhin die Beobachtung von photonischen Bandstrukturen in periodischen Gittern. Solch periodische Strukturen bestehend entweder aus Silber oder SiO2 ermöglichen die Realisierung eines optischen Kronig-Penney Potentials in Mikrokavitäten was schlussendlich zur Beobachtung optischer Bloch-Zustände in der Dispersion führt. Durch eine Modifizierung der Kronig-Penney Theorie, bei der unter anderem den Photonen eine polarisationsabhängige effektive Masse zugewiesen wird, ist eine quantitative Berechnung der Modenpositionen in solchen Systemen möglich. In Theorie und experimentellen Untersuchungen wird dabei das Auftreten von 0- oder pi-phasengekoppelten räumlich ausgedehnten Supermoden erklärt. Mithilfe der Anregung durch zwei interferierende Laserstrahlen kann desweiteren eine direkte Kontrolle über die Wellenlänge sowie den Auskopplungswinkel der stimulierten Emission ausgeübt werden. In einem alternativen Konzept der lateralen Strukturierung werden organische Mikrokavitäten auf periodische Gitter aufgedampft, was zu einer kohärenten Kopplung von Wellenleitermoden der aktiven Schicht in die vertikale Emission führt. Diese Moden treten als lineare Dispersion in winkelaufgelösten Spektren auf und zeigen eine direkte Interaktion mit der parabolischen Dispersion der VCSEL-Mode an (Anti-)Kreuzungspunkten. In diesem hybriden System lassen sich neuartige Lasermoden beobachten, welche nicht nur am Scheitelpunkt der Kavitätsparabel auftreten, sondern auch an Punkten, die durch die Hybridisierung beider Systeme entstehen. Diese Kopplung von vertikalen und lateralen Lasermoden zeigt eine drastisch erhöhte Kohärenzlänge von mindestens 50 Mikrometern in der Probenebene. Schließlich wird das Konzept einer organischen Mikrokavität noch in absorbierenden Systemen eingesetzt. Durch das Einbringen einer organischen Solarzelle in eine optische Kavität wird eine starke Erhöhung des Felds im spektralen Bereich des sonst nur schwach absorbierenden intermolekularen Ladungstransferzustands in Donator-Akzeptor Mischschichten ermöglicht. Die Ausnutzung dieses Zustands ermöglicht eine spektral scharfe (Halbwertsbreite deutlich unter 50 nm) Detektion von Nahinfrarotphotonen mit einer externen Quanteneffizienz von über 20% (18% für 950 nm) und einer konkurrenzfähigen spezifischen Detektivität. In weiteren Untersuchungen zeigen sich diese Detektoren als spektral durchstimmbar, zum Einen durch die parabolische Dispersion der Mikrokavität, zum Anderen durch die Variation der Dicken der Elektron- und Lochtransportschichten. Diese Ergebnisse ermöglichen nicht nur interessante Anwendungen, sondern auch die direkte Beobachtung und Anregung des Ladungstransferzustandes, welcher eine zentrale Rolle in der Funktion organischer Solarzellen spielt.

Page generated in 0.4119 seconds