• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 53
  • 53
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Information Transmission using the Nonlinear Fourier Transform

Isvand Yousefi, Mansoor 20 March 2013 (has links)
The central objective of this thesis is to suggest and develop one simple, unified method for communication over optical fiber networks, valid for all values of dispersion and nonlinearity parameters, and for a single-user channel or a multiple-user network. The method is based on the nonlinear Fourier transform (NFT), a powerful tool in soliton theory and exactly solvable models for solving integrable partial differential equations governing wave propagation in certain nonlinear media. The NFT decorrelates signal degrees of freedom in such models, in much the same way that the Fourier transform does for linear systems. In this thesis, this observation is exploited for data transmission over integrable channels such as optical fibers, where pulse propagation is governed by the nonlinear Schr\"odinger (NLS) equation. In this transmission scheme, which can be viewed as a nonlinear analogue of orthogonal frequency-division multiplexing commonly used in linear channels, information is encoded in the nonlinear spectrum of the signal. Just as the (ordinary) Fourier transform converts a linear convolutional channel into a number of parallel scalar channels, the nonlinear Fourier transform converts a nonlinear dispersive channel described by a \emph{Lax convolution} into a number of parallel scalar channels. Since, in the spectral coordinates the NLS equation is multiplicative, users of a network can operate in independent nonlinear frequency bands with no deterministic inter-channel interference. Unlike most other fiber-optic transmission schemes, this technique deals with both dispersion and nonlinearity directly and unconditionally without the need for dispersion or nonlinearity compensation methods. This thesis lays the foundations of such a nonlinear frequency-division multiplexing system.
42

Vortices, Painlevé integrability and projective geometry

Contatto, Felipe January 2018 (has links)
GaugThe first half of the thesis concerns Abelian vortices and Yang-Mills theory. It is proved that the 5 types of vortices recently proposed by Manton are actually symmetry reductions of (anti-)self-dual Yang-Mills equations with suitable gauge groups and symmetry groups acting as isometries in a 4-manifold. As a consequence, the twistor integrability results of such vortices can be derived. It is presented a natural definition of their kinetic energy and thus the metric of the moduli space was calculated by the Samols' localisation method. Then, a modified version of the Abelian–Higgs model is proposed in such a way that spontaneous symmetry breaking and the Bogomolny argument still hold. The Painlevé test, when applied to its soliton equations, reveals a complete list of its integrable cases. The corresponding solutions are given in terms of third Painlevé transcendents and can be interpreted as original vortices on surfaces with conical singularity. The last two chapters present the following results in projective differential geometry and Hamiltonians of hydrodynamic-type systems. It is shown that the projective structures defined by the Painlevé equations are not metrisable unless either the corresponding equations admit first integrals quadratic in first derivatives or they define projectively flat structures. The corresponding first integrals can be derived from Killing vectors associated to the metrics that solve the metrisability problem. Secondly, it is given a complete set of necessary and sufficient conditions for an arbitrary affine connection in 2D to admit, locally, 0, 1, 2 or 3 Killing forms. These conditions are tensorial and simpler than the ones in previous literature. By defining suitable affine connections, it is shown that the problem of existence of Killing forms is equivalent to the conditions of the existence of Hamiltonian structures for hydrodynamic-type systems of two components.
43

Algèbre de Yang-Baxter dynamique et fonctions de corrélation du modèle SOS intégrable / Dynamical Yang-Baxter algebra and correlation functions of the integrable SOS model

Levy-Bencheton, Damien 22 October 2013 (has links)
Un défi toujours actuel dans le domaine des systèmes intégrables quantiques est le calcul exact et explicite des fonctions de corrélation. Dans le cas de modèles simples tels que la chaîne de Heisenberg XXZ de spins 1/2, des progrès significatifs ont été réalisés ces dernières années. Les méthodes développées utilisent les symétries des modèles en volume infini (algèbre quantique affine) ou fini (algèbre de Yang-Baxter). L'objet de cette thèse est d'étendre le champ d'application de ce dernier type d'approche dans le cas où l'algèbre de Yang-Baxter sous-jacente est de type dynamique. C'est typiquement le cas du modèle de physique statistique solid-on-solid (SOS) qui décrit les interactions d'un paramètre de hauteur autour des faces d'un réseau bidimensionnel, avec des poids statistiques donnés par une matrice R elliptique solution de l'équation de Yang-Baxter dynamique.L'étude des fonctions de corrélation du modèle SOS est abordée dans le cadre de l'ansatz de Bethe algébrique et de la méthode de séparation des variables. Des représentations en termes de déterminants de fonctions usuelles sont obtenues par les deux méthodes pour les produits scalaires entre états et pour les facteurs de forme des opérateurs locaux en volume fini. Les formules obtenues dans le cadre de l'ansatz de Bethe algébrique sont ensuite utilisées pour représenter la fonction de corrélation à deux points sous la forme d'intégrales multiples, ainsi que pour le calcul de diverses quantités physiques à la limite thermodynamique, telles que les polarisations spontanées ou les probabilités de hauteurs locales. Ces dernières s'expriment sous forme d'intégrales multiples similaires à celles du modèle XXZ. / A current challenge in the field of quantum integrable systems is the exact and explicit computation of correlation functions. In simple models such as the XXZ spin 1/2 Heisenberg chain, some significant results have been obtained during the last years. The developed methods essentially use the symmetries of the models in infinite volume (quantum affine algebra) or finite volume (Yang-Baxter algebra). The aim of this thesis is to generalize the scope of the latter approaches to the case where the underlying Yang-Baxter algebra is of dynamical type. This is typically the case of the statistical mechanics solid-on-solid (SOS) model which describes the interactions of a height parameter around faces of a bidimensional lattice, and whose statistical weights are given by an elliptic R-matrix which is solution of the dynamical Yang-Baxter equation.The study of correlation functions of the SOS model is discussed in the framework of the algebraic Bethe ansatz and the separation of variables. Representations in terms of determinants of usual functions are obtained by these two methods for the scalar products of states and for form factors of local operators in finite volume. The obtained formula in the framework of the algebraic Bethe ansatz are then used to represent the two-point function as multiple integrals, and also to compute various physical quantities at the thermodynamic limit, such as the spontaneous polarizations or the local height probabilities. The latter can be expressed in terms of multiple integrals of contour, which are really similar to the ones obtained in the XXZ model.
44

Dynamical reflection algebras and associated boundary integrable models / Algèbres de réflexion dynamiques et modèles associés

Filali Amine, Ghali 12 December 2011 (has links)
Cette thèse s’inscrit dans le cadre général de la théorie des systèmes intégrables avec bords et le développement des structures algébriques associées.D’une part, nous nous attaquons au problème de la diagonalisation de l’hamiltonien du modèle XXZ avec bords non diagonaux. Nous exhibons les deux ensembles d’états propres et valeurs propres du modèle si les paramètres de bords satisfont deux conditions.D’autre part, nous introduisons un modèle de physique statistique que nous appelons le modèle face avec un bord réfléchissant. Nous calculons exactement sa fonction de partition et nous montrons que cette dernière se représente simplement sous la forme d’un unique déterminant matriciel.Nous montrons que ces deux problèmes sont reliés par la transformation vertex-face et exhibent une structure algébrique commune, l’algèbre de réflexion dynamique. Nous nous intéressons aux aspects mathématiques de cette algèbre dans le cas elliptique général,et nous introduisons deux classes de ces représentations, la représentation de co-module d’évaluation et sa duale. Nous pensons que cette algèbre est la structure clef pour l’analyse des modèles faces avec bords. En particulier, nous montrons à l’aide de twists de Drinfel’d que leur fonction de partition se représente simplement dans le cas général. Enfin, nous tentons une ’dynamisation’ du modèle à vertex ’Half-Turn-Symmetric’,et nous décrivons sa fonction de partition en termes de représentation d’évaluation de l’algèbre de Yang-Baxter dynamique, et trouvons un ensemble de conditions la déterminantunivoquement. / This thesis is embedded in the general theory of quantum integrable models withboundaries, and the development of associated algebraic structures.We first consider the question of the diagonalization of the XXZ hamiltonian with nondiagonalboundaries. We succeed to find the two sets of eigenstates and eigenvalues of themodel if the boundaries parameters satisfy two conditions.We introduce then a statistical physics model which we refer to be the face model witha reflecting end. Moreover, we compute exactly its partition function and show that it takesthe form of a simple single matrix determinant.We show that these two problems are related through the vertex-face transformationand are solved using a common algebraic structure, the dynamical reflection algebra andits dual. We focus from a mathematical perspective on this algebra in the general ellipticcase. Both the co-module evaluation representation and its dual are introduced. We believethat these structures are the key ingredients for the analysis of face models with boundaries.In particular, using the concept of Drinfel’d twists, we show that the partition function ofthese models has a simple representation in the general case.Finally, we attempt on a ’dynamization’ of the Half-Turn-Symmetric vertexmodel. Wedescribe its partition function in terms of the evaluation representation of the dynamicalYang-Baxter algebra, and find a set of conditions that uniquely determine it.
45

Integrable Approximations for Dynamical Tunneling

Löbner, Clemens 27 August 2015 (has links)
Generic Hamiltonian systems have a mixed phase space, where classically disjoint regions of regular and chaotic motion coexist. For many applications it is useful to approximate the regular dynamics of such a mixed system H by an integrable approximation Hreg. We present a new, iterative method to construct such integrable approximations. The method is based on the construction of an integrable approximation in action representation which is then improved in phase space by iterative applications of canonical transformations. In contrast to other known approaches, our method remains applicable to strongly non-integrable systems H. We present its application to 2D maps and 2D billiards. Based on the obtained integrable approximations we finally discuss the theoretical description of dynamical tunneling in mixed systems. / Typische Hamiltonsche Systeme haben einen gemischten Phasenraum, in dem disjunkte Bereiche klassisch regulärer und chaotischer Dynamik koexistieren. Für viele Anwendungen ist es zweckmäßig, die reguläre Dynamik eines solchen gemischten Systems H durch eine integrable Näherung Hreg zu beschreiben. Wir stellen eine neue, iterative Methode vor, um solche integrablen Näherungen zu konstruieren. Diese Methode basiert auf der Konstruktion einer integrablen Näherung in Winkel-Wirkungs-Variablen, die im Phasenraum durch iterative Anwendungen kanonischer Transformationen verbessert wird. Im Gegensatz zu bisher bekannten Verfahren bleibt unsere Methode auch auf stark nichtintegrable Systeme H anwendbar. Wir demonstrieren sie anhand von 2D-Abbildungen und 2D-Billards. Mit den gewonnenen integrablen Näherungen diskutieren wir schließlich die theoretische Beschreibung von dynamischem Tunneln in gemischten Systemen.
46

Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach

Roozbeh Gharakhloo (6943460) 16 December 2020 (has links)
<div><div>In this work we use and develop Riemann-Hilbert techniques to study the asymptotic behavior of structured determinants. In chapter one we will review the main underlying</div><div>definitions and ideas which will be extensively used throughout the thesis. Chapter two is devoted to the asymptotic analysis of Hankel determinants with Laguerre-type and Jacobi-type potentials with Fisher-Hartwig singularities. In chapter three we will propose a Riemann-Hilbert problem for Toeplitz+Hankel determinants. We will then analyze this Riemann-Hilbert problem for a certain family of Toeplitz and Hankel symbols. In Chapter four we will study the asymptotics of a certain bordered-Toeplitz determinant which is related to the next-to-diagonal correlations of the anisotropic Ising model. The analysis is based upon relating the bordered-Toeplitz determinant to the solution of the Riemann-Hilbert problem associated to pure Toeplitz determinants. Finally in chapter ve we will study the emptiness formation probability in the XXZ-spin 1/2 Heisenberg chain, or equivalently, the asymptotic analysis of the associated Fredholm determinant.</div></div>
47

Crosscap States in Integrable Spin Chains / Crosscaptillstånd i integrable spinnkedjor

Ekman, Christopher January 2022 (has links)
We consider integrable boundary states in the Heisenberg model. We begin by reviewing the algebraic Bethe Ansatz as well as integrable boundary states in spin chains. Then a new class of integrable states that was introduced last year by Caetano and Komatsu is described and expanded. We call these states the crosscap states. In these states each spin is entangled with its antipodal spin. We present a novel proof of the integrability of both a crosscap state that is known in the literature and one that is not previously known. We then use the machinery of the algebraic Bethe Ansatz to derive the overlaps between the crosscap states and off-shell Bethe states in terms of scalar products and other known overlaps. / Vi undersöker integrable gränstillstånd i Heisenbergmodellen. Vi börjar med att gå igenom den algebraiska Betheansatsen och integrabla gränstillstånd i spinnkedjor. Sedan beskrivs och expanderas en ny klass av integrabla tillstånd som introducerades förra året av Caetano och Komatsu. Vi kallar dessa tillstånd crosscap-tillstånd. I dessa tillstånd är varje spinn intrasslat med sin antipodala motsvarighet. Vidare presenterar vi ett nytt bevis av integrerbarheten hos både ett tidigare känt och ett nytt crosscap-tillstånd. Sedan använder vi den algebraiska Betheansatsens maskineri för att härleda överlappen mellan crosscap-tillstånden och off-shell Bethe tillstånd i termer av skalärprodukter och andra kända överlapp.
48

A unified view of a family of soliton equations related to spin Calogero-Moser systems / Ett enhetligt perspektiv på en familj av solitonekvationer med kopplingar till sCM-system

Ottosson, Anton January 2022 (has links)
We study the interconnections between the spin Benjamin-Ono (sBO) and half-wave maps (HWM) equations, a pair of nonlinear partial integro-differential equations that have recently been found to permit multi-soliton solutions, where the time evolution of the constituent solitons can be described in terms of the well-known, completely integrable, spin Calogero-Moser (sCM) system. By considering a symmetry transformation of the sCM dynamics we are led to introduce a scale parameter into the sBO equation, yielding what we call the rescaled sBO (rsBO) equation, which has both the sBO and HWM equations as special cases. Together with the addition of a new constant background term in the multi-soliton ansatz for the sBO equation, this allows us to formulate a theorem for the rsBO equation that unifies and generalizes previously known soliton theorems for the sBO and HWM equations. The theorem offers a new perspective on these equations; we use it to show the emergence of HWM dynamics in a certain background-dominated limit of the sBO equation, and to suggest a generalization of the HWM equation. Along the way we discuss basic properties of the new multi-soliton solutions, and how to construct them. We spend some time proving that indeed all previously known multi-soliton solutions of the HWM equation are given by the new theorem, and not just a subset. We discuss, and state a conjecture about, possible physical interpretations of the sBO equation. Finally, we apply the same ideas to the spin non-chiral intermediate long-wave (sncILW) and non-chiral intermediate Heisenberg ferromagnet (ncIHF) equations, find that they are related in the same way as the sBO and HWM equations, and formulate a unified theorem for their multi-soliton solutions. For ease of exposition we keep the discussion to hermitian solutions of the sBO and sncILW equations and $\bb R^3$-valued solutions of the HWM and ncIHF equations, though readers familiar with the subject will have no problem generalizing to the non-hermitian and $\bb C^3$-valued cases. / Vi studerar kopplingarna mellan sBO- (spin Benjamin-Ono) och HWM- (half-wave maps) ekvationerna, två ickelinjära partiella integrodifferentialekvationer som nyligen visat sig tillåta multisolitonlösningar, där tidsevolutionen av ingående solitoner kan beskrivas av det välkända, fullständigt integrerbara sCM- (spin Calogero-Moser) systemet. Genom att undersöka en symmetritransformation av sCM-dynamiken leds vi att introducera en skalparameter i sBO-ekvationen, vilket ger upphov till vad vi kallar för rsBO- (rescaled sBO) ekvationen, som har både sBO- och HWM-ekvationerna som specialfall. Tillsammans med införandet av en ny konstant bakgrundsterm i multisolitonansatsen för sBO-ekvationen så låter detta oss formulera en sats för rsBO-ekvationen som förenar och generaliserar tidigare kända solitonsatser för sBO- och HWM-ekvationerna. Satsen ger ett nytt perspektiv på dessa ekvationer; vi använder den för att påvisa uppkomsten av HWM-dynamik i en viss bakgrundsdominerad gräns av sBO-ekvationen, och för att föreslå en generalisering av HWM-ekvationen. Längs vägen diskuterar vi grundläggande egenskaper hos de nya multisolitonlösningarna och hur man konstruerar dem. Vi lägger lite tid på att bevisa att mycket riktigt alla tidigare kända multisolitonlösningar av HWM-ekvationen ges av den nya satsen, och inte bara en delmängd. Vi diskuterar, och formulerar en konjektur kring, möjliga fysiska tolkningar av sBO-ekvationen. Slutligen tillämpar vi samma idéer på sncILW- (spin non-chiral intermediate long-wave) och ncIHF- (non-chiral intermediate Heisenberg ferromagnet) ekvationerna, finner att de är relaterade på samma sätt som sBO- och HWM-ekvationerna, och formulerar en förenad sats för deras multisolitonlösningar. För att förenkla presentationen håller vi diskussionen till hermiteska lösningar av sBO- och sncILW-ekvationerna samt $\bb R^3$-värda lösningar av HWM och ncIHF-ekvationerna, men läsare bekanta med ämnet bör utan besvär kunna generalisera till de icke-hermiteska och $\bb C^3$-värda fallen.
49

Thetafunktionen und konjugationsinvariante Funktionen auf Paaren von Matrizen / Theta functions and conjugation invariant functions on pairs of matrices

Eickhoff-Schachtebeck, Annika 30 September 2008 (has links)
No description available.
50

Intégrabilité des équations différentielles / Integrability of differential equations

Lazrag, Lanouar 19 December 2012 (has links)
Cette thèse est divisée en trois parties. Dans la première partie, nous commençons par décrire les théories de Ziglin, Yoshida et Morales-Ramis et les motiver. Dans la deuxième partie, on étudie l’intégrabilité des équations différentielles de Newton à trois degrés de liberté dont les forces sont des polynômes homogènes de degrés trois. En utilisant une analyse du groupe de Galois différentiel des équations aux variations d’ordre supérieur, nous faisons une classification (presque) complète des forces génériques et intégrables. Dans une dernière partie, nous intéressons à l’intégrabilité d’un système d’équations différentielles homogènes d’ordre un (système A). L’application directe de la théorie de Morales-Ramis ne donne des obstructions à l’intégrabilité. En dérivant le système A par rapport au temps, nous obtenons un système différentiel de Newton homogène d’ordre 2 (système B). L’avantage est que ce dernier possède des solutions particulières algébriquement non triviales et le critère classique de Morales-Ramis nous permet d’établir des conditions nécessaires d’intégrabilité. Nous prouvons qu’il existe des relations explicites entre les intégrales premières des deux systèmes et nous introduisons une nouvelle méthode de recherche d’intégrales premières que l’on appelle « Extension tangente double ». Nous appliquons cette méthode à des systèmes planaires homogènes quadratiques. Comme deuxième application, nous montrons que, sous certaines conditions, les racines newtoniennes d’un système différentiel de Newton avec force centrale sont intégrables par quadratures. Nous présentons plusieurs systèmes intégrables avec deux, trois et quatre degrés de liberté. / This thesis is divided into three parts. In the first part we begin by describing the theories of Ziglin, Yoshida and Morales-Ramis and motivating them. In the second part we study the integrability of three-dimensional differential Newton equations with homogeneous polynomial forces of degree three. Using an analysis of differential Galois group of higher order variational equations, we give an almost complete classification of integrable generic forces. The last part is devoted to a study of the integrability of a system of first order homogeneous differential equations (system A ). The direct application of the Morales-Ramis theory does not lead to obstructions to the integrability. If we differentiate the differential system A with respect to time, we obtain a homogeneous Newtonian system (system B). The advantage is that the system B has a non-trivial particular solution and the classical criterion of Morales-Ramis allows us to establish necessary conditions for integrability. We prove that there are explicit relationships between first integrals of the both systems and we introduce a new method for finding first integrals called ``Double tangent extension method''. We apply the obtained results for a detailed analysis of homogeneous planar differential system. Using the double tangent extension method, we formulate some conditions under which the Newtonian roots of Newton's system with central force are integrable by quadratures. Some new cases of integrability with two, three and four degrees of freedom are found.

Page generated in 0.0659 seconds