• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Self-organising network management for heterogeneous LTE-advanced networks

Behjati, Mohammadreza January 2015 (has links)
Since 2004, when the Long Term Evolution (LTE) was first proposed to be publicly available in the year 2009, a plethora of new characteristics, techniques and applications have been constantly enhancing it since its first release, over the past decade. As a result, the research aims for LTE-Advanced (LTE-A) have been released to create a ubiquitous and supportive network for mobile users. The incorporation of heterogeneous networks (HetNets) has been proposed as one of the main enhancements of LTE-A systems over the existing LTE releases, by proposing the deployment of small-cell applications, such as femtocells, to provide more coverage and quality of service (QoS) within the network, whilst also reducing capital expenditure. These principal advantages can be obtained at the cost of new challenges such as inter-cell interference, which occurs when different network applications share the same frequency channel in the network. In this thesis, the main challenges of HetNets in LTE-A platform have been addressed and novel solutions are proposed by using self-organising network (SON) management approaches, which allows the cooperative cellular systems to observe, decide and amend their ongoing operation based on network conditions. The novel SON algorithms are modelled and simulated in OPNET modeler simulation software for the three processes of resource allocation, mobility management and interference coordination in multi-tier macro-femto networks. Different channel allocation methods based on cooperative transmission, frequency reuse and dynamic spectrum access are investigated and a novel SON sub-channel allocation method is proposed based on hybrid fractional frequency reuse (HFFR) scheme to provide dynamic resource allocation between macrocells and femtocells, while avoiding co-tier and cross-tier interference. Mobility management is also addressed as another important issue in HetNets, especially in hand-ins from macrocell to femtocell base stations. The existing research considers a limited number of methods for handover optimisation, such as signal strength and call admission control (CAC) to avoid unnecessary handovers, while our novel SON handover management method implements a comprehensive algorithm that performs sensing process, as well as resource availability and user residence checks to initiate the handover process at the optimal time. In addition to this, the novel femto over macro priority (FoMP) check in this process also gives the femtocell target nodes priority over the congested macrocells in order to improve the QoS at both the network tiers. Inter-cell interference, as the key challenge of HetNets, is also investigated by research on the existing time-domain, frequency-domain and power control methods. A novel SON interference mitigation algorithm is proposed, which is based on enhanced inter-cell interference coordination (eICIC) with power control process. The 3-phase power control algorithm contains signal to interference plus noise ratio (SINR) measurements, channel quality indicator (CQI) mapping and transmission power amendments to avoid the occurrence of interference due to the effects of high transmission power. The results of this research confirm that if heterogeneous systems are backed-up with SON management strategies, not only can improve the network capacity and QoS, but also the new network challenges such as inter-cell interference can also be mitigated in new releases of LTE-A network.
2

Improving Frequency Reuse and Cochannel Interference Coordination in 4G HetNets

Qaimkhani, Irshad Ali January 2013 (has links)
This report describes my M.A.Sc. thesis research work. The emerging 4th generation (4G) mobile systems and networks (so called 4G HetNets) are designed as multilayered cellular topology with a number of asymmetrically located, asymmetrically powered, self-organizing, and user-operated indoor small cell (e.g., pico/femto cells and WLANs) with a variety of cell architectures that are overlaid by a large cell (macro cell) with some or all interfering wireless links. These designs of 4G HetNets bring new challenges such as increased dynamics of user mobility and data traffic trespassing over the multi-layered cell boundaries. Traditional approaches of radio resource allocation and inter-cell (cochannel) interference management that are mostly centralized and static in the network core and are carried out pre-hand by the operator in 3G and lower cellular technologies, are liable to increased signaling overhead, latencies, complexities, and scalability issues and, thus, are not viable in case of 4G HetNets. In this thesis a comprehensive research study is carried out on improving the radio resource sharing and inter-cell interference management in 4G HetNets. The solution strategy exploits dynamic and adaptive channel allocation approaches such as dynamic and opportunistic spectrum access (DSA, OSA) techniques, through exploiting the spatiotemporal diversities among transmissions in orthogonal frequency division multiple access (OFDMA) based medium access in 4G HetNets. In this regards, a novel framework named as Hybrid Radio Resource Sharing (HRRS) is introduced. HRRS comprises of these two functional modules: Cognitive Radio Resource Sharing (CRRS) and Proactive Link Adaptation (PLA) scheme. A dynamic switching algorithm enables CRRS and PLA modules to adaptively invoke according to whether orthogonal channelization is to be carried out exploiting the interweave channel allocation (ICA) approach or non-orthogonal channelization is to be carried out exploiting the underlay channel allocation (UCA) approach respectively when relevant conditions regarding the traffic demand and radio resource availability are met. Benefits of CRRS scheme are identified through simulative analysis in comparison to the legacy cochannel and dedicated channel deployments of femto cells respectively. The case study and numerical analysis for PLA scheme is carried out to understand the dynamics of threshold interference ranges as function of transmit powers of MBS and FBS, relative ranges of radio entities, and QoS requirement of services with the value realization of PLA scheme.
3

Inter-cell Interference Coordination in Indoor LTE Systems

Zhang, Sina January 2011 (has links)
Inter-cell interference coordination in 3GPP Long Term Evolution system received much attention in recent years. However, most of the studies are based on ideal system with regular hexagon-shaped cell. The indoor environment has special characteristics that the building shape and BS locations are irregular; the traffic load has great variation compared to urban and rural area. So, conventional ICIC scheme may not be used in indoor situation directly. In this thesis, ICIC scheme is employed for indoor environment. Based on different quality of backhaul, static and dynamic schemes will be proposed. The performances of proposed schemes and the performance of system without ICIC will be simulated and compared. At last, how much the improvement of the system can acquire after applying ICIC schemes will be analyzed, and the question about whether it is good to apply ICIC scheme in indoor environment will be answered.
4

Interference-aware resource management techniques for cognitive radio networks.

Almalfouh, Sami M. 13 December 2011 (has links)
The objective of the proposed research is to develop interference-aware resource management techniques for CR networks that opportunistically operate within the licensed primary networks spectrum and to investigate the application of such CR techniques to emerging wireless networks. In this thesis, we report on a set of laboratory experiments that we undertook to analyze the interference between the CR-based wireless regional-area network (WRAN) standard and the digital television (DTV) broadcasting system. We determined the tolerable levels of WRAN interference into DTV receivers and studied the effect of these interference levels on WRAN deployment. Based on the need for efficient utilization of the primary network spectrum, we propose efficient interference-aware radio resource allocation (RRA) techniques for orthogonal frequency-division multiple access (OFDMA) CR networks. These RRA techniques aim to maximize the CR network throughput and to keep the CR interference to the primary network at or below a predefined threshold, known as the "interference temperature" limit. Moreover, we propose a joint spectrum-sensing design and power control algorithm that lead to increased CR network throughput and efficient protection of the PUs from undue interference. Interference coordination (IC) is considered a key technique for capacity maximization in emerging heterogeneous wireless networks. We propose a CR-based IC and RRA algorithm for OFDMA femtocell deployments to achieve efficient spectrum utilization and maximum network throughput. CR is envisioned as a key enabling technology for future wireless networks; our novel CR techniques will provide other researchers useful tools to design such networks.
5

Επαναχρησιμοποίηση συχνότητας σε κινητά OFDMA δίκτυα

Καβουργιάς, Γεώργιος 06 October 2011 (has links)
Ο αριθμός των συνδρομητών κινητής τηλεφωνίας έχει αυξηθεί σημαντικά τα τελευταία χρόνια. Σε μεγάλο βαθμό οι φωνητικές υπηρεσίες εξυπηρετούνται από κινητά δίκτυα, ενώ παράλληλα αυξήθηκε σε μεγάλο βαθμό η χρήση των δεδομένων στα δίκτυα εκείνα που εφαρμόστηκε το 3GPP High Speed Packet Access (HSPA), αποδεικνύοντας ότι οι χρήστες επιδοκιμάζουν τη χρήση δεδομένων που παρέχονται ασύρματα με ευρυζωνικές ταχύτητες. Ο μέσος αριθμός χρήσης δεδομένων ξεπερνά τα εκατοντάδες megabytes ανά χρήστη κάθε μήνα. Τα ασύρματα δίκτυα πρέπει να αυξήσουν τις ταχύτητες μετάδοσης δεδομένων έτσι ώστε να πλησιάσουν εκείνες της ενσύρματης επικοινωνίας. Οι χρήστες είναι συνηθισμένοι να χρησιμοποιούν ενσύρματα δίκτυα και έτσι περιμένουν από τα ασύρματα δίκτυα να προσφέρουν συγκρίσιμες αποδόσεις με χαμηλό κόστος μετάδοσης δεδομένων. Το 3GPP Long Term Evolution (LTE) είναι σχεδιασμένο να επιτύχει αυτούς τους στόχους. Η τεχνολογία LTE προσφέρει κλιμακωτό εύρος ζώνης (απο 1.25 έως 20 MHz) με ρυθμούς μετάδοσης στα 100 Mbps για τον κατερχόμενο σύνδεσμο και στα 50 Mbps για τον ανερχόμενο. Αυτές οι πτυχές συνοδευόμενες από την τεχνολογία πρόσβασης που χρησιμοποιείται, η οποία είναι η OFDM (Orthogonal frequency division multiplexing), βελτιώνουν τη ρυθμαπόδοση του χρήστη και τη χωρητικότητα, ενώ μειώνουν τις καθυστερήσεις προσφέροντας παράλληλα βελτιωμένες συνθήκες κατά την κινητικότητα του χρήστη. Η OFDM προσφέρει επίσης μεγαλύτερη ανέχεια σε φαινόμενα όπως η εξασθένιση και το multipath σε σύγκριση με τεχνολογίες που εφαρμόζονταν σε προηγούμενα δίκτυα. Επίσης, είναι σημαντικό να αναφερθεί ότι το LTE χρησιμοποιεί τη μεταγωγή πακέτων και χρησιμοποιεί την τεχνολογία πολλαπλών κεραιών καθώς επίσης πολυπλεξία στο επίπεδο του χρόνου και της συχνότητας. Τέλος, υποστηρίζει unicast και multicast μετάδοση, τόσο σε microcell (κελιά μικρότερου εύρους) όσο και macrocell (μεγαλύτερα κελιά) περιβάλλον. Το αντικείμενο που μελετάται σε αυτή τη διπλωματική είναι το πρόβλημα του περιορισμού των παρεμβολών οι οποίες επηρεάζουν σε μεγάλο βαθμό την απόδοση των LTE συστημάτων. Ιδιαίερη μελέτη γίνεται όσο αφορά στην Inter Cell παρεμβολή και στις Inter Cell Interference Coordination τεχνικές. Συγκεκριμένα, η έρευνα εστιάζει στη βελτίωση της απόδοσης των χρηστών μειώνοντας την παρεμβολή μέσω διαφόρων σχημάτων επαναχρησιμοποίησης συχνότητας. / The number of mobile subscribers has increased tremendously in recent years. Voice communication has become mobile in a massive way and the mobile is the preferred way for voice communication. At the same time the data usage has grown fast in those networks where 3GPP High Speed Packet Access (HSPA) was introduced indicating that the users find value in broadband wireless data. The average data consumption exceeds hundreds of Megabytes per subscriber per month. Wireless networks must make data rates higher in order to match the user experience provided by wireline networks. When customers are used to wireline performance, they expect the wireless network to offer comparable performance with low cost of data delivery. 3GPP Long Term Evolution (LTE) is designed to meet those targets. LTE technology offers scalable bandwidth (from 1.25 up to 20 MHz), with transmission rates of 100 Mbps in downlink and 50 Mbps in uplink. These aspects accompanied with the access technology used, which is the OFDM (Orthogonal frequency division multiplexing), improves end-user throughputs, sector capacity and reduces user plane latency, bringing significantly improved user experience with full mobility. OFDM also offers bigger tolerance in phenomena such as multipath and fading compared to technologies used in previous mobile networks. It is also important to be mentioned that LTE is fully packet switched and uses multiple antenna techniques along with FDD and TDD duplexing. Finally, it supports unicast and multicast transmission, in both microcell and macrocell environment. The subject studied in this thesis is the problem of mitigating Interferences which dramatically affects the performance of LTE system. Extensive study is done concerning Inter Cell Interference and Inter Cell Interference Coordination techniques. In particular, research focuses in enhancing users’ performance by reducing interference via varius schemes of frequency reuse.
6

Ultra Dense Networks Deployment for beyond 2020 Technologies

Giménez Colás, Sonia 01 September 2017 (has links)
A new communication paradigm is foreseen for beyond 2020 society, due to the emergence of new broadband services and the Internet of Things era. The set of requirements imposed by these new applications is large and diverse, aiming to provide a ubiquitous broadband connectivity. Research community has been working in the last decade towards the definition of the 5G mobile wireless networks that will provide the proper mechanisms to reach these challenging requirements. In this framework, three key research directions have been identified for the improvement of capacity in 5G: the increase of the spectral efficiency by means of, for example, the use of massive MIMO technology, the use of larger amounts of spectrum by utilizing the millimeter wave band, and the network densification by deploying more base stations per unit area. This dissertation addresses densification as the main enabler for the broadband and massive connectivity required in future 5G networks. To this aim, this Thesis focuses on the study of the UDN. In particular, a set of technology enablers that can lead UDN to achieve their maximum efficiency and performance are investigated, namely, the use of higher frequency bands for the benefit of larger bandwidths, the use of massive MIMO with distributed antenna systems, and the use of distributed radio resource management techniques for the inter-cell interference coordination. Firstly, this Thesis analyzes whether there exists a fundamental performance limit related with densification in cellular networks. To this end, the UDN performance is evaluated by means of an analytical model consisting of a 1-dimensional network deployment with equally spaced BS. The inter-BS distance is decreased until reaching the limit of densification when this distance approaches 0. The achievable rates in networks with different inter-BS distances are analyzed for several levels of transmission power availability, and for various types of cooperation among cells. Moreover, UDN performance is studied in conjunction with the use of a massive number of antennas and larger amounts of spectrum. In particular, the performance of hybrid beamforming and precoding MIMO schemes are assessed in both indoor and outdoor scenarios with multiple cells and users, working in the mmW frequency band. On the one hand, beamforming schemes using the full-connected hybrid architecture are analyzed in BS with limited number of RF chains, identifying the strengths and weaknesses of these schemes in a dense-urban scenario. On the other hand, the performance of different indoor deployment strategies using HP in the mmW band is evaluated, focusing on the use of DAS. More specifically, a DHP suitable for DAS is proposed, comparing its performance with that of HP in other indoor deployment strategies. Lastly, the presence of practical limitations and hardware impairments in the use of hybrid architectures is also investigated. Finally, the investigation of UDN is completed with the study of their main limitation, which is the increasing inter-cell interference in the network. In order to tackle this problem, an eICIC scheduling algorithm based on resource partitioning techniques is proposed. Its performance is evaluated and compared to other scheduling algorithms under several degrees of network densification. After the completion of this study, the potential of UDN to reach the capacity requirements of 5G networks is confirmed. Nevertheless, without the use of larger portions of spectrum, a proper interference management and the use of a massive number of antennas, densification could turn into a serious problem for mobile operators. Performance evaluation results show large system capacity gains with the use of massive MIMO techniques in UDN, and even greater when the antennas are distributed. Furthermore, the application of ICIC techniques reveals that, besides the increase in system capacity, it brings significant energy savings to UDNs. / A partir del año 2020 se prevé que un nuevo paradigma de comunicación surja en la sociedad, debido a la aparición de nuevos servicios y la era del Internet de las cosas. El conjunto de requisitos impuesto por estas nuevas aplicaciones es muy amplio y diverso, y tiene como principal objetivo proporcionar conectividad de banda ancha y universal. En las últimas décadas, la comunidad científica ha estado trabajando en la definición de la 5G de redes móviles que brindará los mecanismos necesarios para garantizar estos requisitos. En este marco, se han identificado tres mecanismos clave para conseguir el necesario incremento de capacidad de la red: el aumento de la eficiencia espectral a través de, por ejemplo, el uso de tecnologías MIMO masivas, la utilización de mayores porciones del espectro en frecuencia y la densificación de la red mediante el despliegue de más estaciones base por área. Esta Tesis doctoral aborda la densificación como el principal mecanismo que permitirá la conectividad de banda ancha y universal requerida en la 5G, centrándose en el estudio de las Redes Ultra Densas o UDNs. En concreto, se analiza el conjunto de tecnologías habilitantes que pueden llevar a las UDNs a obtener su máxima eficiencia y prestaciones, incluyendo el uso de altas frecuencias para el aprovechamiento de mayores anchos de banda, la utilización de MIMO masivo con sistemas de antenas distribuidas y el uso de técnicas de reparto de recursos distribuidas para la coordinación de interferencias. En primer lugar, se analiza si existe un límite fundamental en la mejora de las prestaciones en relación a la densificación. Con este fin, las prestaciones de las UDNs se evalúan utilizando un modelo analítico de red unidimensional con BSs equiespaciadas, en el que la distancia entre BSs se disminuye hasta alcanzar el límite de densificación cuando ésta se aproxima a 0. Las tasas alcanzables en redes con distintas distancias entre BSs son analizadas, considerando distintos niveles de potencia disponible en la red y varios grados de cooperación entre celdas. Además, el comportamiento de las UDNs se estudia junto al uso masivo de antenas y la utilización de anchos de banda mayores. Más concretamente, las prestaciones de ciertas técnicas híbridas MIMO de precodificación y beamforming se examinan en la banda milimétrica. Por una parte, se analizan esquemas de beamforming en BSs con arquitectura híbrida en función de la disponibilidad de cadenas de radiofrecuencia en escenarios exteriores. Por otra parte, se evalúan las prestaciones de ciertos esquemas de precodificación híbrida en escenarios interiores, utilizando distintos despliegues y centrando la atención en los sistemas de antenas distribuidos o DAS. Además, se propone un algoritmo de precodificación híbrida específico para DAS, y se evalúan y comparan sus prestaciones con las de otros algoritmos de precodificación utilizados. Por último, se investiga el impacto en las prestaciones de ciertas limitaciones prácticas y deficiencias introducidas por el uso de dispositivos no ideales. Finalmente, el estudio de las UDNs se completa con el análisis de su principal limitación, el nivel creciente de interferencia en la red. Para ello, se propone un algoritmo de control de interferencias basado en la partición de recursos. Sus prestaciones son evaluadas y comparadas con las de otras técnicas de asignación de recursos. Tras este estudio, se puede afirmar que las UDNs tienen gran potencial para la consecución de los requisitos de la 5G. Sin embargo, sin el uso conjunto de mayores porciones del espectro, adecuadas técnicas de control de la interferencia y el uso masivo de antenas, las UDNs pueden convertirse en serios obstáculos para los operadores móviles. Los resultados de la evaluación de prestaciones de estas tecnologías confirman el gran aumento de la capacidad de las redes mediante el uso masivo de antenas y la introducción de mecanismos de I / A partir de l'any 2020 es preveu un nou paradigma de comunicació en la societat, degut a l'aparició de nous serveis i la era de la Internet de les coses. El conjunt de requeriments imposat per aquestes noves aplicacions és ampli i divers, i té com a principal objectiu proporcionar connectivitat universal i de banda ampla. En les últimes dècades, la comunitat científica ha estat treballant en la definició de la 5G, que proveirà els mecanismes necessaris per a garantir aquests exigents requeriments. En aquest marc, s'han identificat tres mecanismes claus per a aconseguir l'increment necessari en la capacitat: l'augment de l'eficiència espectral a través de, per exemple, l'ús de tecnologies MIMO massives, la utilització de majors porcions de l'espectre i la densificació mitjançant el desplegament de més estacions base per àrea. Aquesta Tesi aborda la densificació com a principal mecanisme que permetrà la connectivitat de banda ampla i universal requerida en la 5G, centrant-se en l' estudi de les xarxes ultra denses (UDNs). Concretament, el conjunt de tecnologies que poden dur a les UDNs a la seua màxima eficiència i prestacions és analitzat, incloent l'ús d'altes freqüències per a l'aprofitament de majors amplàries de banda, la utilització de MIMO massiu amb sistemes d'antenes distribuïdes i l'ús de tècniques distribuïdes de repartiment de recursos per a la coordinació de la interferència. En primer lloc, aquesta Tesi analitza si existeix un límit fonamental en les prestacions en relació a la densificació. Per això, les prestacions de les UDNs s'avaluen utilitzant un model analític unidimensional amb estacions base equidistants, en les quals la distància entre estacions base es redueix fins assolir el límit de densificació quan aquesta distància s'aproxima a 0. Les taxes assolibles en xarxes amb diferents distàncies entre estacions base s'analitzen considerant diferents nivells de potència i varis graus de cooperació entre cel·les. A més, el comportament de les UDNs s'estudia conjuntament amb l'ús massiu d'antenes i la utilització de majors amplàries de banda. Més concretament, les prestacions de certes tècniques híbrides MIMO de precodificació i beamforming s'examinen en la banda mil·limètrica. D'una banda, els esquemes de beamforming aplicats a estacions base amb arquitectures híbrides és analitzat amb disponibilitat limitada de cadenes de radiofreqüència a un escenari urbà dens. D'altra banda, s'avaluen les prestacions de certs esquemes de precodificació híbrida en escenaris d'interior, utilitzant diferents estratègies de desplegament i centrant l'atenció en els sistemes d' antenes distribuïdes (DAS). A més, es proposa un algoritme de precodificació híbrida distribuïda per a DAS, i s'avaluen i comparen les seues prestacions amb les de altres algoritmes. Per últim, s'investiga l'impacte de les limitacions pràctiques i altres deficiències introduïdes per l'ús de dispositius no ideals en les prestacions de tots els esquemes anteriors. Finalment, l' estudi de les UDNs es completa amb l'anàlisi de la seua principal limitació, el nivell creixent d'interferència entre cel·les. Per tractar aquest problema, es proposa un algoritme de control d'interferències basat en la partició de recursos. Les prestacions de l'algoritme proposat s'avaluen i comparen amb les d'altres tècniques d'assignació de recursos. Una vegada completat aquest estudi, es pot afirmar que les UDNs tenen un gran potencial per aconseguir els ambiciosos requeriments plantejats per a la 5G. Tanmateix, sense l'ús conjunt de majors amplàries de banda, apropiades tècniques de control de la interferència i l'ús massiu d'antenes, les UDNs poden convertir-se en seriosos obstacles per als operadors mòbils. Els resultats de l'avaluació de prestacions d' aquestes tecnologies confirmen el gran augment de la capacitat de les xarxes obtingut mitjançant l'ús massiu d'antenes i la introducci / Giménez Colás, S. (2017). Ultra Dense Networks Deployment for beyond 2020 Technologies [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86204 / TESIS
7

A Game Theoretic Framework for User Association & Inter-cell Interference Management in LTE Cellular Networks / Optimisation de la gestion des interférences inter-cellulaires et de l'attachement des mobiles dans les réseaux cellulaires LTE

Trabelsi, Nessrine 20 December 2016 (has links)
Conduit par une croissance exponentielle dans les appareils mobiles et une augmentation continue de la consommation individuelle des données, le trafic de données mobiles a augmenté de 4000 fois au cours des 10 dernières années et près de 400millions fois au cours des 15 dernières années. Les réseaux cellulaires homogènes rencontrent de plus en plus de difficultés à gérer l’énorme trafic de données mobiles et à assurer un débit plus élevé et une meilleure qualité d’expérience pour les utilisateurs.Ces difficultés sont essentiellement liées au spectre disponible et à la capacité du réseau.L’industrie de télécommunication doit relever ces défis et en même temps doit garantir un modèle économique pour les opérateurs qui leur permettra de continuer à investir pour répondre à la demande croissante et réduire l’empreinte carbone due aux communications mobiles. Les réseaux cellulaires hétérogènes (HetNets), composés de stations de base macro et de différentes stations de base de faible puissance,sont considérés comme la solution clé pour améliorer l’efficacité spectrale par unité de surface et pour éliminer les trous de couverture. Dans de tels réseaux, il est primordial d’attacher intelligemment les utilisateurs aux stations de base et de bien gérer les interférences afin de gagner en performance. Comme la différence de puissance d’émission est importante entre les grandes et petites cellules, l’association habituelle des mobiles aux stations de bases en se basant sur le signal le plus fort, n’est plus adaptée dans les HetNets. Une technique basée sur des offsets individuelles par cellule Offset(CIO) est donc nécessaire afin d’équilibrer la charge entre les cellules et d’augmenter l’attraction des petites cellules (SC) par rapport aux cellules macro (MC). Cette offset est ajoutée à la valeur moyenne de la puissance reçue du signal de référence(RSRP) mesurée par le mobile et peut donc induire à un changement d’attachement vers différents eNodeB. Comme les stations de bases dans les réseaux cellulaires LTE utilisent les mêmes sous-bandes de fréquences, les mobiles peuvent connaître une forte interférence intercellulaire, en particulier en bordure de cellules. Par conséquent, il est primordial de coordonner l’allocation des ressources entre les cellules et de minimiser l’interférence entre les cellules. Pour atténuer la forte interférence intercellulaire, les ressources, en termes de temps, fréquence et puissance d’émission, devraient être alloués efficacement. Un modèle pour chaque dimension est calculé pour permettre en particulier aux utilisateurs en bordure de cellule de bénéficier d’un débit plus élevé et d’une meilleure qualité de l’expérience. L’optimisation de tous ces paramètres peut également offrir un gain en consommation d’énergie. Dans cette thèse, nous proposons une solution dynamique polyvalente effectuant une optimisation de l’attachement des mobiles aux stations de base et de l’allocation des ressources dans les réseaux cellulaires LTE maximisant une fonction d’utilité du réseau qui peut être choisie de manière adéquate.Notre solution, basée sur la théorie des jeux, permet de calculer les meilleures valeurs pour l’offset individuelle par cellule (CIO) et pour les niveaux de puissance à appliquer au niveau temporel et fréquentiel pour chaque cellule. Nous présentons des résultats des simulations effectuées pour illustrer le gain de performance important apporté par cette optimisation. Nous obtenons une significative hausse dans le débit moyen et le débit des utilisateurs en bordure de cellule avec 40 % et 55 % de gains respectivement. En outre, on obtient un gain important en énergie. Ce travail aborde des défis pour l’industrie des télécoms et en tant que tel, un prototype de l’optimiseur a été implémenté en se basant sur un trafic HetNets émulé. / Driven by an exponential growth in mobile broadband-enabled devices and a continue dincrease in individual data consumption, mobile data traffic has grown 4000-fold over the past 10 years and almost 400-million-fold over the past 15 years. Homogeneouscellular networks have been facing limitations to handle soaring mobile data traffic and to meet the growing end-user demand for more bandwidth and betterquality of experience. These limitations are mainly related to the available spectrumand the capacity of the network. Telecommunication industry has to address these challenges and meet exploding demand. At the same time, it has to guarantee a healthy economic model to reduce the carbon footprint which is caused by mobile communications.Heterogeneous Networks (HetNets), composed of macro base stations and low powerbase stations of different types, are seen as the key solution to improve spectral efficiency per unit area and to eliminate coverage holes. In such networks, intelligent user association and interference management schemes are needed to achieve gains in performance. Due to the large imbalance in transmission power between macroand small cells, user association based on strongest signal received is not adapted inHetNets as only few users would attach to low power nodes. A technique based onCell Individual Offset (CIO) is therefore required to perform load balancing and to favor some Small Cell (SC) attraction against Macro Cell (MC). This offset is addedto users’ Reference Signal Received Power (RSRP) measurements and hence inducing handover towards different eNodeBs. As Long Term Evolution (LTE) cellular networks use the same frequency sub-bands, mobile users may experience strong inter-cellxv interference, especially at cell edge. Therefore, there is a need to coordinate resource allocation among the cells and minimize inter-cell interference. To mitigate stronginter-cell interference, the resource, in time, frequency and power domain, should be allocated efficiently. A pattern for each dimension is computed to permit especially for cell edge users to benefit of higher throughput and quality of experience. The optimization of all these parameters can also offer gain in energy use. In this thesis,we propose a concrete versatile dynamic solution performing an optimization of user association and resource allocation in LTE cellular networks maximizing a certainnet work utility function that can be adequately chosen. Our solution, based on gametheory, permits to compute Cell Individual Offset and a pattern of power transmission over frequency and time domain for each cell. We present numerical simulations toillustrate the important performance gain brought by this optimization. We obtain significant benefits in the average throughput and also cell edge user through put of40% and 55% gains respectively. Furthermore, we also obtain a meaningful improvement in energy efficiency. This work addresses industrial research challenges and assuch, a prototype acting on emulated HetNets traffic has been implemented.
8

Inter-cell interference coordination in wireless networks / Coordination des interférences intercellulaires dans les réseaux sans-fil

Yassin, Mohamad 13 November 2015 (has links)
Grâce aux avancées technologiques dans le domaine des réseaux cellulaires et des équipements mobiles, le nombre d'applications multimédia à haut débit dans les réseaux mobiles ne cesse d'augmenter. On prévoit que le trafic de données dans les réseaux mobiles en 2017 sera 13 fois plus important que celui en 2012. Pour satisfaire aux besoins des équipements mobiles, de nouvelles approches pour la gestion des ressources radio et des puissances de transmission sont requises.Dans le cadre de cette thèse, on s'intéresse à proposer des solutions pour remédier aux problèmes des interférences intercellulaires dans les réseaux mobiles de dernière génération. Nous enquêtons d'une manière exhaustive les différentes techniques de coordination des interférences intercellulaires existantes. Ces techniques sont qualitativement comparées, puis classées selon le taux de coopération requis entre les différentes stations de base, mais aussi selon leurs principes de fonctionnement. Nous abordons également le problème multicellulaire d'allocation des ressources et des puissances de transmission d'une manière centralisée. Nous formulons ce problème d'optimisation centralisé, puis nous le décomposons en deux sous-problèmes indépendants : l'allocation de ressources et l'allocation des puissances de transmission. De plus, une approche distribuée basée sur la théorie des jeux est proposée pour l'allocation des puissances de transmission. Les techniques centralisées de minimisation des interférences intercellulaires offrent la solution optimale au prix d'une grande charge de signalisation. Par contre, les solutions décentralisées réduisent le trafic de signalisation sans garantir l'optimalité de la solution obtenue. Nous proposons ensuite une heuristique de contrôle de puissance qui modifie localement l'allocation des puissances de transmission de manière à éviter le gaspillage d'énergie et pour réduire les interférences ressenties par les utilisateurs des stations de base voisines. Nous proposons également une technique autonome qui gère la distribution des ressources radio entre les différentes zones de chaque cellule. Cette technique répond aux besoins des utilisateurs dans chaque zone en adaptant la distribution des ressources d'une manière dynamique. Nous abordons aussi le compromis entre les techniques de gestion d'interférences intercellulaires centralisées et décentralisées. Nous proposons une approche hybride où l'allocation des ressources radio et des puissances de transmission est faite d'une manière coopérative entre les différentes cellules. Dans un premier lieu, les cellules voisines collaborent afin d'ajuster les puissances de transmission allouées aux ressources radio. Ensuite, la distribution des ressources entre les différentes zones de chaque cellule est modifiée localement, selon les besoins des utilisateurs dans chaque zone. / The exponentially increasing demand for mobile broadband communications have led to the dense deployment of cellular networks with aggressive frequency reuse patterns. The future Fifth Generation (5G) networks are expected to overcome capacity and throughput challenges by adopting a multi-tier architecture where several low-power Base Stations (BSs) are deployed within the coverage area of the macro cell. However, Inter-Cell Interference (ICI) caused by the simultaneous usage of the same spectrum in different cells, creates severe problems. ICI reduces system throughput and network capacity, and has a negative impact on cell-edge User Equipment (UE) performance. Therefore, Inter-Cell Interference Coordination (ICIC) techniques are required to mitigate the impact of ICI on system performance. In this thesis, we address the resource and power allocation problem in multiuser Orthogonal Frequency Division Multiple Access (OFDMA) networks such as LTE/LTE-A networks and dense small cell networks. We start by overviewing the state-of-the-art schemes, and provide an exhaustive classification of the existing ICIC approaches. This qualitative classification is followed by a quantitative investigation of several interference mitigation techniques. Then, we formulate a centralized multi-cell joint resource and power allocation problem, and prove that this problem is separable into two independent convex optimization problems. The objective function of the formulated problem consists in maximizing system throughput while guaranteeing throughput fairness between UEs. ICI is taken into account, and resource and power allocation is managed accordingly in a centralized manner. Furthermore, we introduce a decentralized game-theoretical method to solve the power allocation problem without the need to exchange signaling messages between the different cells. We also propose a decentralized heuristic power control algorithm based on the received Channel Quality Indication (CQI) feedbacks. The intuition behind this algorithm is to avoid power wastage for UEs that are close to the serving cell, and reducing ICI for UEs in the neighboring cells. An autonomous ICIC scheme that aims at satisfying throughput demands in each cell zone is also introduced. The obtained results show that this technique improves UE throughput fairness, and it reduces the percentage of unsatisfied UEs without generating additional signaling messages. Lastly, we provide a hybrid ICIC scheme as a compromise between the centralized and the decentralized approaches. For a cluster of adjacent cells, resource and power allocation decisions are made in a collaborative manner. First, the transmission power is adjusted after receiving the necessary information from the neighboring cells. Second, resource allocation between cell zones is locally modified, according to throughput demands in each zone.
9

Stochastic Geometry Based Analysis of Capacity, Mobility and Energy Efficiency for Dense Heterogeneous Networks

Merwaday, Arvind 29 March 2016 (has links)
In recent years, the increase in the population of mobile users and the advances in computational capabilities of mobile devices have led to an exponentially increasing traffic load on the wireless networks. This trend is foreseen to continue in the future due to the emerging applications such as cellular Internet of things (IoT) and machine type communications (MTC). Since the spectrum resources are limited, the only promising way to keep pace with the future demand is through aggressive spatial reuse of the available spectrum which can be realized in the networks through dense deployment of small cells. There are many challenges associated with such densely deployed heterogeneous networks (HetNets). The main challenges which are considered in this research work are capacity enhancement, velocity estimation of mobile users, and energy efficiency enhancement. We consider different approaches for capacity enhancement of the network. In the first approach, using stochastic geometry we theoretically analyze time domain inter-cell interference coordination techniques in a two-tier HetNet and optimize the parameters to maximize the capacity of the network. In the second approach, we consider optimization of the locations of aerial bases stations carried by the unmanned aerial vehicles (UAVs) to enhance the capacity of the network for public safety and emergency communications, in case of damaged network infrastructure. In the third approach, we introduce a subsidization scheme for the service providers through which the network capacity can be improved by using regulatory power of the government. Finally, we consider the approach of device-to-device communications and multi-hop transmissions for enhancing the capacity of a network. Velocity estimation of high speed mobile users is important for effective mobility management in densely deployed small cell networks. In this research, we introduce two novel methods for the velocity estimation of mobile users: handover-count based velocity estimation, and sojourn time based velocity estimation. Using the tools from stochastic geometry and estimation theory, we theoretically analyze the accuracy of the two velocity estimation methods through Cramer-Rao lower bounds (CRLBs). With the dense deployment of small cells, energy efficiency becomes crucial for the sustained operation of wireless networks. In this research, we jointly study the energy efficiency and the spectral efficiency in a two-tier HetNet. We optimize the parameters of inter-cell interference coordination technique and study the trade-offs between the energy efficiency and spectral efficiency of the HetNet.
10

Decentralized multiantenna transceiver optimization for heterogeneous networks

Kaleva, J. (Jarkko) 19 June 2018 (has links)
Abstract This thesis focuses on transceiver optimization for heterogeneous multi-user multiple-input multiple-output (MIMO) wireless communications systems. The aim is to design decentralized beamforming methods with low signaling overhead for improved spatial spectrum utilization. A wide range of transceiver optimization techniques are covered, with particular consideration of decentralized optimization, fast convergence, computational complexity and signaling limitations. The proposed methods are shown to provide improved rate of convergence, when compared to the conventional weighted minimum MSE (WMMSE) approach. This makes them suitable for time-correlated channel conditions, in which the ability to follow the changing channel conditions is essential. Coordinated beamforming under quality of service (QoS) constraints is considered for interfering broadcast channel. Decomposition based decentralized processing approaches are shown to enable the weighted sum rate maximization (WSRMax) in time-correlated channel conditions. Pilot-aided decentralized WSRMax beamformer estimation is studied for coordinated multi-point (CoMP) joint processing (JP). In stream specific estimation (SSE), all effective channels are individually estimated. The beamformers are then constructed from the locally estimated channels. On the other hand, with direct estimation (DE) of the beamformers, only the intended signal needs to be separately estimated and the covariance matrices are implicitly estimated from the received pilot training matrices. This makes the pilot design more robust to pilot contamination. These methods show that CoMP JP is feasible even in relatively fading channel conditions and with limited backhaul capacity by employing decentralized beamformer processing. In the final part of the thesis, a relay-assisted cellular system with decentralized processing is considered, in which users are served either directly by the base stations or via relays for WSRMax or sum power minimization subject to rate constraints. Zero-forcing and coordinated beamforming provide a trade-off between complexity, in-band signaling and spectrum utilization. Relays are shown to be beneficial in many scenarios when the in-band signaling is accounted for. This thesis shows that decentralized downlink MIMO transceiver design with a reasonable computational complexity is feasible in various system architectures even when signaling resources are limited and channel conditions are moderately fast fading. / Tiivistelmä Tämä väitöskirja keskittyy lähetin- ja vastaanotinoptimointiin heterogeenisissä monikäyttäjä- ja moniantennijärjestelmissä. Tavoitteena on parantaa tilatason suorituskykyä tutkimalla hajautettuja keilanmuodostusmenetelmiä, joissa ohjaussignaloinnin tarve on alhainen. Erityisesti keskitytään hajautetun keilanmuodostuksen optimointiin, nopeaan konvergenssiin, laskennalliseen kompleksisuuteen sekä signaloinnin rajoitteisiin. Esitettyjen menetelmien osoitetaan parantavan konvergenssinopeutta ja vähentävän signaloinnin tarvetta, verrattaessa tunnettuun WMMSE-menetelmään. Nämä mahdollistavat lähetyksen aikajatkuvissa kanavissa, joissa kanavan muutosten seuraaminen on erityisen tärkeää. Näiden menetelmien osoitetaan mahdollistavan hajautetun ja priorisoidun tiedonsiirtonopeuden maksimoinnin monisolujärjestelmissä sekä aikajatkuvissa kanavissa käyttäjäkohtaisilla siirtonopeustakuilla. Pilottiavusteisten lähetys- ja vastaanotinkeilojen estimointia tutkitaan yhteislähetysjärjestelmissä. Yksittäisten lähetyskanavien estimoinnissa effektiiviset kanavat estimoidaan yksitellen, ja lähetys- ja vastaanotinkovarianssimatriisit muodostetaan summaamalla paikalliset kanavaestimaatit. Suoraestimoinnissa ainoastaan oman käyttäjän effektiivinen kanava estimoimaan erikseen. Tällöin kovarianssimatriisit saadaan suoraan vastaanotetuista pilottisignaaleista. Tämä tekee estimaateista vähemmän herkkiä häiriölle. Hajautetun yhteislähetyksen osoitetaan olevan mahdollista, jopa verrattain nopeasti muuttuvissa kanavissa sekä rajallisella verkkoyhteydellä lähettimien välillä. Viimeisessä osassa tutkitaan välittäjä-avusteisia järjestelmiä, joissa käyttäjiä palvellaan joko suoraan tukiasemasta tai välittäjä-aseman kautta. Optimointikriteereinä käytetään siirtonopeuden maksimointia sekä lähetystehon minimointia siirtonopeustakuilla. Nollaanpakottava sekä koordinoitu keilanmuodostus tarjoavat valinna laskennallisen kompleksisuuden, ohjaussignaloinnin sekä suorituskyvyn välillä. Välittäjä-avusteisen lähetyksen osoitetaan olevan hyödyllisiä useissa tilanteissa, kun radiorajanpinnan yli tapahtuvan signaloinnin tarve otetaan huomioon keilanmuodostuksessa. Tässä väitöskirjassa osoitetaan hajautetun keilanmuodostuksen olevan mahdollista verrattaen vähäisillä laskennallisilla resursseilla heterogeenisissä moniantennijärjestelmissä. Esitetyt menetelmät tarjoavat ratkaisuja järjestelmiin, joissa ohjaussignalointiresurssit ovat rajallisia ja radiokanava on jatkuvasti muuttuva.

Page generated in 0.1899 seconds