• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 213
  • 94
  • 12
  • 3
  • Tagged with
  • 313
  • 110
  • 90
  • 86
  • 58
  • 45
  • 40
  • 36
  • 35
  • 35
  • 33
  • 31
  • 28
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Influence de la condition limite acoustique amont sur les instabilités de combustion de grande amplitude : conception d'un système robuste de contrôle d'impédance

Tran, Nicolas 03 April 2009 (has links) (PDF)
Les contraintes économiques, environnementales et sociétales de ces vingt dernières années notamment dans les domaines de l'énergie et des transports ont débouché sur le développement de nouvelles technologies faisant intervenir la combustion pauvre et prémélangée. Ce mode de combustion à partir d'un mélange homogène conduit à des températures de flamme plus faibles qui permettent de réduire les émissions d'oxydes d'azote tout en limitant la production d'oxydes de carbone. Pour autant, la combustion pauvre prémélangée présente le désavantage d'être sensible à toute forme de couplage notamment acoustique, menant à des instabilités de combustion. Ces instabilités sont largement étudiées, mais restent très difficiles à prévoir car elles font intervenir de nombreux phénomènes physiques multi-échelles. Dans la plupart des cas les oscillations résultent d'un couplage résonant entre la dynamique de la combustion et l'acoustique du système. Les conditions aux limites acoustiques du système déterminent la structure du champ de pression dans l'installation, ainsi que les flux acoustiques entrants et sortants. Malgré son importance, l'influence des conditions aux limites n'est pas toujours bien comprise et prise en compte et elle ne fait pas l'objet d'études systématiques. Les conditions aux limites acoustiques ne sont pas faciles à déterminer expérimentalement sur des configurations pratiques et leur contrôle est rarement envisagé. L'objectif de ce travail est donc de répondre à ce manque d'information, en étudiant sur un banc de combustion turbulente (CTRL-Z) l'influence de la condition acoustique d'entrée sur les oscillations de combustion auto-entretenues qui apparaissent dans la chambre de combustion. Un système de contrôle a été développé pour piloter l'impédance du système de prémélange de façon passive, sans modification des conditions de fonctionnement ou de la géométrie du brûleur. Ce système de contrôle d'impédance (ICS, " Impedance Control System ") s'appuie sur une utilisation de plaques perforées faiblement poreuses, au travers desquelles circule un écoulement. Un piston mobile permet de piloter la profondeur de la cavité résonante formée en amont des plaques, et ainsi de piloter leurs impédances. L'impédance de ces plaques perforées a été étudiée pour de faibles et de forts niveaux d'excitation acoustique, et un critère de transition entre les régimes linéaire et non-linéaire a été déterminé. L'ICS a été optimisé pour permettre un contrôle du module du coefficient de réflexion de 0 à 1 sur une large plage de fréquences (100 à 1000 Hz) et de niveaux d'amplitude de perturbations (100 à 150 dB) couvrant ainsi la gamme des instabilités thermoacoustiques classiques. L'ICS est utilisé pour contrôler l'impédance d'entrée du système de prémélange du banc CTRL-Z, en regard de la zone de combustion. L'analyse spectrale des fluctuations de pression et de dégagement de chaleur en fonction de l'impédance d'entrée démontre qu'il est possible d'obtenir un amortissement de l'instabilité principale pouvant atteindre 20 dB. Ces résultats sont confirmés par une estimation au premier ordre d'un bilan d'énergie acoustique prenant en compte le terme source dû à la combustion ainsi que les flux acoustiques en amont et aval de la zone de flamme. Ce bilan démontre par ailleurs l'importance du flux d'énergie transmis vers l'amont, du même ordre de grandeur que le terme source, et souligne la nécessité de prendre en compte ces flux pour déterminer correctement le taux de croissance de l'énergie. Finalement, une analyse acoustique de l'installation a été menée pour déterminer la nature des modes d'instabilités observés et pour examiner les conditions nécessaires au bon fonctionnement de l'ICS.
82

Instabilités hydrodynamiques de fluides magnétiques en écoulements microfluidiques / Hydrodynamic instabilities in microfluidic magnetic fluid flows

Kitenbergs, Guntars 16 July 2015 (has links)
Ce travail explore expérimentalement en géométrie microfluidique, des instabilités sous champ de fluides magnétiques aqueux, aux propriétés bien caractérisées et dont les nanoparticules sont stabilisées électrostatiquement.La micro-convexion magnétique observée à l'interface miscible entre le fluide magnétique et l'eau est étudiée quantitativement dans une cellule de Hele-Shaw sous champ magnétique homogène, en particulier par vélocimétrie par image de particules. Les résultats sont comparés aux prédictions théoriques et à des simulations numériques. Au delà de la caractérisation des champs critiques, il est observé qu'une augmentation du champ H accélère la croissance des doigts, comme H2, tandis que la figure de digitation n'est pas modifiée. Une application au mélange en microfluidique est ici envisagée. L'étude de la micro-convexion a révélé une diffusion effective de coefficient beaucoup plus grand que celui des nanoparticules, tel que prédit par la formule de Stockes-Einstein ou obtenu par des mesures directes. Des explorations expérimentales montrent que cette diffusion effective provient d'un écoulement lié à la différence de densité des deux fluides. La diffusion semble influencée par les agents qui stabilisent les nanoparticules. Des gouttes de liquide magnétique concentré co-existant avec une phase diluée sont obtenues par séparation de phase induite par ajout de sel et/ou application d'un champ magnétique. Leur déformation sous champ permet de suivre l'évolution temporelle de la phase concentrée métastable. Dans un champ magnétique précessant à l'angle magique, les gouttes se comportent comme en champ tournant, sauf en ce qui concerne leur déformation initiale. / Magnetic field induced instabilities of magnetic fluids in microfluidic environment are investigated experimentally. Electrically stabilized water-based magnetic nanocolloids are used and throughout characterized.Magnetic micro-convection, observed at a miscible magnetic fluid-water interface in a Hele-Shaw cell in homogeneous field, is studied quantitatively and compared with theoretical predictions and numerical simulations, micro-convective flows being characterized by particle image velocimetry. Besides the critical field determination, it is shown that an increase of the magnetic field H speeds up the finger growth, which scales as H2, while the size of the fingering pattern is not changed. An application towards mixing enhancement in microfluidics is considered.The micro-convection study reveals a much larger effective diffusion coefficient of the nanoparticles than expected from Stokes - Einstein relation and standard determinations. Investigations with the same setup and with continuous microfluidics show that the effective diffusion mostly arises from a flow induced by the density difference between the miscible fluids. Additionally, the diffusion coefficient seems to be influenced by the particle stabilizing agents.Drops of a concentrated magnetic phase in co-existence with a dilute one are formed by phase separation after salt addition to the magnetic fluid and/or the application of a magnetic field. Their under-field shape deformations allow investigating the time evolution of the concentrated phase. Experiments show that in a precessing field at magic angle, the drops behave as in a rotating field except the initial shape deformation before quick elongation.
83

Ondes scélérates dans les fibres optiques biréfringentes / Rogue waves in birefringent optical fibers

Drouzi, Lamyae 12 January 2018 (has links)
Le travail de cette thèse a porté sur l'étude de la propagation d'ondes dans une fibre optique à biréfringence forte. Nous avons procédé à une caractérisation générale de l'instabilité modulationelle en fonction des biréfringences linéaire et non linéaire, en dispersion anormale et surtout en dispersion normale. L'étude a été consacrée à une fibre optique non linéaire en régime "pulsé", où l'excitation n'est pas étendue mais plutôt localisée. Dans ce cas, l'analyse de stabilité linéaire standard ne parvient pas à décrire l'évolution linéaire de cette perturbation. Ainsi, nous avons eu recours à un problème à valeur initiale menant aux deux régimes convectif et absolu. Nons avons ensuite mis en évidence, pour la première fois, une transition du régime absolu vers le régime convectif, en caractérisant chacun des deux régimes en fonction des biréfringences. Les résultats numériques sont en excellent accord avec nos prédictions analytiques. Nous avons évalué l'impact de la brisure de symétrie sur la génération des supercontinuums. Ces derniers jouent un rôle primordial dans la formation des ondes scélérates. Nous avons opté pour une analyse statistique basée sur la fonction de densité de probabilité des pics les plus intenses. Nous avons analysé l'impact du "walk off" et de la dispersion d'ordre trois sur l'émergence de ces ondes. Nos simulations numériques montrent que les ondes scélérates peuvent être contrôlées par la biréfringence linéaire et elles sont encore plus prononcées en présence de la dispersion d'ordre trois. Finalement, une optimisation de la génération des ondes scélérates nous a permis de trouver une onde géante, reproduite par le soliton de Peregrine. / The work of this thesis has focused on the study of wave propagation in a high birefringent fiber. We have carried out a general characterization of the modulational instability as a function of the linear and nonlinear birefringences, in abnormal dispersion and especially in normal dispersion. The study was devoted to a non-linear optical fiber in a "pulsed" regime, where the excitation is not extended but rather localized in time. In this case, standard linear stability analysis fails to describe the linear evolution of this type of perturbations. Thus, we reformulate the problem as an initial value problem leading to convective and absolute instabilities. Then, we evidenced, for the first time, a transition from the absolute to the convective regime and we characterized each of them by linear and nonlinear birefringences. Numerical results are in excellent agreement with our analytical predictions. We evaluated the impact of the symmetry breaking on the generation of supercontinuums that play a crucial role in the formation of rogue waves. We performed a statistical analysis based on the probability density function of the most intense peaks. We analyzed the impact of the "walk off" and the third order dispersion on the emergence of these waves in abnormal and normal dispersion. The results of the numerical integration of the governing equations show that the rogue waves can be controlled by linear birefringence and are even more pronounced in presence of the third order dispersion. Finally, an optimization of the generation of extreme waves has allowed us to find a giant wave, reproduced by Pergerine soliton.
84

Orbital forcings of a fluid ellipsoid. Inertial instabilities and dynamos / Forçages orbitaux d'un ellipsoïde fluide. Instabilités inertielles et dynamos

Vidal, Jérémie 31 January 2018 (has links)
Les instabilités inertielles sont des instabilités fluides excitées au sein de modèles physiques simplifiés de planètes ou d'étoiles. Elles peuvent générer un champ magnétique dynamo. Ce sont donc des alternatives aux écoulements forcés par la convection thermo-chimique pour générer les champs magnétiques dans les noyaux liquides des planètes et les enveloppes fluides des étoiles. Cependant, ces modèles simplifiés questionnent la pertinence des résultats, qui sont ensuite extrapolés aux contextes géo- et astrophysique. D'un point de vue fondamental, de récentes études numériques et expérimentales, réalisées à grande ellipticité pour compenser l'importance des effets visqueux dans les modèles, semblent en désaccord avec les prédictions théoriques (valides dans la limite asymptotique d'une diffusion négligeable et à faible déformation). De plus, de nombreux effets physiques sont négligés dans les modèles. Par exemple, seules les orbites circulaires ont été considérées. Bien que généralement de faible amplitude, l'excentricité induit une dépendance temporelle dans le forçage orbital, ce qui pourrait générer de nouveaux phénomènes. Enfin, l'existence des instabilités inertielles dans les enveloppes fluides stablement stratifiées en densité, comme les zones radiatives des étoiles chaudes de masse intermédiaire (dont la masse est comprise entre une et huit masses solaires), reste incertaine. La génération de champs magnétiques dynamos dans ces enveloppes stratifiées permettrait de réconcilier les modèles avec les observations astronomiques. Lors de cette thèse, nous nous sommes attachés à rapprocher les modèles (théoriques, numériques ou expérimentaux) des contextes géo et astrophysique. Nous avons combiné les approches théoriques (analyses de stabilité locale et globale) et numériques (simulations non linéaires) afin d'étudier les effets des forc cages mécaniques de rotation dans un ellipsoïde fluide. Nous montrons que la dissipation en volume n'est en fait pas négligeable dans les expériences de laboratoire et les simulations numériques, contrairement aux régimes planétaires et stellaires. Nous montrons aussi que l’excentricité orbitale peut, via la variation temporelle des axes de l’ellipsoïde, générer des instabilités fluides pour dans une gamme de paramètres où elles n’étaient pas attendues. Enfin nous avons étudié la capacité dynamo de l'instabilité de marée, dans les enveloppes stablement stratifiées en densité des étoiles chaudes de masse intermédiaire. Environ 10~% de ces étoiles ont un champ magnétique de surface, dont l’origine reste énigmatique. Nous montrons que l’instabilité de marée peut générer des dynamos de grande échelle dans les enveloppes fluides stablement stratifiées. En particulier, ce mécanisme serait susceptible d’expliquer le champ magnétique de faible intensité des étoiles en rotation rapide similaires à Vega et déformées par un compagnon orbital. / Inertial instabilities are fluid instabilities excited by mechanical forcings (e.g. tides, precession) in fluid bodies (e.g. planetary liquid cores or stellar envelopes) orbited by celestial companions. The nonlinear outcome of these instabilities can drive self-sustained, dynamo magnetic fields. Thus they could be an alternative to thermo-chemical convection to generate magnetic fields in geophysics and astrophysics. These instabilities have only been studied in idealised models, which challenges the extrapolation towards the relevant regimes in geophysics and astrophysics. Recent laboratory and numerical studies, performed in the achievable range of parameters (i.e. large deformations and overestimated diffusive effects), seem apparently not in agreement with theoretical predictions representative of celestial fluid bodies (i.e. extremely small deformations and vanishing diffusive effects). Several physical ingredients have been also neglected, such as the orbital eccentricity. This could drive additional tidal effects, as a result of the time-dependent forcing. Similarly, density variations have been largely neglected in these models. However, rotationally powered magnetic fields in stably stratified stellar envelopes could reconcile astronomical observations with dynamo models. In this thesis we have adopted more realistic models, by combining theoretical tools (linear stability analyses in unbounded and bounded fluids enclosed in ellipsoids) and numerical ones (direct numerical simulations) to study rotationally driven inertial instabilities. We show, with a linear stability analysis in bounded ellipsoidal geometry, that bulk diffusion cannot be neglected emph{a priori} compared to the boundary layer diffusion in laboratory experiments and simulations. This phenomena is not expected in celestial fluid bodies. We also show that an orbital eccentricity could generate additional instabilities in deformed bodies, for orbital configurations which were believed to be linearly stable. Finally, we have studied the dynamo capability of tidal flows in stably stratified fluid envelopes. These are idealised models of hot, intermediate-mass stars (i.e. with a mass ranging from one to eight solar masses). Approximatively 10~% of hot stars exhibit observable magnetic fields. We show that the tidal instability can drive dynamo magnetic fields of large wavelength in stably stratified fluids. Predictions obtained with this tidal model seem consistent with the ultra-weak magnetism of rapidly rotating, tidally deformed Vega-like stars.
85

Films liquides tombants avec ou sans contre-écoulement de gaz : application au problème de l'engorgement dans les colonnes de distillation / Falling liquid films with or without a gazeous counter-flow : application to the problem of flooding in distillation columns

Kofman, Nicolas 07 November 2014 (has links)
Les films liquides tombants et cisaillés par un contre-écoulement de gaz jouent un rôle prépondérant dans de nombreux processus industriels. En effet, les ondes à l'interface gaz/liquide augmentent sensiblement les transferts de chaleur et de masse entre les deux phases. Nous avons cherché, dans un premier temps, à mieux comprendre la dynamique 2D et 3D d'un film liquide tombant sur un plan incliné grâce à des outils expérimentaux (visualisations par ombroscopie, mesures d'épaisseur) et numériques (modèles d'équations réduits, analyses de stabilité). Le point optimal de fonctionnement des procédés se situe proche de la limite d'engorgement caractérisée par un envahissement de l'espace disponible par la phase liquide. Notre objectif, dans un second temps, a été de mieux comprendre les mécanismes physiques à l'origine de l'engorgement grâce à la réalisation d'expériences en géométrie simplifiée (canal plan). Ces travaux s'inscrivent dans le cadre d'un contrat CIFRE entre le laboratoire FAST et la société Air Liquide afin d'appliquer les résultats au procédé de distillation de l'air. Deux dispositifs expérimentaux ont été mis en place : l'un à température ambiante (étude fondamentale), l'autre à température cryogénique (étude appliquée et confidentielle). / Falling liquid films with or without a gazeous counter-flow play a leading role in many industrial process. Indeed, the waves at the gas/liquid interface increase noticeably the heat and mass transfer between both phases. We have tried, as a first step, to better understand the 2D and 3D dynamics of a liquid film falling down an inclined plane using experimental (shadowgraphy visualisations, thickness measurements) and numerical (reduced equation models, stability analysis) tools. The optimal operating conditions are closed to the limit of flooding characterized by an invasion of the available space by the liquid phase. Our goal, as a second step, has been to better understand the physical mechanisms at the origin of flooding using simplified geometry experiments (plane channel). These works fall within a CIFRE contract between the FAST laboratory and the Air Liquide company in order to apply the results to the air distillation process. Two experimental set-ups have been built : one at room temperature (fundamental study), the other at cryogenic temperature (applied and confidential study).
86

Acoustique et dynamique de flamme dans un foyer turbulent prémélangé swirlé : application à l'étude du bruit de combustion dans les chambres de turbines à gaz. / Investigating combustion noise and instabilities in a gas turbine combustor : acoustic propagation and flame dynamics

Lamraoui, Ammar 05 July 2011 (has links)
La réduction des émissions de polluants et l’augmentation du rendement des moteurs ont conduit à une large utilisation de régimes de combustion pauvres en carburant dans les foyers de type moteurs aéronautiques et turbines à gaz. Des phénomènes de bruit et d’instabilités de combustion peuvent alors apparaître. Des fluctuations cycliques auto-entretenues de la pression au sein d’un foyer peuvent conduire à une limitation des régimes de fonctionnement ou une usure rapide et indésirable des installations et dans certains cas une destruction du système. L’objectif de ce travail de thèse est d’étudier les mécanismes responsables du bruit de combustion et des instabilités dans un foyer turbulent prémélangé swirlé. L’étude repose sur une analyse du champ de pression au sein du foyer, de la dynamique de la combustion et une caractérisation détaillée des conditions limites en amont, aval et dans les lignes d’alimentation en combustible et en comburant. Le banc expérimental CESAM ("Combustion Étagée Swirlée Acoustiquement Maîtrisée") est utilisé au cours de ce travail. Basée sur des observations expérimentales, une étude théorique de l’acoustique du foyer est tout d’abord réalisée grâce à un modèle à deux cavités couplées qui modélisent le tube de prémélange et la chambre de combustion de ce banc. Les fréquences et les structures spatiales des modes propres du foyer sont examinées, et des comparaisons sont menées avec les résultats expérimentaux. La condition limite au fond du tube de prémélange est mesurée, et utilisée comme entrée dans le modèle. L’effet de cette condition sur la prévision des fréquences des modes propres est examiné. Par la suite, le code de calcul AVSP est utilisé pour valider les résultats obtenus avec le modèle couplé. L’interaction entre ces modes acoustiques et la flamme est mise en évidence en caractérisant la dynamique de l’écoulement réactif. La vélocimétrie par images de particules (PIV) à haute cadence est utilisée. Une première étude est menée sur les champs de vitesse moyens et fluctuants puis on s’intéresse à l’analyse spectrale des champs de vitesse instantanés, rendue possible par la haute cadence du diagnostic. Un post-traitement faisant intervenir une méthode de détection des tourbillons est ensuite mis en oeuvre en utilisant le critère _2. Des structures cohérentes sont convectées le long du front de flamme à la fréquence du second mode instable du foyer. Le chapitre précédent ayant permis de montrer que ce mode acoustique était essentiellement associé au tube de prémélange, le mécanisme de couplage est clairement identifié. Par la suite, un traitement en moyenne de phase est appliqué aux champs de vitesse axiale. Des mouvements de battements des bras de la flamme dans les directions longitudinale et transverse sont mis en évidence aux fréquences des modes instables. L’émission naturelle de la flamme est également mesurée avec une caméra rapide. Une analyse spectrale et un traitement en moyenne phase avec transformée d’Abel sont appliqués aux images pour caractériser les régions de la flamme présentant une forte réponse aux fréquences des modes acoustiques du foyer. Les mécanismes à l’origine du bruit sont analysés en corrélant les mesures optiques et acoustiques. Au cours de cette étude, des fonctions de transfert de flamme FTF sont également caractérisées aux fréquences des modes propres du foyer, liant perturbations amont et réponse de flamme. La vitesse acoustique est reconstruite dans le tube de prémélange à partir des mesures des microphones. La FTF est calculée grâce aux mesures de vitesse par PIV, à l’émission des radicaux OH* et CH* et à l’émission naturelle de la flamme obtenue par caméra rapide. La caractérisation et la modélisation du système composé du tube de prémélange et de la chambre de combustion montrent qu’il est nécessaire de s’intéresser à l’influence des conditions aux limites sur les propriétés de la flamme et la stabilité du brûleur. / Lean premixed combustion is widely used to limit pollutant emissions and improve efficiency. However in this situation combustion instabilities and associated noise may occur. The growth of self-sustained pressure fluctuations within the combustor may limit the operating conditions and eventually damage the installation. The objective of this work is to study the mechanisms induced in combustion noise and instabilities in a turbulent premixed swirled burner. The study is based on a detailed analysis of the pressure field of the combustor, the flame dynamics and a characterization of the upstream and downstream acoustic boundary conditions and in the air and fuel feeding lines. Based upon experimental investigations, a theoretical study of the burner acoustics is carried out using a low-order model with two coupled cavities. The eigenfrequencies and spatial distribution of the pressure field are obtained, allowing comparisons with experimental results. The impact of the inlet acoustic impedance on the prediction of the eigenmodes is examined through the use of the measured impedance in the model. Thereafter calculations with the AVSP Helmholtz code are carried out to confirm the results obtained with the loworder model. The interactions between the burner acoustic modes and the flame are investigated and the reacting flow dynamics is characterized, using High Speed Particle Image Velocimetry HSPIV at 15 kHz. A first analysis concerns the mean and fluctuating velocity fields and a spectral analysis of the collection of instantaneous velocity fields is carried out. Then a method based on the _2 criterion is used to detect vortices, showing that coherent structures are convected through the flame front at the frequency of the second unstable combustor mode. It is shown in the previous chapter that this mode is essentially associated with the premixer acoustics, allowing a clear coupling scenario between the acoustics and the flame. A phase locked averaging method is applied to the axial velocity fields. Flapping motions of the flame branches are highlighted in longitudinal and transverse directions at the unstable modes frequencies. The natural light emission from the flame is also measured using a fast camera. Spectral analysis and phase locked averaging with Abel transform are applied to images in order to determine the flame regions where a strong response is visible at the acoustic modes. Mechanisms underlying combustion noise are analyzed by correlating the optical and acoustic measurements. Flame transfer functions FTF are also characterized between upstream disturbances and the flame response at the combustor eigenfrequencies. Acoustic velocity is reconstructed in the premixer using microphones measurements. The FTF is calculated using PIV velocity fields, OH* or CH* intensities and flame natural light emissions measurements. Measurements and modeling show that boundary conditions play a crucial role in the burner stability. The acoustic impedance at the premixer inlet can be modified using an impedance control system (ICS). Thus, the pressure field and flame dynamics are characterized for different boundary conditions imposed by the ICS. The acoustic boundary conditions in the feeding lines are characterized using an Impedance Measurement Device (IMD) equipped with microphones and mounted within the supplies.
87

Mécanismes d'instabilités de combustion haute-fréquence et application aux moteurs-fusées / Mechanisms of instabilities of high-frequency combustion and application in engines-rockets

Méry, Yoann 27 May 2010 (has links)
Cette thèse présente une étude des instabilités haute-fréquence dans les moteurs-fusées. Ce phénomène, qui a posé de nombreux problèmes dans les programmes de développement de moteur, est abordé de trois façons complémentaires : expérimentalement, théoriquement et numériquement. Premièrement, des expériences sont menées afin d’identifier les principaux processus et d’apporter les mécanismes ayant lieu lorsque le moteur devient instable. Pour parvenir à ce stade, un nouveau modulateur (VHAM), capable de créer des ondes acoustiques représentatives de ce qui se produit dans un moteur réel, est conçu et caractérisé. La deuxième partie concerne l’analyse théorique. Deux modèles (FAME, SDM) sont développés en suivant les principales conclusions de la campagne expérimentale : les oscillations de dégagement de chaleur sont dues au mouvement transverse des flammes, et le phénomène est déclenché lorsque des gouttelettes deviennent suffisamment petites pour être convectées par le champ acoustique. En utilisant ces modèles comme base de référence, un code numérique (STAHF) est présenté. Son but est de rendre compte des mécanismes déjà identifiés pour un coût de calcul faible. Il est ensuite montré qu’il peut être utilisé pour étudier des moteurs-fusées grandeur nature. La LES compressible est choisie pour étudier l’interaction entre l’acoustique et la combustion numériquement. Un nouveau modèle de combustion pour flammes non-prémélangées basé sur une hypothèse de chimie infiniment rapide est présenté et validé sur une flamme bien documentée (H3). Il est ensuite utilisé pour étudier l’interaction entre une onde acoustique transverse et la flamme H3. Une comparaison entre le terme source de Rayleigh calculé à partir de la simulation et celui prédit par le modèle théorique FAME est finalement menée. / This thesis presents a study of high frequency instabilities in rocket engines. This issue, which has plagued many engine development programs, is approached by three complementary viewpoints: experimental, theoretical, and numerical. First, experiments are carried out to identify the main processes involved and bring forth mechanisms taking place when an engine becomes unstable. To achieve this stage, a new modulator (the VHAM), capable of creating acoustic waves representative of what occurs in an actual engine, is designed and characterized. The second part of this thesis concern theoretical analysis. Two models are developed following the main conclusions of the experimental campaign: heat release oscillations are due to the transverse flames’ motion, and the phenomenon is triggered when droplets become small enough to be convected by the acoustic field. Using these models as a baseline, a numerical code (STAHF) is presented. Its purpose is to account for mechanisms identified previously for little computational cost. This code is validated on particularly responding situations observed during experiments. It is then shown that it can be used to study real scale rocket engines. The third point of view adopted to address the problem is numerical simulation. Full compressible LES is chosen to study the interaction between acoustics and combustion. A new combustion model for non-premixed flames with infinitely fast chemistry is presented and validated on a well documented flame (H3). It is then used to study the interaction between a transverse acoustic wave and the H3 flame. A comparison between the Rayleigh source term computed from the simulation and the one predicted by the theoretical model FAME is conducted eventually.
88

Analyse des instabilités de combustion dans des foyers de centrale thermique fonctionnant au fioul lourd / Analysis of combustion instabilities in thermal power plants operating with heavy fuel oil

Mirat, Clément 08 July 2015 (has links)
Des crises vibratoires ont été constatées dans plusieurs centrales thermiques d’EDF opérant avec du fioul lourd, certaines ayant entraîné l’arrêt du foyer. Ce travail traite des instabilités de combustion pouvant se déclencher dans ce type de système où le combustible liquide est injecté avec de la vapeur d’eau et où l’écoulement d’air est mis en rotation. Ces phénomènes vibratoires résultent d’un couplage résonant entre la dynamique de la combustion et l’acoustique du foyer. La réponse acoustique des flammes diphasiques non-prémélangées swirlées reste largement méconnue et est difficilement analysable sur le foyer réel. L’objectif de ce travail est donc d’étudier la stabilité des chaudières EDF à partir de l’analyse de la réponse d’une flamme diphasique non-prémélangée swirlée issue d’un injecteur générique et soumise à des perturbations de la vitesse acoustique. Cette réponse est déterminée sur un dispositif original (DIFAV) équipé d’un swirler et d’un injecteur bi-fluides fonctionnant à la vapeur d’eau et au dodécane. Ce système est constitué des principaux éléments des brûleurs utilisés sur les centrales thermiques EDF à une échelle 1/7000. Le dispositif est conçu pour facilement modifier la géométrie de la tête d’injection, les conditions d’injection de combustible et de vapeur et ainsi contrôler le spray généré. Des visualisations à la sortie d’une buse d’injection montrent l’influence de la topologie de l’écoulement diphasique dans l’injecteur sur la taille des gouttes mesurées dans le spray. Des mesures de taille et de vitesse des gouttes lorsque le rapport des débits de vapeur et de combustible (GLR) est modifié sont réalisées. Ces données comparées à des modèles ont permis d’estimer l’évolution de la taille des gouttes générées par l’injecteur qui équipe les centrales thermiques lorsque le GLR varie. Une analyse modale du foyer DIFAV et d’un modèle simplifié de la chaudière réelle est ensuite menée. Les fréquences propres et les taux d’amortissement du foyer DIFAV sont déterminés expérimentalement en soumettant le système à une modulation acoustique externe. Un modèle acoustique simplifié composé de trois cavités couplées représentatif du brûleur DIFAV est également développé. Des simulations acoustiques réalisées avec COMSOL Multiphysics sur une coupe transverse d’une chaudière générique représentative de la chaudière industrielle permettent d’identifier trois modes à basses fréquences établis entre les plenums et la chambre de combustion qui sont susceptibles d’être instables. La sensibilité de ces modes à la géométrie du foyer et aux conditions limites est étudiée. La réponse de la flamme générique lorsqu’elle est soumise à des modulations acoustiques de l’écoulement d’air en amont du brûleur est ensuite mesurée sur le banc DIFAV pour différents niveaux d’excitation et deux topologies de flamme lorsque les conditions d’injection sont modifiées. Les mécanismes qui pilotent l’évolution du gain de l’une des fonctions de transfert généralisées (FDF) de la flamme sont étudiés à l’aide de visualisations en moyenne de phase de l’écoulement et de mesures des vitesses axiale et azimutale de l’écoulement d’air au cours d’un cycle de modulation. Une forte sensibilité de la phase de la FDF à l’amplitude des perturbations acoustiques est observée. Un adimensionnement par le nombre de Strouhal basé sur la vitesse débitante et la longueur efficace de la flamme est proposé pour transposer ces FDFs sur le brûleur réel. Une analyse de stabilité du foyer DIFAV est réalisée en intégrant les FDF au modèle acoustique afin de déterminer les cycles limites des oscillations lorsque la longueur de la chambre de combustion varie. Ces calculs sont comparés aux fréquences des instabilités auto-entretenues mesurées aux cycles limites dans le foyer DIFAV. [...] / Vibratory crises have been observed in EDF thermal power plants operating with heavy fuel oil. Such instabilities may lead to shutdown and damage the boiler. This work deals with combustion instabilities that can take place in boilers equipped with steam-assisted atomizers and where the airflow is swirled. These vibratory phenomena result from a resonant coupling between the combustion dynamics and the boiler acoustics. Analyses of combustion dynamics of non-premixed swirling spray flames remain rare and are difficult to realize on the real system. The objective of this work is to analyze the stability of EDF boilers using the response of generic non-premixed swirling spray flames submitted to acoustic velocity disturbances. This response is determined on an original device (DIFAV) equipped with a swirling vane and a twin-fluid atomizer operated with steam and dodecane. This burner is equipped with the main elements of those used in the thermal power plant, but has a reduced scale of 1/7000. The influence of the injector geometry and of the operating conditions on the spray generated by the injector can be studied. Spray visualizations at the outlet of the injector reveal the relationship between the topology of the two-phase flow in the injector and the measured droplet size. Measurements of the droplet diameter and velocity as a function of the gas-to-liquid ratio (GLR) have been performed at the outlet of the injector. These data have been compared to models and were used to estimate the evolution of the droplets diameter as a function of the GLR generated by the industrial injector. A modal analysis of the DIFAV combustor is then carried out and a simplified acoustic model made of three coupled cavities is developed. The natural frequencies and damping rates of the DIFAV combustor are determined experimentally when it is submitted to acoustic modulation. Acoustic simulations are performed with COMSOL Multiphysics on a simplified geometrical model of the industrial boiler. Three low frequency modes established between the plenums and the combustion chamber have been identified and may be unstable. Their sensitivity to modifications of the boiler geometry and boundary conditions are studied. Flame responses subjected to acoustic modulations of the airflow rate are then measured on the DIFAV combustor for several amplitudes and two flames topologies obtained at globally lean condition. Phase-conditioned flame visualizations and measurements of swirl number fluctuations during an acoustic forcing cycle are conducted to explain the mechanisms that control the evolution of gain of the Flame Describing Function (FDF). A high sensitivity of the phase of the FDF to the amplitude of the acoustic disturbance is observed. The Strouhal number based on the airflow velocity and the effective length of the flame is used to transpose these FDF on the industrial burner. FDF are integrated in the acoustic model of the DIFAV setup to carry out a stability analysis and predict the limit cycle oscillations as a function of the combustion chamber length. These calculations are compared to frequencies of self-sustained instability measured at the limit cycles in the DIFAV combustor. A reasonable agreement is obtained showing the validity of the stability analysis for the non-premixed two-phase flames investigated based on the knowledge of their FDF. Finally, a stability analysis of the EDF boiler is conducted with the COMSOL Multiphysics model by including the acoustic flame response of the industrial burner in the simulation. This FDF is deducted from the dimensionless FDF measured on the generic burner. The Rayleigh criterion is used to analyze the stability of the combustor as a function of the flame length for different boundary conditions. Indications are given to improve the stability of the EDF boiler.
89

Analyse de la dynamique non-linéaire et du contrôle des instabilités de combustion fondée sur la "Flame Describing Function" (FDF) / Nonlinear dynamics and control analysis of combustion instabilities based on the “Flame Describing Function” (FDF)

Boudy, Frédéric 21 December 2012 (has links)
Cette thèse se concentre sur l’étude des instabilités de combustion dans un brûleur prémélangé. Les instabilités sont généralement issues d’un couplage entre la combustion et les modes propres du système. La mise en résonance qui en résulte peut avoir des conséquences qui sont souvent dommageables, entraînant des vibrations, une fatigue des matériaux soumis à des charges acoustiques élevées et une intensification des flux de chaleur vers les parois de la chambre. Un premier objectif de cette thèse est de poursuivre le développement de méthodes de prévision des instabilités et des phénomènes non-linéaires qui en résultent comme par exemple le développement de cycles limites, les processus de déclenchement (“triggering”), la commutation de modes. Le cadre général adopté est celui de «°l’équivalent harmonique » bien connu dans le domaine du contrôle et qui a été exploré dans le domaine des instabilités de combustion dans des travaux récents du laboratoire EM2C, CNRS. Par le biais de ce concept il est possible de tenir compte de l’´evolution de la réponse de la flamme suivant l’amplitude à laquelle elle est soumise. Cette réponse de flamme en fréquence et amplitude généralise la notion de fonction de transfert et elle est désignée sous le nom de “Flame Describing Function” (FDF). Le système est ouvert à son extrémité aval. Cette géométrie permet de simplifier l’analyse et d’obtenir une large gamme de configurations au moyen d’une variation continue de la longueur du conduit d’alimentation qui est limité en amont par un piston. On peut aussi échanger le tube à flamme et utiliser des longueurs différentes de cet élément. Une étude exhaustive est réalisée pour répertorier les oscillations observées et déduire leurs propriétés. On montre que les cycles limites qui possèdent une amplitude constante sont bien décrits par la méthode unifiée fondée sur la FDF. Pour certaines configurations l’expérience fait apparaître des cycles limites dont l’amplitude et la fréquence ne se stabilisent pas au cours du temps. On observe notamment des oscillations plus complexes couplées par plusieurs modes pouvant soit donner lieu à des variations régulières ou à des fluctuations plus irrégulières avec un caractère “galopant” dans le temps. Pour ces oscillations particulières, la FDF fournit des indications sur les domaines d’apparition mais n’est pas en mesure de décrire complètement ces cycles limites complexes. Il faut dans ce cas recourir à une représentation temporelle qui n’est pas développée dans ce document. La base de données expérimentales pourra être utilisée pour guider ultérieurement ce type d’analyse. Le deuxième grand objectif de cette thèse est de rechercher des méthodes de contrôle des instabilités. On considère plus particulièrement des systèmes dynamiques utilisant des plaques perforées polarisées par un écoulement (BFP : “bias flow perforate”). Ces systèmes sont particulièrement intéressants pour atténuer les oscillations basse fréquence qui sont difficiles à réduire par des systèmes passifs. La conception de ces BFPs est fondée sur des travaux récents menés au laboratoire EM2C, CNRS avec notamment l’objectif de robustesse, c’est-à-dire la possibilité de couvrir une large bande de fréquences. L’´etude expérimentale et les calculs fondés sur la FDF menés en parallèle permettent de voir les possibilités de tels systèmes et de comprendre les conditions nécessaires à leur efficacité. Cette étude peut permettre de guider les applications qui pourraient être envisagées en pratique. / This thesis is concerned with an investigation of combustion instabilities in premixed combustors. This problem has been the subject of a continuous effort in relation with the many issues encountered in practical systems like those used in propulsion and energy production. Combustion instabilities usually arise from the coupling between combustion and acoustic eigenmodes of the system. In most cases such resonances lead to vibrations, structural fatigue and intensified heat fluxes to the chamber walls. The first part of this thesis pursues the development of prediction methods for combustion instabilities and the associated nonlinear phenomena such as limit cycles establishment, triggering, mode switching and hysteresis. The aim is to delineate physical mechanisms and develop analytical methods dedicated to prediction. The theoretical framework relies on the “harmonic balance” formalism well known in the domain of control and which has been adopted more recently in combustion instability studies carried out at EM2C, CNRS laboratory. Through this concept, it is possible to take into account the evolution of the flame response as a function of amplitude. This flame response, depending on frequency and amplitude, extends the flame transfer function principle and is designated as the “Flame Describing Function” (FDF). The development of the FDF framework is pursued in the present study. The experimental setup which exemplifies combustion instabilities and serves to validate the method has generic features as it comprises in an idealized version, all the parts found in practical systems : a feeding manifold delivering a mixture of methane and air, a multipoint injector made of a perforated plate anchoring a collection of small laminar conical flames and a flame tube made of quartz which confines the combustion zone. The downstream boundary of the system is open. This device allows a simplified analysis and provides a wide variety of configurations through the continuous modification of the feeding manifold length which is bounded by a piston on the upstream and through changes of the flame tube lengths. Systematic comparison between theoretical results and well controlled experiments is undertaken. Depending on the geometry, the setup exhibits a large variety of unstable modes which are classified in terms of their limit cycle behavior using tools from dynamical system theory. It is shown that limit cycles with constant amplitude are well predicted by the unified FDF methodology. For some configurations, the experiment reveals limit cycles characterized by time variable amplitude and frequency. One finds situations where the oscillation is coupled by multiple modes leading either to regular amplitude variations or more irregular evolutions with a “galloping” pattern as a function of time. For this special type of limit cycle, the FDF indicates the range of the onset, but is not able to fully describe these complex limit cycles. These oscillations require a time domain state space analysis which is not addressed in this manuscript. The experimental database may be of value for further work in this direction. The second part of this thesis deals with control methods for instabilities. One specifically considers damping systems relying on perforated plates biased by a flow (BFP : “Bias Flow Perforate”). These systems are particularly interesting because they can be used to cancel low frequency oscillations which are otherwise difficult to reduce through passive control methods. This BFP design relies on recent work carried out at EM2C, CNRS laboratory which extends the frequency range where the system is effective. The experimental study and the associated FDF calculations are used to delineate the possibilities of such systems and uncover conditions required for an effective damping of oscillations. This study provides indications on the practical application of BFPs.
90

Linear and nonlinear analysis of the acoustic response of perforated plates traversed by a bias flow / Analyse linéaire et non linéaire de la réponse acoustique de plaques perforées traversées par un écoulement moyen

Scarpato, Alessandro 10 June 2014 (has links)
Les instabilités thermo-acoustiques causent des problèmes récurrents dans les chambres de combustion pour une large gamme d'applications industrielles, allant des chaudières domestiques aux turbines à gaz, en passant par les moteurs fusées. Ces phénomènes résultent d’un couplage résonant entre la dynamique de la combustion et les modes acoustiques du foyer, et peuvent donner lieu à de fortes vibrations, un vieillissement prématuré des composants de la chambre, voire des dommages structurels. Les mécanismes physiques mis en jeu sont complexes et difficiles à modéliser, ainsi les oscillations thermo-acoustiques ne sont pas facilement prévisibles au stade de la conception d’une chambre de combustion. Dans de nombreux foyers, des systèmes d’amortissement passifs sont installés pour augmenter la dissipation d’énergie acoustique et empêcher le développement de ces instabilités. Dans ce travail, des systèmes d’amortissement basés sur des plaques perforées couplées à une cavité résonante et traversées par un écoulement moyen sont analysés. Les principaux objectifs sont : (i) d’améliorer et de simplifier la conception de systèmes d’amortissement robustes en maximisant leurs propriétés d’absorption acoustique en régime linéaire, (ii) d’analyser l’effet de l’amplitude des ondes sonores incidentes sur la réponse acoustique des plaques perforées et (iii) de développer des modèles capables de reproduire cette réponse aux hautes amplitudes. Tout d’abord, deux régimes asymptotiques intéressants sont identifiés où le système fonctionne à faibles et forts nombres de Strouhal respectivement. Dans ces régimes la conception d’un système d’amortissement maximisant l’absorption acoustique est grandement simplifiée, puisque les calculs de la vitesse optimale de l’écoulement et de la taille de la cavité sont découplés. Il est démontré qu’à faible nombre de Strouhal le système se comporte comme un résonateur quart d’onde, et dispose d’une bande d’absorption très large. À fort nombre de Strouhal, le système fonctionne comme un résonateur de Helmholtz, comportant une cavité de taille plus réduite, mais une bande d’absorption beaucoup plus étroite que dans le régime précédent. Ces prévisions sont confirmées par des mesures réalisées dans les différents régimes identifiés sur un dispositif expérimental dédié. L’évolution des propriétés acoustiques d’une plaque perforée lorsque l’amplitude de forçage augmente est ensuite examinée par le biais de simulations directes. Il est montré que la transition du régime linéaire au régime non linéaire se produit lorsque l’amplitude de la vitesse acoustique dans l’orifice est comparable à la vitesse de l’écoulement moyen dans les trous. Pour des amplitudes élevées, une inversion périodique de l’écoulement est observée dans l’orifice. Des anneaux tourbillonnaires sont alternativement éjectés en amont et en aval de l’orifice à une vitesse de convection qui augmente avec l’amplitude de la perturbation acoustique. Ces mécanismes influencent profondément l’absorption acoustique des plaques perforées dans le régime non linéaire. Deux nouveaux modèles décrivant la réponse non linéaire de ces systèmes sont ensuite développés en exploitant la trajectoire des vortex (modèle VC), et une approche quasi-stationnaire (modèle IDF). Les prévisions de ces modèles sont confrontées à des mesures effectuées dans le tube à impédance et aux résultats de simulations directes. Les résultats obtenus au cours de ces travaux peuvent être utilisés pour guider la conception de systèmes d’absorption robustes, capables de fonctionner dans des environnements difficiles avec des niveaux sonores élevés, comme ceux rencontrés lors d’instabilités thermo-acoustiques. / Thermo-acoustic instabilities are of primary concern in combustion chambers for a wide range of industrial applications, from domestic boiler to gas turbines or rocket engines. They are the consequence of a resonant coupling between the flame dynamics and the acoustic modes of the combustor, and can result in strong vibrations, early aging of combustor components and structural damage. The physical mechanisms involved are complex and difficult to model, thus thermo-acoustic oscillations are not easily predictable at the design stage of a combustor. In many combustors, passive dampers are implemented to increase the acoustic energy dissipation of the system and to hinder detrimental flame-acoustics interactions. In the present work, passive damping systems based on perforated screens backed by a resonant cavity and traversed by a bias flow are investigated. The main objectives are: (i) to improve and simplify the design of these dampers by maximizing their acoustic absorption properties in the linear regime, (ii) to analyze the effect of the sound wave amplitude on the acoustic response of these systems and (iii) to develop models capable of capturing absorption at high oscillation amplitudes. First, two interesting asymptotic regimes are identified where the plate operates at low and high Strouhal numbers respectively. In these regimes the design of a damper maximizing absorption is greatly simplified, since the choice of the optimal bias flow velocity and back cavity size can be decoupled. It is shown that at low Strouhal numbers the damper behaves as a quarter-wave resonator, and features a wide absorption bandwidth. At high Strouhal numbers, the system operates as a Helmholtz resonator, featuring shorter optimal back cavity sizes but narrower absorption bandwidths. These predictions are compared to measurements in a dedicated experimental setup for the different operating regimes identified. The dependence of the acoustic properties of a perforated plate on the forcing amplitude is then examined by means of direct numerical simulations. It is shown that transition from linear to nonlinear regimes occurs when the acoustic velocity amplitude in the orifice is comparable to the mean bias flow velocity. At high amplitudes, periodic flow reversal is observed within the perforation, vortex rings are alternatively shed upstream and downstream of the hole and convected away at a velocity which is increasing with the forcing amplitude. These mechanisms greatly influence the acoustic absorption of the perforate in the nonlinear regime. Two novel models capturing this nonlinear response are then inferred based on an analysis of the vortex trajectory (VC model), and on a quasi-steady description of the flow (IDF model). Their predictions are finally compared to measurements conducted in an impedance tube, and to results from numerical simulations. The results obtained in this work can be used to ease the design of robust dampers capable of operating in harsh environments with high sound levels, such as those found during self-sustained thermo-acoustic instabilities.

Page generated in 0.0797 seconds