• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 393
  • 102
  • 79
  • 54
  • 32
  • 13
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 886
  • 160
  • 130
  • 97
  • 85
  • 81
  • 75
  • 74
  • 72
  • 67
  • 59
  • 57
  • 53
  • 51
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Search, Characterization, And Properties Of Brown Dwarfs

Tata, Ramarao 01 January 2009 (has links)
A trend in polarization as predicted by theoretical models was validated, and atmospheric dust grain sizes and projected rotational velocities for these objects were estimated. Comprehensive studies of UDs are proving to be crucial not only in our understanding of UDs but also for star and planet formation as brown dwarfs represent their lower and upper mass boundaries, respectively. Brown dwarfs (BD) were mere theoretical astrophysical objects for more than three decades (Kumar (1962)) till their first observational detection in 1995 (Rebolo et al. (1995), Nakajima et al. (1995)). These objects are intermediate in mass between stars and planets. Since their observational discovery these objects have been studied thoroughly and holistically.Various methods for searching and characterizing these objects in different regions of the sky have been put forward and tested with great success. Theoretical models describing their physical, atmospheric and chemical processes and properties have been proposed and have been validated with a large number of observational results. The work presented in this dissertation is a compilation of synoptic studies of ultracool dwarfs(UDs)¹. [Footnote 1:]. [bullet] A search for wide binaries around solar type stars in upper scorpio OB association (Upper Sco) do indicate (the survey is not yet complete) a deficit of BD binaries at these large separations ([less than] 5AU). [bullet] Twenty six new UDs were discovered at low galactic latitudes in our survey from archival data and a novel technique using reduced proper motion. [bullet] Six field UDs were discovered by spectroscopic follow-up of the candidates selected from a deep survey. [bullet] Optical interferometry was used to independently determine the orbit of the companion of HD33636 which was initially determined using Hubble Space Telescope(HST)astrometry and radial velocity found. Some inconsistency in the HST determined orbit and mass. [bullet] Optical linear polarization in UDs was used to investigate the dust propertied in their atmospheres. Footnote 1: We use the term "ultracool dwarfs" as the mass of most of the objects mentioned is unknown, which is required to classify an object as a brown dwarf. We define objects later than M7 as ultra cool dwarfs.
512

Overview of the Skin Friction measurements on the NASA BeVERLI Hill using Oil Film Interferometry

Sundarraj, Vignesh 24 January 2023 (has links)
Viscous drag reduction plays a vital role in increasing the performance of vehicles. However, there are only so many measurement techniques that can quickly and accurately measure this when compared to pressure drag measurement techniques. The current study makes use of one of the direct and robust measurement techniques that exist, called the Oil Film Interferometry (OFI) to estimate skin friction on the NASA/Virginia Tech BeVERLI (Benchmark Validation Experiment for RANS and LES Investigations) hill. This project aims to develop a detailed database of non-equilibrium, separated turbulent boundary layer flows obtained through wind tunnel experiments for CFD validation. Skin friction measurements are obtained at specific critical locations on the hill and in its close proximity. The challenges involved in obtaining skin friction data from these locations are discussed in detail. Detailed discussions on the experimental setup and data processing methodology are presented. Qualitative and quantitative results from each measurement location are discussed along with uncertainties to explain certain key flow physics. Additionally, skin friction coefficients from selected overlapping measurement locations from another experimental flow measurement technique called Laser Doppler Velocimetry (LDV) are compared with OFI, and a cross-instrument study is performed. Finally, results from well-refined RANS CFD simulations are assessed with the experimental results, and critical improvement areas are identified. / Master of Science / Drag force is a parameter that significantly contributes to the performance efficiency of any vehicle moving in a fluid. This force is categorised into two types - pressure and viscous drag- both of which need to be minimised as much as possible to contribute towards higher vehicle performance. While there are numerous measurement techniques and documentation currently available to measure pressure drag, this is not the case with the measurement of viscous drag. Skin friction measurement directly relates to the estimation of viscous drag, but accurate and quick measurement of this quantity highly challenging with countable measurement techniques currently available. Through this project, BeVERLI (Benchmark Validation Experiment for RANS and LES Investigations), a detailed documentation is developed for accurate measurement of skin friction through Oil Film Interferometry (OFI). The results obtained through this measurement is explained with a detailed experimental procedure as well as using a data processing code. The accuracy of these results are then discussed with the results from another flow measurement technique called Laser Doppler Velocimetry (LDV) and from Computational Fluid Dynamics (CFD).
513

Radio Frequency Interference Cancellation,Appraisal, Detection, and Correction

Lambert, Michael J 01 April 2019 (has links)
Radio Astronomy, the study of distant objects in the radio spectrum, is set at defiance against all other users of the electromagnetic spectrum. Where traditional use would fill the electromagnetic spectrum with as much transmission and information as possible, Radio Astronomy would rather no man-made signals existed. Since that is not possible, they grumble and have to deal with unwanted transmissions impinging upon their instruments. I have demonstrated that subspace projection can remove these unwanted signals from Radio Astronomical data in post processing. I demonstrate it both on simulated data and on data taken from the Very Large Array radio telescope.In the process of implementing the algorithm, I show that the self power terms contain necessary information about the array element responses to RFI sources. While the autocorrelation are not used in the normal synthesis imaging process, my work shows that RFI mitigation using Subspace Projection performs better with the autocorrelations retained when computing projection matrices. Furthermore, I demonstrate that proper data collection allows a significant decrease in error under subspace projection. Potential enhancements to subspace projection are also briefly considered.
514

Several Novel Applications of Microwave Interferometry in the Measurement of Solid Rocket Propellant Regression Rates

Daniel Joseph Klinger (12903566) 26 July 2022 (has links)
<p>When characterizing a new solid propellant, one of the most important steps in determining its usefulness is discovering how the burning rate changes in response to changes in pressure. While there are many dynamic methods for directly measuring the regression rate of a burning propellant sample, few of them are capable of being used in typical harsh motor conditions: high pressures, high temperatures, and in an environment comprised of propellant exhaust products. This paper describes and evaluates the use of two custom-built microwave interferometers, one operating at 35 GHz and the other operating at 94 GHz, in several different configurations for the measurement of propellant regression rates. Four different configurations of interferometer and waveguide are presented and contrasted, with example results of experiments included. A polytetrafluoroethylene (PTFE) waveguide, utilized in previous works for explosives detonation velocity characterization, was used to directly couple interferometer signal with a burning propellant strand. This PTFE coupling is shown to be applicable to pressure vessel studies by simply using a cable feedthrough. In this configuration, signal quality is high but signal amplitude is low, especially when the waveguide is encased by support structures. A novel PTFE truncated cone waveguide expander is presented which performs three tasks: expanding the microwave signal such that an oversized (relative to signal wavelength) strand may be examined via microwave interferometry, functioning as a weak antenna that can observe phenomena through interstitial material without picking up significant amounts of environmental reflection, and acting as a sealing surface for pressure vessel experiments. Additionally, the use of a more-standard hollow-core waveguide and high-gain antenna is displayed, highlighting the increased signal strength but the larger number of spurious reflections in the signal. This study shows, through various experiments using the aforementioned configurations, the capability of microwave interferometry to quickly characterize a full propellant burning rate curve using a single dynamic-pressure test with 40g of propellant in a 2.5cm diameter propellant strand. Several novel combinations of mechanical configuration and propellant composition are shown that may guide future studies into the use microwave interferometry for solid propellant regression rate analysis.</p>
515

The longitudinal control for the Advanced Virgo Plus gravitational wave detector

Valentini, Michele 12 January 2023 (has links)
Ground-based gravitational wave detectors are evolving at a rapid pace. In the five minutes that followed the first direct detection of gravitational waves, the Advanced LIGO and Advanced Virgo experiments have been subject to substantial upgrades, increasing their sensitivities by many times and allowing them to detect dozens of other gravitational wave signals. Third-generation ground-based interferometers (Einstein Telescope and Cosmic Explorer) and spaaace-based detectors (such as LISA) are being researched and planned to enter into function in the second half of the next decade. If successful, these experiments will allow the detection of thousands of signals coming from an ever-increasing range of cosmological sources. In the meantime, second-generation interferometers are approaching the conclusion of ambitious upgrades started with the end of the third observing run “O3” in march 2020. The work of this thesis revolves around the planning and the commissioning of the “Advanced Virgo plus” upgrade project, which aims to increase the detector’s sensitivity by a factor of two, allowing a ten times higher detection rate than the previous configuration. In particular, the main topic is the update of the interferometer longitudinal sensing and control scheme required by the upgrade in the detector’s optical configuration. The design and simulation of the new control scheme catried out in constant collaboration with the “Interferometer Sensing and Control” team, started minutes before the actual implementation of the upgrades. Following that, I participated in the full-time commissioning of the upgraded configuration, which started in January 2021 and is currently ongoing. We will first explain the new interferometer configuration, then go into the details of the lock-acquisition procedure, presenting the results of the related simulation studies and the commissioning. A particular focus will also be given to the simulations of the interferometer’s state at the end of the lock acquisition, called “steady-state”. In addition to the study and implementation of the current lock-acquisition procedure, the thesis will present simulation activities to study an alternative lock-acquisition technique that has not yet been implemented.
516

Contribution of New Types of Radar Data to Land Cover and Crop Classification in Remote Sensing

Busquier, Mario 20 July 2023 (has links)
For some time now, there has been a growing awareness in society about climate change, pollution, energy and the use of natural resources. This thinking has permeated society, mainly because the extreme natural phenomena that we are experiencing nowadays are no longer outliers in our time series of meteorological records. In this regard, it has been proven that the actual high temperatures are not only unparalleled, but also consistent around the globe which is something that had not happened until now (Neukom et al., 2019). The XX century was a turning point when it comes to the increase of the landuse for crops. In a context where the population doubled, the crop production for food from 1960 to 2010 tripled, helping to reduce the hungry population. When the world’s population is expected to continue to grow up to 9 billion people (Goodfray et al., 2010) by middle XXI century, it is essential to provide ourselves with the necessary tools to maximise crop production by taking advantage of all the resources available under a sustainable point of view. Under this context, all farmers in the European Union (EU) have the possibility to benefit from the Common Agricultural Policy (CAP), which came into force in 1960. The CAP is responsible for the financing of aid to farmers on a cross-compliance basis, based on the declaration of crop types. Traditionally, the authorities have checked the veracity of declarations in person through field inspections, which is clearly a highly inefficient, impractical and very expensive system. However, in 2018 the European Commission drafted an amendment to the CAP (European Commission, 2018), to be implemented in 2020, recommending the establishment of newprocedures for checking declarations, including the use of satellite data from the Copernicus programme or other new technologies. Among the various satellite technologies, Synthetic Aperture Radar (SAR) (Brown,1967; Curlander and McDonough, 1992) has proven the most reliable,as the images are acquired with a constant pass period and they are not subject to cloud problems (as is the case with sensors working in the optical domain) and information can be acquired both day and night. They are based in a SAR microwave sensor installed on a satellite platform with a forward trajectory which offers side-looking imaging geometries. Working in a range between 300 MHz and 30 GHz, the SAR sensor is in charge of emitting electromagnetic pulses and receiving the resulting echoes from the imaged target, which can help retrieve information about its dielectric properties, geometry, orientation, shape, and its behaviour along time. For a given target, the SAR backscattering response σ0 is function of many parameters (Lee and Pottier, 2017; Dobson et al., 1985): wave frequency, polarisation, imaging configuration, roughness, geometrical structure and dielectric properties. This makes the information extraction a major problem, as identical radar responses from two different targets may lead to the same result. To cope with this problem, the main techniques are based on extending the observation space by working with the full diversity of data. Thus, the main axes of SAR data are: • Time • Polarimetry • Interferometry • Frequency. Time series of radar data constitutes a major source of information for the classification of crops and land cover, since it makes it possible to distinguish between classes by their temporal behaviour: some land covers show a uniform response along time (e.g. urban areas), whereas there are others subject to seasonal changes (e.g. crops). It may happen that different crop species give the same radar response at a given time, however, when the time window becomes larger, and consecutive acquisitions are taken over a shorter time span, the more one can detect abrupt changes in the target over a longer time interval. Polarimetry is sensitive to the shape, orientation and the scattering mechanisms of the scatterers (Boerner et al.,1981; Zyl, Zebker, and Elachi, 1987). In that sense, when using different polarisations it is possible to discern better the true nature of the target, as some features may be visible in one polarisation but not in the others. Regarding multi-spectral data, it also constitutes a major source of information which can be exploited for classification purposes. Working with sensors operating at different frequencies, or wavelengths, provides diversity in the size of the elements of the scene to which the radar is sensitive as the radar backscattering will come from elements the size of the wavelength used it. For all of the above, multifrequency data provide complementary information, as each frequency operates and interacts with elements of the same wavelength or longer, and being transparent to all others. In addition, different bands are also associated with different spatial resolutions, so a high-frequency sensor can complement the classification performance of a low-frequency sensor when there are sufficiently small details in the scene that cannot be appreciated with the spatial resolution available at the lower frequency. From all the 4 axes exposed above, Interferometry (Graham, 1974) is without a doubt the least exploited for classification purposes. While polarimetry is sensitive to the scattering mechanisms of the scene by means of the polarisation information, interferometry adds the third dimension by being sensitive to the spatial distribution of the scatterers (Treuhaft et al., 1996). Coherence and phase difference computed between two complex-valued SAR images are the main descriptors of interferometry (Bamler and Hartl, 1998), and together, can be used to derive topographic information, vegetation structure, and deformation (volcanoes, landslides, etc.). For this reason, interferometry is especially suited for classification of covers in which there is vertical distribution of elements, e.g. urban areas and vegetation (forests and crops). Polarimetric interferometric SAR (PolInSAR) (Cloude and Papathanassiou, 1998; Treuhaft and Cloude, 1999), constitutes the next step forward, and is based on the application of interferometry to all polarisation channels. Polarimetry can identify the different scattering mechanisms in the scene by using the polarisation information, whilst interferometry is able to locate the effective scattering phase centres, which are mainly dependent on frequency, the polarisation employed, the physical, geometrical structure and orientation of the scatterer. By using the combination of both we can retrieve the vertical structure of the scene, which shows a great potential for classification purposes, since classes characterised by similar backscattering or polarimetric responses can be separated if their heights are different (e.g. types of buildings, forests, crops, etc.), whereas classes with similar heights, and hence similar interferometric coherence values (e.g. grass, crops, bare soil, etc.) can be resolved using their polarimetric response. In summary, PolInSAR-based classification is attractive since polarimetric ambiguities are resolved by interferometric information and vice-versa. The lack of exploitation of the 4 data axes in the literature, plus the arrival of a new generation of SAR sensors in the near future such as ROSE-L, BIOMASS and NISAR among others, offers a new range of possibilities in terms of new types of features for classification whose results and impact must be analysed. In this context, there are many types of SAR data (i.e. features) that have not been used yet, acquired from different sensors (Sentinel-1, PAZ, TanDEMX, TerraSAR-X and ALOS-2), and whose diversity axes, either used individually or jointly, have not yet been explored for classification applications. Therefore, the exploration of these new types of SAR data, whose contribution to classification is unknown regarding crop-type mapping, is the main objective of this doctoral thesis, and consequently also its main novelty. Based on the current state of the art of the research topic the main objective of this PhD thesis is to explore the added value of new SAR features, and their potential, alone or used together, for crop type and land cover classification. In the end, several experiments will be carried out, in different test sites, in which the proposed new features will be evaluated and compared with the traditional observables used so far, with the aim of evaluating their internal potential in classification applications. / Work supported by the Spanish Ministry of Science and Innovation, the State Agency of Research (AEI) and the European Funds for Regional Development (EFRD) under Projects TEC2017-85244-C2-1-P and PID2020-117303GB-C22. Mario Busquier received a grant from the University of Alicante UAFPU20-08.
517

Using Low-Coherence Interferometry to Monitor Cell Invasion in an in-vitro Model System

Davoudi Nasab, Behnaz 01 January 2017 (has links)
In an optically random system, such as naturally occurring and man-made media, light undergoes pronounced multiple scattering. This phenomenon has shown a remarkable potential in characterizing complex materials. In this regime, scattering occurs from each individual center of the scattering and independent scattering events lead to multiple light scattering. This phenomenon is often described as a random walk of photons and can be modeled in terms of a diffusion equation based on the radiative transfer theory. In this thesis, we used optical path-length spectroscopy (OPS), which is an experimental method to obtain the path-length probability density of the propagating light in multiple scattering media, with a low-coherence optical field to investigate the distribution of photon path lengths in a skin cell model system. This method is capable of measuring the transport mean free path of light in a highly scattering medium and depth-resolved profiles of the backscattered light. Our OPS experimental configuration is based on a fiber-optic Michelson interferometer geometry using single mode optical fibers. We performed OPS based on low-coherence interferometry (LCI) on three-dimensional organotypic models of esophageal cell invasion by measuring the optical path-length distribution of backscattered light in normal and invasive conditions. The optical path-length distribution of light waves inside the cell samples provides information on how a change in the extracellular matrix affects invasiveness of the esophageal cells and induction of signaling pathways. Also, we demonstrated the compatibility to study the structural changes during a two-week period for in vitro cell samples.
518

Measurements of Land Subsidence Rates on the North-western Portion of the Nile Delta Using Radar Interferometry Techniques

Fugate, Joseph M. January 2014 (has links)
No description available.
519

The Frequency of Binary Companions Around KELT Planet Host Stars

Coker, Carl 27 October 2017 (has links)
No description available.
520

Simulating Pulsar Signal Scattering in the Interstellar Medium with Two Distinct Scattering Phenomena

Jussila, Adam P. 20 December 2018 (has links)
No description available.

Page generated in 0.0675 seconds