• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1424
  • 147
  • 56
  • 50
  • 50
  • 50
  • 39
  • 38
  • 38
  • 38
  • 12
  • 11
  • 1
  • 1
  • 1
  • Tagged with
  • 1601
  • 1601
  • 523
  • 448
  • 401
  • 331
  • 296
  • 221
  • 219
  • 177
  • 165
  • 145
  • 141
  • 125
  • 124
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Geração de referências espaciais em ambientes interativos tridimensionais / Generating spatial references in three-dimensional interactive environments

Silva, Diego dos Santos 05 September 2013 (has links)
A geração de expressão de referência (GER) é um dos principais componentes de aplicações de geração de língua natural a partir de dados não linguísticos. Trabalhos existentes nesta área tendem a se concentrar em domínios bidimensionais e tridimensionais simples. Domínios mais realistas, entretanto, ainda são pouco explorados pela literatura, possivelmente pela dificuldade em produzir modelos computacionais com o grau de complexidade exigido. O recente surgimento de aplicações baseadas em ambientes interativos tridimensionais, todavia, oferece uma ampla gama de oportunidades de pesquisa em GER. Nesse trabalho apresentamos um algoritmo de GER para seleção de atributos espaciais em ambientes interativos tridimensionais do tipo GIVE. A solução proposta é uma extensão de um algoritmo de GER tradicional que utiliza relações espaciais combinado com conhecimento linguístico extraído de corpora e modelos computacionais de referência espacial. Essa solução foi avaliada de forma intrínseca no domínio de instruções em mundos virtuais. / Referring expressions generation (REG) is one of the main components in the generation of Natural Language from non-linguistic data. Existing work in the eld tends to focus on simple two- or three-dimensional domains. More realistic domains, however, are still little investigated, possibly due to the diculties in producing computational models with the required degree of complexity. The recent rise of applications based on three-dimensional interactive environments, however, oers a wide range of research opportunities in REG. In this work we present a REG algorithm for selecting spatial attributes in three-dimensional interactive environments GIVE. The proposed solution is an extension of a traditional REG algorithm that makes use of spatial relations combined with linguistic knowledge extracted from corpora and computational models of spatial reference. The proposal was evaluated intrinsically in the domain of instructions generation in virtual worlds.
482

Tarifas inteligentes e resposta da demanda: cenários. / Smart rates and demand response: model from scenarios.

Campos, Alexandre de 02 February 2017 (has links)
Os consumidores residenciais de energia elétrica no Brasil pagam um preço constante pela mesma em qualquer horário do dia, a despeito da variação constante nos custos de oferta. Isto não é economicamente eficiente. Para se atingir esta eficiência a implantação de uma tarifa inteligente se faz necessária, questão mais factível com o advento das redes inteligentes. Este trabalho busca antever se este desenvolvimento é custo efetivo ou não. Em primeiro lugar, os conceitos de redes inteligentes e de medidores avançados são apresentados. Em segundo lugar, são apresentados os conceitos de resposta da demanda e se demonstra porque o preço da eletricidade, para o consumidor final, deve ser maior na ponta do que fora da ponta. Por fim, se busca fazer uma análise custo benefício de um projeto hipotético de Infraestrutura de Leitura Avançada, desenvolvido por uma distribuidora de energia da região Centro Oeste do Brasil, a partir do estudo de cenários. Esse projeto hipotético ocorre num horizonte de dez anos, entre 2014 e 2023. O primeiro passo foi o desenvolvimento de campanhas de medição entre os anos de 2012 e 2013. Usando os dados aí obtidos, duas curvas de carga horárias foram desenvolvidas, uma para os dias úteis e a outra para finais de semana e feriados. O horário de pico é entre as 19 e as 22 horas nos dias úteis, e das 18 as 23 horas nos finais de semana e feriados. O custo da oferta e o consumo total de eletricidade foram obtidos, respectivamente, no Operador Nacional do Sistema e na Agência Nacional de Energia Elétrica. Os resultados obtidos em 15 experimentos prévios foram usados para estimar as hipotéticas elasticidades preço e elasticidades de substituição. Duas modalidades tarifárias foram testadas nos cenários: Tarifa Pelo Horário de Uso e Tarifa Pelo Horário de Uso com Preço de Pico Crítico. Os resultados obtidos ficaram aquém dos conceitualmente previstos. Uma análise é feita para tentar entender a razão desta resposta. / Residential customers in Brazil pay a constant price throughout the day, despite the large time variation in costs of supply. It is not economically efficient. It is necessary to set it to costumers with smart rates, and this possibility is getting closer from the development of smart grids. This work aims understand in advance if this deployment is cost-effective or not. Firstly, the concepts of Smart Grids, AMR (Automatic Meter Reading) and AMI (Advanced Metering Infrastructure) are presented. Secondly, concepts of demand response are described, and there is a demonstration of the reasons why electricity peak prices must be higher than off-peak prices. Thirdly, we seek to make a cost-benefit analysis for a hypothetical AMI project installation to residential customers, served by a utility in the Middle West of Brazil, under some potential scenarios. This hypothetical project runs in a ten year horizon (2014-2023). The first step was to perform measurement campaigns in 2012 and 2013. Using the data obtained, two residential hourly load curves were developed, one for weekdays and another for weekends and holidays. Peak time occurs between 7 and 10 PM in weekdays, and from 6 to 11 PM on weekends and holidays. The cost of supply and total consumption in the residential segment were obtained, respectively, from the Brazilian National System Operator (ONS) and Electric Energy Agency (ANEEL). The results obtained in fifteen previous experiments were used to estimate hypotheticals price elasticity and elasticity of substitution. Two types of rates were tested in scenarios: TOU and TOU with CPP. The results were lower than expected. An analysis is made to try to understand the reasons for this answer.
483

Um modelo de extração de propriedades de textos usando pensamento narrativo e paradigmático. / A model of texts\' properties extraction using narrative and paradigmatic thinking.

Contier, Ana Teresa Ribeiro 25 April 2007 (has links)
Este trabalho procura entender como o homem formula seus pensamentos e com eles age no mundo. Não nos cabe esgotar tal assunto e sim, discuti-lo e apresentar um modelo de como este processo possivelmente ocorre. Para tanto foi feita uma releitura dos modos de pensamento estudados pelo psicólogo Jerome Bruner na década de 80: pensamento narrativo e paradigmático. Para o psicólogo, estes pensamentos são antagônicos; entretanto, nesta dissertação, será mostrado que estes dois pensamentos podem estar interligados. O pensamento narrativo é entendido aqui como uma narrativa criada pelo homem, baseada em sua memória e na sua interação com a sociedade e o pensamento paradigmático, como proposições derivadas da história narrada. O software \"Aristóteles\" foi desenvolvido com o objetivo de representar a interação entre o pensamento narrativo e o paradigmático. Esta representação é o primeiro passo para se discutir como, supostamente, o ser humano pensa. Não há a intenção em simular a mente humana, mas demonstrar que o estudo da mente humana pode servir de subsídios para criação de softwares. Assim, além da teoria de Bruner, o programa foi baseado na pesquisa sobre pensamento e palavra de Vygotsky e teoria dos gêneros de Bakhtin. Para a implementação do \"Aristóteles\" foram usadas regras da Inteligência Artificial Simbólica (IAS) escritas em linguagem orientada a objetos (Java). / This work seeks to understand how man formulates his thoughts and use them to act in the world. It is not our purpose to exhaust this subject, but to discuss it and present a model of how this process might possibly occur. For this we made a new lecture of the thinking modes studied by the psychologist Jerome Bruner in the 1980s: narrative thinking and paradigmatic thinking. To Bruner, these modes of thinking are opposites; however, in this work, we will show that these two modes may be interconnected. Narrative thinking is understood here as a narrative created by man, based on his memory and his interaction with society, and the paradigmatic thinking as a propositions derived from the narrated story. The software Aristoteles was developed, as part of this work, with the goal of representing the interaction between narrative and paradigmatic thinking. This representation is the first step to discuss how man supposedly thinks. There is no intention to simulate the human mind, but to show that its study might be useful to create software. Therefore, besides Bruner\'s theory, the program was based on a research of thinking, the writing of Vygotsky and Bakhtin\'s genre theory. To implement Aristoteles we used rules of Symbolic Artificial Intelligence written in an object oriented language (Java).
484

Desenvolvimento de preditores para recomendação automática de produtos. / Development of predictors for automated products recommendation.

Fuks, Willian Jean 28 May 2013 (has links)
Com o avanço da internet, novos tipos de negócios surgiram. Por exemplo, o sistema de anúncios online: produtores de sites e diversos outros conteúdos podem dedicar em uma parte qualquer de sua página um espaço para a impressão de anúncios de diversas lojas em troca de um valor oferecido pelo anunciante. É neste contexto que este trabalho se insere. O objetivo principal é o desenvolvimento de algoritmos que preveem a probabilidade que um dado usuário tem de se interessar e clicar em um anúncio a que está sendo exposto. Este problema é conhecido como predição de CTR (do inglês, \"Click-Through Rate\") ou taxa de conversão. Utiliza-se para isto uma abordagem baseada em regressão logística integrada a técnicas de fatoração de matriz que preveem, através da obtenção de fatores latentes do problema, a probabilidade de conversão para um anúncio impresso em dado site. Além disto, testes considerando uma estratégia dinâmica (em função do tempo) são apresentados indicando que o desempenho previamente obtido pode melhorar ainda mais. De acordo com o conhecimento do autor, esta é a primeira vez que este procedimento é relatado na literatura. / With the popularization of the internet, new types of business are emerging. An example is the online marketing system: publishers can dedicate in any given space of theirs websites a place to the printing of banners from different stores in exchange for a fee paid by the advertiser. It\'s in this context that this work takes place. Its main goal will be the development of algorithms that forecasts the probability that a given user will get interested in the ad he or she is seeing and click it. This problem is also known as CTR Prediction Task. To do so, a logistic regression approach is used combined with matrix factorization techniques that predict, through latent factor models, the probability that the click will occur. On top of that, several tests are conducted utilizing a dynamic approach (varying in function of time) revealing that the performance can increase even higher. According to the authors knowledge, this is the first time this test is conducted on the literature of CTR prediction.
485

Tabela de decisão adaptativa na tomada de decisão multicritério. / Adaptive decision tables on multicriteria decision making.

Tchemra, Angela Hum 05 June 2009 (has links)
Esta tese apresenta a formulação de uma extensão da tabela de decisão adaptativa, denominada Tabela de Decisão Adaptativa Estendida (TDAE), que tem por objetivo apoiar aplicações de tomada de decisão multicritério. É implementado um algoritmo de tomada de decisão para a TDAE que incorpora os mecanismos de tabelas de decisão tradicionais, técnicas adaptativas e procedimentos de métodos multicritério. A descrição e execução do algoritmo e a aplicabilidade da TDAE em problemas de decisão multicritério são mostradas numa aplicação particular. É apresentada uma avaliação de desempenho do algoritmo de decisão, em relação ao custo de tempo e de memória exigidos para a sua execução. Uma ferramenta de apoio à decisão baseada na TDAE é descrita e implementada. Os resultados do trabalho mostram que a TDAE é viável e pode ser uma opção alternativa de dispositivo para apoiar processos decisórios de problemas de decisão multicritério. / This thesis presents the formulation of an extension of the adaptive decision table called Table of Extended Adaptive Decision (TDAE), which aims at supporting applications of multicriteria decision making. A decision making algorithm is implemented for the TDAE embodying the traditional decision tables mechanisms, adaptive techniques, and multicriteria methods procedures. The description and implementation of the algorithm and the applicability of TDAE in multicriteria decision problems are shown in a particular application. A perform evaluation of the decision algorithm is presented in relation to time and memory costs required for its implementation. A tool for decision support based on TDAE is described and implemented. The results of the study show that TDAE is viable and can be a device alternative option to support the decision making problems of multicriteria decision.
486

Um ambiente para avaliação de algoritmos de aprendizado de máquina simbólico utilizando exemplos. / An environment to evaluate machine learning algorithms.

Batista, Gustavo Enrique de Almeida Prado Alves 15 October 1997 (has links)
Um sistema de aprendizado supervisionado é um programa capaz de realizar decisões baseado na experiência contida em casos resolvidos com sucesso. As regras de classificação induzidas por um sistema de aprendizado podem ser analisadas segundo dois critérios: a complexidade dessas regras e o erro de classificação sobre um conjunto independente de exemplos. Sistemas de aprendizado têm sido desenvolvidos na prática utilizando diferentes paradigmas incluindo estatística, redes neurais, bem como sistemas de aprendizado simbólico proposicionais e relacionais. Diversos métodos de aprendizado podem ser aplicados à mesma amostra de dados e alguns deles podem desempenhar melhor que outros. Para uma dada aplicação, não existem garantias que qualquer um desses métodos é necessariamente o melhor. Em outras palavras, não existe uma análise matemática que possa determinar se um algoritmo de aprendizado irá desempenhar melhor que outro. Desta forma, estudos experimentais são necessários. Neste trabalho nos concentramos em uma tarefa de aprendizado conhecida como classificação ou predição, na qual o problema consiste na construção de um procedimento de classificação a partir de um conjunto de casos no qual as classes verdadeiras são conhecidas, chamado de aprendizado supervisionado. O maior objetivo de um classificador é ser capaz de predizer com sucesso a respeito de novos casos. A performance de um classificador é medida em termos da taxa de erro. Técnicas experimentais para estimar a taxa de erro verdadeira não somente provêem uma base para comparar objetivamente as performances de diversos algoritmos de aprendizado no mesmo conjunto de exemplos, mas também podem ser uma ferramenta poderosa para projetar um classificador. As técnicas para estimar a taxa de erro são baseadas na teoria estatística de resampling. Um ambiente chamado AMPSAM foi implementado para ajudar na aplicação dos métodos de resampling em conjuntos de exemplos do mundo real. AMPSAM foi projetado como uma coleção de programas independentes, os quais podem interagir entre si através de scripts pré-definidos ou de novos scripts criados pelo usuário. O ambiente utiliza um formato padrão para arquivos de exemplos o qual é independente da sintaxe de qualquer algoritmo. AMPSAM também inclui ferramentas para particionar conjuntos de exemplos em conjuntos de treinamento e teste utilizando diferentes métodos de resampling. Além do método holdout, que é o estimador de taxa de erro mais comum, AMPSAM suporta os métodos n-fold cross-validation --- incluindo o leaning-one-out --- e o método bootstrap. As matrizes de confusão produzidas em cada iteração utilizando conjuntos de treinamento e teste podem ser fornecidas a um outro sistema implementado chamado SMEC. Este sistema calcula e mostra graficamente algumas das medidas descritivas mais importantes relacionadas com tendência central e dispersão dos dados. Este trabalho também relata os resultados experimentais a respeito de medidas do erro de classificação de três classificadores proposicionais e relacionais bem conhecidos, utilizando ambos os sistemas implementados, em diversos conjuntos de exemplos freqüentemente utilizados em pesquisas de Aprendizado de Máquina. / A learning system is a computer program that makes decisions based on the accumulative experience contained in successfully solved cases. The classification rules induced by a learning system are judged by two criteria: their classification error on an independent test set and their complexity. Practical learning systems have been developed using different paradigms including statistics, neural nets, as well as propositional and relational symbolic machine learning. Several learning methods can be applied to the same sample data and some of them may do better than others. Still, for a given application, there is no guarantee that any of these methods will work or that any single method is necessarily the best one. In other words, there is not a mathematical analysis method that can determine whether a learning system algorithm will work well. Hence, experimental studies are required. In this work we confine our attention to the learning task known as classification or prediction, where the problem concerns the construction of a classification procedure from a set of data for which the true classes are known, and is termed supervised learning. The overall objective of a classifier is to be able to predict successfully on new data. Performance is measured in terms of the error rate. Error rate estimation techniques not only provide a basis for objectively comparing the error rate of several classifiers on the same data and then estimating their future performance on new data, but they can also be a powerful tool for designing a classifier. The techniques of error rate estimation are based on statistical resampling theory. In this work, rules induced complexity of propositional and relational learning systems as well as several resampling methods to estimate the true error rate are discussed. An environment called AMPSAM has been implemented to aid in the application of resampling methods to real world data sets. AMPSAM consists of a collection of interdependent programs that can be bound together either by already defined or by new user defined scripts. The environment uses a common file format for data sets which is independent of any specific classifier scheme. It also includes facilities for splitting data sets up into test and training sets using different methods. Besides holdout, which is the most common accuracy estimation method, AMPSAM supports n-fold cross-validation --- including leaving-one-out --- and bootstrap. The confusion matrices produced in each run using those test and training sets can be input to another system called SMEC. This system calculates and graphically displays some of the most important descriptive measures related to central tendency and dispersion of those data. This work also reports the results of experiments measuring the classification error of three well known propositional and relational classifiers, using the implemented systems, on several data sets commonly used in Machine Learning research.
487

"Aquisição de conhecimento de conjuntos de exemplos no formato atributo valor utilizando aprendizado de máquina relacional"

Ferro, Mariza 17 September 2004 (has links)
O Aprendizado de Máquina trata da questão de como desenvolver programas de computador capazes de aprender um conceito ou hipótese a partir de um conjunto de exemplos ou casos observados. Baseado no conjunto de treinamento o algoritmo de aprendizado induz a classificação de uma hipótese capaz de determinar corretamente a classe de novos exemplos ainda não rotulados. Linguagens de descrição são necessárias para escrever exemplos, conhecimento do domínio bem como as hipóteses aprendidas a partir dos exemplos. Em geral, essas linguagens podem ser divididas em dois tipos: linguagem baseada em atributo-valor ou proposicional e linguagem relacional. Algoritmos de aprendizado são classificados como proposicional ou relacional dependendo da liguagem de descrição que eles utilizam. Além disso, no aprendizado simbólico o objetivo é gerar a classificação de hipóteses que possam ser facilmente interpretadas pelos humanos. Algoritmos de aprendizado proposicional utilizam a representação atributo-valor, a qual é inadequada para representar objetos estruturados e relações entre esses objetos. Por outro lado, a Programação lógica Indutiva (PLI) é realizada com o desenvolvimento de técnicas e ferramentas para o aprendizado relacional. Sistemas de PLI são capazes de aprender levando em consideração conhecimento do domínio na forma de um programa lógico e também usar a linguagem de programas lógicos para descrever o conhecimento induzido. Neste trabalho foi implementado um módulo chamado Kaeru para converter dados no formato atributo-valor para o formato relacional utilizado pelo sistema de PLI Aleph. Uma série de experimentos foram realizados com quatro conjuntos de dados naturais e um conjunto de dados real no formato atributo valor. Utilizando o módulo conversor Kaeru esses dados foram convertidos para o formato relacional utilizado pelo Aleph e hipóteses de classificação foram induzidas utilizando aprendizado proposicional bem como aprendizado relacional. É mostrado também, que o aprendizado proposicional pode ser utilizado para incrementar o conhecimento do domínio utilizado pelos sistemas de aprendizado relacional para melhorar a qualidade das hipóteses induzidas. / Machine Learning addresses the question of how to build computer programs that learn a concept or hypotheses from a set of examples, objects or cases. Descriptive languages are necessary in machine learning to describe the set of examples, domain knowledge as well as the hypothesis learned from these examples. In general, these languages can be divided into two types: languages based on attribute values, or em propositional languages, and relational languages. Learning algorithms are often classified as propositional or relational taking into consideration the descriptive language they use. Typical propositional learning algorithms employ the attribute value representation, which is inadequate for problem-domains that require reasoning about the structure of objects in the domain and relations among such objects. On the other hand, Inductive Logig Programming (ILP) is concerned with the development of techniques and tools for relational learning. ILP systems are able to take into account domain knowledge in the form of a logic program and also use the language of logic programs for describing the induced knowledge or hypothesis. In this work we propose and implement a module, named kaeru, to convert data in the attribute-value format to the relational format used by the ILP system Aleph. We describe a series of experiments performed on four natural data sets and one real data set in the attribute value format. Using the kaeru module these data sets were converted to the relational format used by Aleph and classifying hipoteses were induced using propositional as well as relational learning. We also show that propositional knowledge can be used to increment the background knowledge used by relational learners in order to improve the induded hypotheses quality.
488

Um estudo sobre a Teoria da Predição aplicada à análise semântica de Linguagens Naturais. / A study on the Theory of Prediction applied to the semantical analysis of Natural Languages.

Chaer, Iúri 18 February 2010 (has links)
Neste trabalho, estuda-se o aprendizado computacional como um problema de indução. A partir de uma proposta de arquitetura de um sistema de análise semântica de Linguagens Naturais, foram desenvolvidos e testados individualmente os dois módulos necessários para a sua construção: um pré-processador capaz de mapear o conteúdo de textos para uma representação onde a semântica de cada símbolo fique explícita e um módulo indutor capaz de gerar teorias para explicar sequências de eventos. O componente responsável pela indução de teorias implementa uma versão restrita do Preditor de Solomonoff, capaz de tecer hipóteses pertencentes ao conjunto das Linguagens Regulares. O dispositivo apresenta complexidade computacional elevada e tempo de processamento, mesmo para entradas simples, bastante alto. Apesar disso, são apresentados resultados novos interessantes que mostram seu desempenho funcional. O módulo pré-processador do sistema proposto consiste em uma implementação da Análise da Semântica Latente, um método que utiliza correlações estatísticas para obter uma representação capaz de aproximar relações semânticas similares às feitas por seres humanos. Ele foi utilizado para indexar os mais de 470 mil textos contidos no primeiro disco do corpus RCV1 da Reuters, produzindo, a partir de dezenas de variações de parâmetros, 71;5GB de dados que foram utilizados para diversas análises estatísticas. Foi construído também um sistema de recuperação de informações para análises qualitativas do método. Os resultados dos testes levam a crer que o uso desse módulo de pré-processamento leva a ganhos consideráveis no sistema proposto. A integração dos dois componentes em um analisador semântico de Linguagens Naturais se mostra, neste momento, inviável devido ao tempo de processamento exigido pelo módulo indutor e permanece como uma tarefa para um trabalho futuro. No entanto, concluiu-se que a Teoria da Predição de Solomonoff é adequada para tratar o problema da análise semântica de Linguagens Naturais, contanto que sejam concebidas formas de mitigar o problema do seu tempo de computação. / In this work, computer learning is studied as a problem of induction. Starting with the proposal of an architecture for a system of semantic analisys of Natural Languages, the two modules necessary for its construction were built and tested independently: a pre-processor, capable of mapping the contents of texts to a representation in which the semantics of each symbol is explicit, and an inductor module, capable of formulating theories to explain chains of events. The component responsible for the induction of theories implements a restricted version of the Solomonoff Predictor, capable of producing hypotheses pertaining to the set of Regular Languages. Such device presents elevated computational complexity and very high processing time even for very simple inputs. Nonetheless, this work presents new and interesting results showing its functional performance. The pre-processing module of the proposed system consists of an implementation of Latent Semantic Analisys, a method which draws from statistical correlation to build a representation capable of approximating semantical relations made by human beings. It was used to index the more than 470 thousand texts contained in the first disk of the Reuters RCV1 corpus, resulting, through dozens of parameter variations, 71:5GB of data that were used for various statistical analises. The test results are convincing that the use of that pre-processing module leads to considerable gains in the system proposed. The integration of the two components built into a full-fledged semantical analyser of Natural Languages presents itself, at this moment, unachievable due to the processing time required by the inductor module, and remains as a task for future work. Still, Solomonoffs Theory of Prediction shows itself adequate for the treatment of semantical analysis of Natural Languages, provided new ways of palliating its processing time are devised.
489

Uso de política abstrata estocástica na navegação robótica. / Using stochastic abstract policies in robotic navigation.

Matos, Tiago 06 September 2011 (has links)
A maioria das propostas de planejamento de rotas para robôs móveis não leva em conta a existência de soluções para problemas similares ao aprender a política para resolver um novo problema; e devido a isto, o problema de navegação corrente deve ser resolvido a partir do zero, o que pode ser excessivamente custoso em relação ao tempo. Neste trabalho é realizado o acoplamento do conhecimento prévio obtido de soluções similares, representado por uma política abstrata, a um processo de aprendizado por reforço. Além disto, este trabalho apresenta uma arquitetura para o aprendizado por reforço simultâneo, de nome ASAR, onde a política abstrata auxilia na inicialização da política para o problema concreto, e ambas as políticas são refinadas através da exploração. A fim de reduzir a perda de informação na construção da política abstrata é proposto um algoritmo, nomeado X-TILDE, que constrói uma política abstrata estocástica. A arquitetura proposta é comparada com um algoritmo de aprendizado padrão e os resultados demonstram que ela é eficaz em acelerar a construção da política para problemas práticos. / Most work in path-planning approaches for mobile robots does not take into account existing solutions to similar problems when learning a policy to solve a new problem, and consequently solves the current navigation problem from scratch, what can be very time consuming. In this work we couple a prior knowledge obtained from a similar solution to a reinforcement learning process. The prior knowledge is represented by an abstract policy. In addition, this work presents a framework for simultaneous reinforcement learning called ASAR, where the abstract policy helps start up the policy for the concrete problem, and both policies are refined through exploration. For the construction of the abstract policy we propose an algorithm called X-TILDE, that builds a stochastic abstract policy, in order to reduce the loss of information. The proposed framework is compared with a default learning algorithm and the results show that it is effective in speeding up policy construction for practical problems.
490

Aplicações da tecnologia adaptativa no gerenciamento de diálogo falado em sistemas computacionais. / Applications of adaptive technology in dialog management in spoken dialog systems.

Alfenas, Daniel Assis 10 November 2014 (has links)
Este trabalho apresenta um estudo sobre como a tecnologia adaptativa pode ser utilizada para aprimorar métodos existentes de gerenciamento de diálogo. O gerenciamento de diálogo é a atividade central em um sistema computacional de diálogo falado, sendo a responsável por decidir as ações comunicativas que devem ser enviadas ao usuário. Para evidenciar pontos que pudessem ser melhorados através do uso da tecnologia adaptativa, faz-se uma revisão literária ampla do gerenciamento do diálogo. Esta revisão também permite elencar critérios existentes e criar outros novos para avaliar gerenciadores de diálogos. Um modelo de gerenciamento adaptativo baseado em máquinas de estados, denominado Adaptalker, é então proposto e utilizado para criar um framework de desenvolvimento de gerenciadores de diálogo, o qual foi exercitado pelo desenvolvimento ilustrativo de uma aplicação simples de venda de pizzas. A análise desse exemplo permite observar como a adaptatividade é utilizada para aperfeiçoar o modelo, tornando-o capaz, por exemplo, de lidar de forma mais eficiente tanto com o reparo do diálogo quanto com a iniciativa do usuário. As regras de gerenciamento do Adaptalker são organizadas em submáquinas, que trabalham de forma concorrente para decidir qual a próxima ação comunicativa. / This work presents a study on how to apply adaptive technologies to improve existing dialog management methodologies. Dialog management is the central activity of a spoken dialog system, being responsible for choosing the communicative actions sent to the system user. In order to evidence parts that can be improved with adaptive technology, a large review on dialog management is presented. This review allows us to point existing criteria and create new ones to evaluate dialog managers. An adaptive management model based on finite state-based spoken dialog systems, Adaptalker, is proposed and used to build a development framework of dialog managers, which is illustrated by creating a pizza selling application. Analysis of this example allows us to observe how to use adaptivity to improve the model, allowing it to handle both dialog repair and user initiative more efficiently. Adaptalker groups its management rules in submachines that work concurrently to choose the next communication action.

Page generated in 0.0875 seconds