• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 24
  • 5
  • 1
  • Tagged with
  • 79
  • 37
  • 28
  • 26
  • 26
  • 23
  • 20
  • 19
  • 17
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Rôle de la somatostatine dans la plasticité synaptique des interneurones somatostatinergiques de l’hippocampe

Racine, Anne-Sophie 04 1900 (has links)
Dans la région CA1 de l’hippocampe, une population d’interneurones exprimant la somatostatine (SOM-INs) est reconnue pour une potentialisation à long terme (PLT) dépendante des récepteurs métabotropes du glutamate de type 1a (mGluR1a) à leurs synapses excitatrices provenant des cellules pyramidales (CP). Il a récemment été démontré que cette PLT est induite par l’apprentissage contextuel lié à la peur, illustrant l’importance de cette PLT des SOM-INs dans l’apprentissage et la mémoire. Cependant, l’implication du neuropeptide somatostatine (SST) dans cette PLT demeure inconnue. Dans la présente étude, le rôle de la SST dans la PLT dépendante des mGluR1a a été étudié, tout comme, l’effet de la somatostatine-14 (SST-14) exogène aux synapses excitatrices des SOM-INs. Pour ce faire, des souris transgéniques exprimant la « enhanced yellow fluorescent protein » (eYFP) sous le contrôle du promoteur de la SST ont été utilisées. Des enregistrements électrophysiologiques jumelés à une approche pharmacologique ont été réalisés sur ces souris. Les résultats suggèrent que la SST-14 exogène engendre une PLT persistante grâce aux récepteurs à la somatostatine 1-5 (SST1-5), aux synapses excitatrices des SOM-INs, mais n’affecte pas les synapses des CP ou bien des interneurones exprimant la parvalbumine (PV-INs). Cette potentialisation induite par SST-14 était indépendante des récepteurs à l’acide N-méthyl-D-aspartique (NMDAR) et mGluR1a, dépendante de l’activité synaptique concomitante et inhibée par le blocage des récepteurs GABAA. De plus, la PLT dépendante des récepteurs mGluR1a a été affectée par l’inhibition des SST1-5 ou bien par un traitement avec de la cystéamine suggérant un rôle pour de la SST endogène dans cette PLT. Nos résultats suggèrent que la SST endogène pourrait contribuer à la PLT hébbienne aux synapses excitatrices des SOM-INs en contrôlant l’inhibition GABAA. La SST aurait alors un rôle dans la modulation de la plasticité à long terme des SOM-INs qui pourrait être important dans la mémoire dépendante de l’hippocampe. / The CA1 region of the hippocampus includes a population of GABAergic interneurons expressing somatostatin (SOM-INs). This type of interneurons displays a long-term potentiation (LTP) dependant on type 1a metabotropic glutamate receptors (mGluR1a) at their excitatory synapses from pyramidal cells (PC). It was recently demonstrated that mGluR1a dependent LTP can be induce by contextual fear learning showing an important role of this LTP in learning and memory. However, the implication of the peptide somatostatin (SST) in this LTP remains unknown. In the present study, the role of SST in mGluR1 dependent LTP and the effect of exogenous somatostatin-14 (SST-14) onto excitatory synapses of SOM-INs were investigated. To do this, transgenic mice expressing enhanced yellow fluorescent protein (eYFP) under the control of the promoter of SST were used. Patch clamp recordings and pharmacological approaches were used with these mice. Results suggested that application of exogenous SST-14 induces a LTP through type 1-5 somatostatin receptors (SST1-5) of excitatory synapses of SOM-INs but does not affect synapses of PC or parvalbumin-expressing interneurons (PV-INs). This LTP induced by SST-14 was independent of N-methyl-D-aspartate receptor (NMDAR) and mGluR1a, activity dependent, and prevented by blocking GABAA receptors. Furthermore, mGluR1a dependent LTP was prevented by inhibition of SST1-5 and by depletion of SST by cysteamine treatment, suggesting a role of endogenous SST in LTP. Our results indicate that endogenous SST may contribute to Hebbian LTP at excitatory synapses by controlling GABAA inhibition. SST would then have a role in regulating SOM-INs LTP that may be important for hippocampus dependent memory processes.
72

Régulation de la mémoire par la plasticité des interneurones inhibiteurs de l’hippocampe

Honoré, Ève 08 1900 (has links)
La mémoire explicite émerge de l’acheminement approprié de l’information à travers les circuits hippocampiques, et la formation d’un engramme qui encode cette mémoire. Les interneurones inhibiteurs régulent le flot d’information à travers ce réseau par leur contrôle dynamique des différents compartiments des cellules principales, ce qui contribue probablement à la formation de l’engramme. À cet égard, les interneurones somatostatinergiques (SOM-INs) et parvalbuminergiques (PV-INs), représentant les deux groupes majeurs de neurones inhibiteurs de l’hippocampe, sont particulièrement intéressants, car ils démontrent plusieurs formes de plasticité à long terme. Cette thèse a pour objectif d’étudier le rôle spécifique des SOM-INs et PV-INs de l’aire CA1 ainsi que leurs plasticités à long terme dans le contrôle dynamique des réseaux de l’hippocampe et la formation de la mémoire. Les SOM-INs expriment une potentialisation à long terme (PLT) à leurs synapses excitatrices venant des cellules pyramidales locales. Cette PLT a pour conséquence l’augmentation de l’inhibition des cibles des SOM-INs, les cellules pyramidales et interneurones locaux, ce qui contribue à la métaplasticité des circuits synaptiques de CA1. La PLT des SOM-INs contribue à la consolidation de la mémoire de peur contextuelle et la mémoire spatiale aversive. Cependant, nous ne savons pas si : 1) cette PLT est suffisante pour la formation de ces types de mémoire, ni si elle est impliquée dans la formation de la mémoire non aversive 2) si cette PLT est induite lors de l’acquisition ou de la consolidation de ces mémoires. Pour l’étude de la PLT des SOM-INs, nous avons utilisé l’optogénétique afin d’avoir un contrôle sur la localisation et le moment des modifications de l’activité des SOM-INs. Nous avons montré que l’activité de ces interneurones était nécessaire durant l’apprentissage de la mémoire de peur contextuelle et de la mémoire spatiale épisodique non aversive. Nous avons établi un protocole de stimulation optogénétique capable d’induire in vitro une PLT aux synapses des cellules pyramidales de CA1 sur les SOM-INs. Nous avons démontré que cette PLT était nécessaire et suffisante pour moduler les réseaux synaptiques du CA1 in vitro, ainsi que les deux types de 3 mémoires étudiées. De plus, nous avons démontré de façon directe que l’induction de cette PLT induisait la synthèse protéique via l’activation de mTORC1 dans les SOM-INs in vitro. Les PV-INs expriment également une PLT à leurs synapses excitatrices venant majoritairement des cellules pyramidales de l’aire CA3 à la suite d’un conditionnement à la peur, qui est nécessaire à la consolidation de cette mémoire. In vitro, la stimulation haute fréquence des afférences de CA3 entraine une PLT de l’excitabilité intrinsèque des PV-INs. Cependant, nous ne savons pas si cette forme de plasticité est également nécessaire pour la mémoire de peur contextuelle. Pour l’étude de la PLT de l’excitabilité intrinsèque des PV-INs, nous avons d’abord établi qu’une perte de fonction hétérozygote et homozygote de mTORC1 dans les PV-INs ne change pas les propriétés de décharge de base de ces neurones, mais diminue la fréquence d’une décharge répétée et bloque l’induction de la PLT de l’excitabilité intrinsèque. De plus, nous avons montré que cette forme de PLT des PV-INs n’est pas nécessaire à la consolidation ni la discrimination de la mémoire de peur contextuelle. En conclusion, ces travaux suggèrent que la plasticité synaptique des interneurones étudiés est nécessaire à la formation de la mémoire explicite. Celle des SOM-INs est nécessaire durant l’apprentissage, celle des PV-INs durant la consolidation. L’ensemble de nos résultats mettent en évidence les rôles spécifiques des divers types de plasticité des interneurones inhibiteurs dans les fonctions mnésiques et soulignent leur rôle critique dans la régulation de la mémoire. / Explicit memory emerges from the proper routing of information through hippocampal circuits, and the formation of an engram encoding this memory. Inhibitory interneurons regulate the flow of information in these networks by their dynamic control of the different compartments of pyramidal cells, which is likely to contribute to engram formation. In this regard, somatostatinergic (SOM-INs) and parvalbuminergic (PV-INs) interneurons, representing major groups of hippocampal inhibitory neurons, are particularly interesting because of the multiple forms of longterm plasticity they demonstrate. The objective of this thesis is to study the specific roles of SOM-INs and PV-INs from hippocampal CA1 area, as well as their long-term plasticity in the dynamic control of the network and memory formation. SOM-INs demonstrate long-term potentiation (LTP) at their excitatory synapses coming from local pyramidal cells. This LTP results in increased inhibition of SOM-INs targets, the local pyramidal cells and interneurons, which contributes to the metaplasticity of CA1 synaptic circuits. SOM-IN LTP is also involved in contextual fear memory and aversive spatial memory consolidation. However, it remains to be determined: 1) if this LTP is sufficient for the formation of these memory types, and if it is implicated in non-aversive memory formation; 2) if this LTP is induced during the acquisition or consolidation of these memories. For studying SOM-IN LTP, we used optogenetics to control the place and time of SOM-IN activity. We showed that the activity of these interneurons is necessary during learning of contextual fear memory and non-aversive spatial episodic memory. We established an optogenetic stimulation protocol enabling us to induce LTP at synapses from CA1 pyramidal cells to SOM-INs in vitro. We demonstrated that this LTP is necessary and sufficient to modulate CA1 synaptic networks in vitro, as well as the two memory types studied. Moreover, we demonstrated a direct link between this LTP and mTORC1-dependent protein synthesis in SOM-INs in vitro. PV-INs also express LTP at their excitatory synapses mainly coming from CA3 pyramidal cells after contextual fear conditioning, necessary for the consolidation of this memory. High frequency stimulation of CA3 afferents leads to PV-IN LTP of intrinsic excitability in vitro. Yet, we don’t know if this form of plasticity is also necessary for contextual fear memory. To study PV-INs LTP of intrinsic excitability, we established that heterozygous or homozygous mTORC1 loss of function in PV-INs did not change basic firing properties of these neurons but decreased repeated firing frequency and blocked LTP of intrinsic excitability. Besides, we showed that this form of PV-IN LTP is not necessary for the consolidation or discrimination of contextual fear memory. In conclusion, these works suggest that synaptic plasticity of the studied interneurons is necessary for explicit memory formation. SOM-IN synaptic LTP is necessary during learning, while PV-INs LTP is necessary during consolidation. Overall, our results highlight the specific roles of the various inhibitory interneuron plasticity in memory functions and emphasize their critical role in the regulation of memory.
73

Manipuler les interneurones corticaux exprimant la parvalbumine pour augmenter la plasticité cérébrale chez l’adulte

Lavertu Jolin, Marisol 04 1900 (has links)
La plasticité cérébrale est régulée de façon dynamique au cours d’une vie : atteignant des sommets au cours de l’enfance, elle est réduite chez l’adulte. Toutefois, des circonstances particulières appellent à vouloir stimuler la malléabilité du cerveau adulte : pour favoriser la réhabilitation suite à un accident vasculaire cérébral ou un traumatisme crânien, pour aider l’adaptation spécifique nécessaire pour vivre avec une nouvelle prothèse ou encore pour améliorer l’efficacité de la thérapie cognitivo-comportementale suite à un traumatisme émotionnel qui a laissé un souvenir de peur qui s’est développé en syndrome de choc post-traumatique. Toutes ces situations demandent des capacités d’adaptation et une flexibilité exceptionnelles au système nerveux central. Or, pour retrouver une plasticité cérébrale telle qu’au niveau juvénile, la littérature nous apprend qu’il faut diminuer la puissance inhibitrice générée par un type d’interneurones particuliers, ceux exprimant la parvalbumine (PV+). Les fonctions des interneurones PV+ dépendent autant de leur patron de connectivité que de l’environnement extracellulaire dans lequel ils évoluent. En effet, en innervant des centaines de neurones cibles, délivrant une forte inhibition périsomatique en formant de multiples synapses autour de leur corps cellulaire et de leurs dendrites proximales, ils ont été impliqués dans l’intégration synaptique des neurones pyramidaux et dans la synchronisation des circuits corticaux. Toute manipulation ciblant cette arborescence axonale complexe pourrait s’avérer efficace à l’augmentation de la plasticité cérébrale en diminuant l’inhibition qu’elle génère. Ainsi, comprendre la signalisation moléculaire restreignant la croissance de l’arborescence axonale et la formation de boutons fonctionnels au cours de la longue phase développementale qui caractérise les interneurones PV+ aiderait à identifier des méthodes efficaces afin d’activer cette signalisation moléculaire chez l’adulte. De plus, comprendre les régulations épigénétiques liées au développement et à la maturation structurelle et fonctionnelle des interneurones PV+ offrirait une cible de choix afin de dématurer ces circuits inhibiteurs et lever un frein sur la plasticité cérébrale adulte. Nous démontrons ici que l’expression du récepteur des neurotrophines p75NTR chez les interneurones PV+ au cours de leur développement restreint la maturation de leur arborescence axonale, autant in vitro que in vivo, ainsi que l’agglomération des filets périneuronaux, autour de leur corps cellulaire. Aussi, en utilisant une version modifiée du test de ligation de proximité, nous avons résolu une controverse et démontré que le récepteur est toujours exprimé chez les interneurones PV+ du cortex adulte. Enfin, l’activation de la signalisation via p75NTR des interneurones PV+ par son ligand proBDNF est suffisante pour déstabiliser leur connectivité et restaurer la plasticité du cortex visuel suite à une privation monoculaire. Également, l’inactivation d’un régulateur épigénétique, l’histone déacétylase Hdac2, spécifiquement chez les interneurones PV+ suffit à diminuer leur connectivité efférente ainsi que l’agglomération des filets périneuronaux autour de leurs corps cellulaire tout en augmentant la rétention de l’extinction des souvenirs de peur, témoignant d’une augmentation de la plasticité cérébrale adulte. Par le séquençage d’ARNm en cellule unique, suivi de l’hybridation in situ RNAscope, nous avons identifié le gène Acan, codant pour aggrécane, une composante protéique des filets périneuronaux, comme étant exprimé de façon autonome à la cellule par les interneurones PV+ du cortex préfrontal adulte. Enfin, nous avons démontré qu’une seule injection d’un nouvel inhibiteur spécifique pour Hdac2 avant le paradigme d’extinction suffit à augmenter la rétention des souvenirs d’extinction chez l’adulte, tout en réduisant l’expression de Acan et l’agglomération des filets périneuronaux dans le cortex préfrontal. En somme, nos travaux ont montré que le remodelage des circuits des interneurones PV+ en ciblant soit le récepteur p75NTR, soit l’histone déacétylase Hdac2, peut efficacement augmenter la plasticité cérébrale chez l’adulte. / Brain plasticity is dynamically regulated during a lifespan: it reaches a peak during juvenile age and decreases in adulthood. However, exceptional circumstances can drive the need to foster adult brain plasticity: to help rehabilitation after a stroke or a head trauma, to increase the adaptability of an individual facing a new life with a prosthetic, to improve the efficiency of cognitive behavioral therapy to cope with the indelible fear memory trace created by an emotional trauma. All these situations require exceptional adaptation capabilities and cognitive flexibility. Several studies have suggested that reducing inhibitory drive, in particular of a specific GABAergic interneuron population, the parvalbumin-expressing interneurons (PV+), could be an effective approach to recover juvenile brain plasticity, thereby increasing adult brain plasticity. PV+ interneuron functions depend on their axonal connectivity pattern as well as their specific extracellular environment. Indeed, by contacting hundreds of postsynaptic neurons and delivering a strong perisomatic inhibitory drive by forming multiple synapses on their somata and proximal dendrites, PV+ interneurons strongly regulate pyramidal cell synaptic integration and cortical circuit synchronisation. PV+ interneuron maturation is a prolonged process, which reaches plateau only after the end of adolescence, and correlates with the decline of developmentally regulated- brain plasticity. We hypothesize that manipulations specifically targeting PV+ interneuron highly complex axonal arborisation, and thus reducing their inhibitory drive, could be efficient tools to foster adult brain plasticity. Understanding the molecular signalling that restricts PV+ cell axonal arborisation growth and the formation of functional presynaptic boutons during their long developmental phase may help identifying efficient methods to activate this molecular pathway, thus reducing PV+ interneuron connectivity, in adults. In addition, understanding the epigenetic regulation of structural and functional maturation of PV+ interneurons may offer a choice target to dematurate these inhibitory circuits and lift a brake on adult brain plasticity. Here, we demonstrate that the expression levels of neurotrophin receptor p75NTR during PV+ interneurons development constrain the maturation of their connectivity as well as the perineuronal net agglomeration around their cell bodies in a cell-autonomous fashion, both in vitro and in vivo. Also, by using a modified version of the proximity ligand assay, we solve a long-standing debate by demonstrating p75NTR expression in PV+ interneurons in adult cortex. Finally, we show that promoting p75NTR signalisation in PV+ cortical interneurons by its ligand proBDNF is sufficient to destabilize their connectivity and restore cortical plasticity following monocular deprivation in the adult visual cortex. We further show that the deletion of the epigenetic regulator histone deacetylase 2 (Hdac2), specifically in PV+ interneurons, is sufficient to decrease their efferent connectivity and perineuronal net agglomeration around their cell bodies, while increasing fear extinction retention, a measure of brain plasticity. By single-cell RNA sequencing, followed by RNAscope in situ hybridization, we found that the Acan gene, which encodes for aggrecan, a critical perineuronal net protein component, is expressed cell-autonomously by PV+ interneurons in adult prefrontal cortex. Finally, we showed that a single injection of a novel Hdac2 specific inhibitor before extinction training is sufficient to increase fear extinction retention in adults, while reducing Acan expression and perineuronal net agglomeration in prefrontal cortex. In summary, our work shows that increasing remodeling of PV+ interneuron circuits by targeting either p75NTR receptor or histone deacetylase Hdac2 efficiently foster adult brain plasticity.
74

Rôles de la voie de signalisation mTORC1 dans le développement des cellules GABAergiques exprimant la parvalbumine

Amegandjin, Clara A. 08 1900 (has links)
La voie de signalisation mTORC1 (mechanistic target of rapamycin complex 1) est cruciale pour la croissance de l’organisme. Dans les neurones matures, mTORC1 régule la synthèse des protéines ainsi que la plasticité synaptique à la base de l’apprentissage et de la formation de la mémoire. Des dérégulations de mTOR constituent la cause de plusieurs maladies monogéniques (mTORpathies) et sont impliquées aussi bien dans des troubles neurodéveloppementaux que neuropsychiatriques. L’une des mTORpathies, la sclérose tubéreuse, est causée par des mutations des gènes codant pour les inhibiteurs de mTORC1, les complexes 1 et 2 de la sclérose tubéreuse (Tsc1 et Tsc2). Elle est associée à l’épilepsie, l’autisme et aux déficiences intellectuelles. Le rôle de mTORC1 dans les neurones excitateurs est largement connu, pourtant, son implication dans la modulation des circuits inhibiteurs corticaux a été très peu investiguée. Dans le cerveau, les interneurones inhibiteurs GABAergiques (cellules produisant l’acide gamma-aminobutyrique) sont caractérisés par leur grande diversité de morphologies, connectivités et propriétés électrophysiologiques. Les Basket Cells qui expriment la parvalbumine (PV) ciblent spécifiquement le soma et les dendrites proximales de centaines de neurones excitateurs. Cela étant, les cellules PV sont positionnées de façon stratégique pour contrôler la génération des potentiels d’actions. En particulier, l’arborisation axonale ainsi que la densité synaptique des cellules PV subissent des changements drastiques dans le jeune cerveau en développement. Par ailleurs, des altérations dans le fonctionnement des cellules PV ont été associées aux maladies du spectre de l’autisme. Les mécanismes moléculaires et cellulaires sous-jacents le développement de la connectivité des cellules PV sont très peu investigués. En particulier, dans quelle mesure et comment une dérégulation de la voie de signalisation mTORC1 affecterait le développement des cellules PV est inconnue. D’un autre côté, il a été rapporté qu’en plus de dysfonctionnements cognitifs, les maladies du spectre de iv l’autisme sont également caractérisées par des déficits dans le traitement sensoriel. Environ 90% des patients de cette pathologie subissent des expériences sensorielles atypiques telles qu’une hyper et hypo-réactivité et des réponses anormales aux stimuli tactiles. À cet égard, les anomalies sensorielles font désormais partie intégrante des critères de diagnostic de l’autisme. Pourtant, les mécanismes neurobiologiques à l’origine des déficits sensoriels demeurent encore mal connus. Vu l’importance de la voie mTORC1-TSC1 dans la physiologie neuronale et du fait que les mutations de TSC1 génèrent des traits autistiques, nous proposons l’hypothèse selon laquelle la dérégulation Tsc1-dépendante de la voie mTOR dans les cellules PV engendre une perturbation de la connectivité de ces dernières, provoquant une altération des comportements relatifs à la sclérose tubéreuse. Les résultats présentés dans cette thèse démontrent qu’une haploinsuffisance ou une absence totale de TSC1 soit dans des cellules PV isolées, en cultures organotypiques, ou dans toute la population de cellules PV in vivo entraîne une croissance précoce des branchements axonaux et de la densité des boutons synaptiques formés par les cellules mutantes, ce qui est suivie par une perte exagérée de leur innervation chez les souris adultes. Par ailleurs, les souris hétérozygotes PV-Cre;Tsc1flox/+ et knock-out PV-Cre;Tsc1flox/flox comparativement aux souris saines présentaient des déficits dans les comportements sociaux. Aussi, nous avons identifié les dysfonctionnements dans l’autophagie comme mécanismes moléculaires sous-jacents la perte des synapses PV chez les souris mutantes. Enfin, nous avons démontré l’existence d’une période critique se situant entre les 2e et 3e semaines postnatales durant laquelle un traitement à la Rapamycine qui inhibe l’hyperactivation de mTORC1 découlant de l’haploinsuffisance de TSC1 est suffisante pour renverser de façon permanente les déficits synaptiques et comportementaux des animaux mutants. Aussi, l’haploinsuffisance de TSC1 dans les cellules PV entraîne une augmentation de la discrimination tactile chez les animaux mutants. Par ailleurs, nous avons trouvé que les v connectivités glutamatergiques aussi bien intra-corticales que thalamocorticales sur les cellules PV sont réduites chez les adultes mutants comparativement aux contrôles alors que chez les souris pré-adolescentes, elles ne sont pas affectées. Finalement, une restriction sensorielle par l’intermédiaire de la coupe de moustaches pendant la fenêtre critique identifiée est suffisante pour renverser le phénotype d’hypersensibilité de ces animaux. Dans son ensemble, cette thèse apporte les preuves du rôle particulier de la signalisation mTORC1 dans la régulation du développement et du maintien de la connectivité des cellules PV et établit le ciblage de ces dernières comme bases mécanistiques d’un renversement des déficits dans les comportements sociaux et la discrimination sensorielle relatifs à l’autisme dans la sclérose tubéreuse. / Mechanistic target of rapamcyin (mTORC1) is a central player in cell growth throughout the organism. However, mTORC1 takes on additional, more specialized roles in the brain, for example, regulating neuron differentiation and glutamatergic synapse formation. In addition, in mature neuron, mTORC1 regulates protein synthesis-dependent and synaptic plastic changes underlying learning and memory. mTOR dysfunctions are the root cause of several monogenetic disorders (mTORpathies) and are implicated in both neurodevelopmental and neuropsychiatric disorders. One of the most studied mTORpathy is Tuberous Sclerosis, which is caused by mutations in the mTORC1-negative regulators Tuberous Sclerosis Complex 1 or 2 (TSC1 or TSC2). Tuberous Sclerosis is associated with neurological problems, including epilepsy, autism and intellectual disabilities. The role of mTORC1 in excitatory neurons has been extensively investigated, on the other hand whether and how it modulates cortical inhibitory circuit formation is not known. Within the forebrain, inhibitory GABAergic (γ-aminobutyric acid producing) interneurons possess the largest diversity in morphology, connectivity, and physiological properties. Cortical parvalbumin (PV)-positive basket cells (BC) specifically target the soma and proximal dendrites of excitatory neurons. PV cells are strategically positioned to control the generation of action potentials and are also strongly interconnected, which promotes their synchronous activity. The correct development of inhibitory interneurons is crucial for functional circuits. In particular, the axonal arborisation and synapse density of PV interneurons change in the postnatal brain. Interestingly, altered PV cells function has been associated to neurodevelopmental disorders, such as autism spectrum disorders (ASDs), both in human and animal models. How and whether mTORC1 signaling affects PV cell development is unknown. In addition to cognitive impairments, ASDs often result in sensory processing deficits. About 90% of ASD individuals have atypical sensory experiences, described as both hyper- and hypo-reactivity, with abnormal responses to tactile stimulation representing a very frequent finding. In fact, sensory abnormalities are now commonly recognized as diagnostic criteria in ASDs. However, the neurobiological mechanisms that underlie impaired sensory processing associated with ASDs are poorly understood. Mindful of the importance of TSC1-mTOR pathway for neuronal physiology and since mutations in Tsc1 give rise to autistic traits, we questioned whether and how Tsc1 deletion selectively in PV cells affects their connectivity, and whether and to what extent these alterations in cortical PV cell circuits might be contributing to changes in behaviours downstream of altered mTOR signaling. The results presented in this thesis show that Tsc1 haploinsufficiency causes a premature increase in terminal axonal branching and bouton density formed by mutant PV cells, followed by a loss of perisomatic innervation in adult mice. Further PV cell-restricted Tsc1 haploinsufficient and knockout mice, respectively PV-Cre;Tsc1flox/+ and PV-Cre;Tsc1flox/flox mice show deficits in social behaviour. Moreover, we identify autophagy dysfunctions as molecular mechanisms underlying PV synapses loss in PV-Cre;Tsc1flox/+ and PV-Cre;Tsc1flox/flox mice. Finally, we identify a sensitive period during the third postnatal week during which treatment with the mTOR inhibitor Rapamycin rescues deficits in both PV cell innervation and behavioral deficits in adult conditional haploinsufficient mice. We further find that PV-Cre;Tsc1flox/+ mice show increased texture discrimination. Our data also demonstrate that mutant PV cells show reduced cortical and thalamocortical glutamatergic inputs in adult mice, whereas they do not exhibit any alterations of these inputs in pre-adolescent mice. Finally sensory modulation by whisker trimming during the third postnatal week rescues texture discrimination hypersensitivity in adult conditional haploinsufficient mice. Altogether, this thesis demonstrates the crucial role of mTORC1 signaling in the regulation of the developmental time course and maintenance of cortical PV cell connectivity and support a mechanistic basis for the targeted rescue of social behaviors and sensory processing in disorders associated with deregulated mTORC1 signaling.
75

Effects of neonatal hypoxia on cortical circuits and cognitive functions

Lee, Karen 01 1900 (has links)
Les enfants qui ont subi une asphyxie périnatale modérée (MPA) risquent de développer des déficits cognitifs et comportementaux subtils et durables, notamment des troubles d'apprentissage et des problèmes émotionnels. Comprendre les mécanismes sous-jacents est une étape essentielle pour concevoir une thérapie ciblée. Déterminer comment le développement du cerveau est corrélé entre les humains et les rongeurs n'est pas simple, mais il existe également un alignement inter-espèces considérable en termes d'étapes clés du développement. Sur la base des changements biochimiques et neuroanatomiques au cours du développement précoce, le consensus général est qu'un cerveau de rongeur P8-10 correspond à peu près au cerveau d'un enfant à terme ; par conséquent, nous avons utilisé cette fenêtre temporelle comme référence pour développer un modèle préclinique de MPA chez la souris. Nous avons d'abord établi un protocole qui nous permet d'observer de manière fiable les crises induites par l'hypoxie chez les souris postnatales. Nous avons constaté que l'exposition de chiots P8-9 directement à 4 % d'O2 pendant 8 minutes induit de manière fiable des crises avec une latence d'environ 5 minutes chez 3 souches de souris (FVB, C57Bl/6, 129S6). Cet aspect est cliniquement pertinent car les convulsions sont la caractéristique néonatale la plus importante de l'encéphalopathie de stade 2 (modérée) telle que définie par l'échelle de Sarnat. Les souris MPA adultes présentent des séquelles à long terme sur des performances cognitives spécifiques, notamment des déficits de la mémoire de reconnaissance et de la flexibilité cognitive, mais aucune altération du comportement moteur et émotionnel. Le cortex préfrontal (PFC) régule la flexibilité cognitive et le comportement émotionnel. Les neurones qui libèrent la sérotonine (5-HT) projettent vers le PFC, et les composés modulant l'activité 5-HT influencent l'émotion et la cognition. On ne sait pas si les dérégulations de la 5-HT contribuent aux problèmes cognitifs induits par le MPA. Dans une première étude, nous avons trouvé que les niveaux d'expression de 5-HT, quantifiés par immunohistochimie, et de libération de 5-HT, quantifiés par microdialyse in vivo chez des souris éveillées, sont réduits dans le PFC de souris MPA adultes. Les souris MPA présentent également une régulation de la température corporelle altérée après l'injection de l'agoniste des récepteurs 5-HT1A, 8-OH-DPAT, suggérant la présence de déficits dans la fonction des auto-récepteurs 5-HT sur les neurones du raphé. Enfin, le traitement chronique de souris MPA adultes avec de la fluoxétine, un inhibiteur du transporteur de recapture de la 5-HT, ou l'agoniste des récepteurs 5-HT1A, la tandospirone, sauve la flexibilité cognitive et les troubles de la mémoire. Ensemble, ces données démontrent que le développement de la fonction du système 5-HT est vulnérable à une asphyxie périnatale modérée. L'hypofonctionnement de la 5-HT pourrait à son tour contribuer à une déficience cognitive à long terme à l'âge adulte, indiquant une cible potentielle pour les thérapies pharmacologiques. Les circuits GABAergiques comprennent une variété étonnante de différents types de cellules, qui sont probablement recrutées par différents événements comportementaux. Un sous-type important de cellules GABAergiques, les cellules positives à la parvalbumine (PV), génèrent des potentiels d'action à haute fréquence et synchronisent l'activité des neurones pyramidaux excitateurs. Les cellules PV sont particulièrement importantes pour la génération d'oscillations gamma, qui à leur tour régulent de nombreuses fonctions cognitives, notamment le traitement attentionnel axé sur les objectifs et la mémoire de travail. Des découvertes récentes indiquent que les cellules PV utilisent beaucoup plus d'énergie que les autres neurones corticaux, ce qui peut les rendre très vulnérables aux conditions de stress métabolique et oxydatif causées par le MPA. Nos données ont montré que l'expression de PV est altérée chez les souris MPA adultes. Nous avons en outre constaté que le niveau d'expression du récepteur de la neurotrophine p75NTR, qui limite la maturation des cellules PV au cours de la première semaine postnatale, est augmenté chez les souris MPA. La suppression génétique de p75NTR dans les neurones GABAergiques exprimant le facteur de transcription Nkx2.1, qui comprend les cellules PV, protège les souris de la perte de niveaux de PV et des effets cognitifs à long terme du MPA. Enfin, un traitement d'une semaine avec un inhibiteur de p75NTR commençant après le MPA sauve complètement les déficits d'activité cognitive et corticale chez les souris adultes. L'ensemble de ces données révèle une cible moléculaire potentielle pour le traitement des altérations cognitives causées par le MPA. / Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. Understanding the underlying mechanisms is an essential step for designing targeted therapy. Determining how brain development correlates between humans and rodents is not straightforward, however there is also considerable cross-species alignment in terms of key developmental milestones. Based on biochemical and neuroanatomical changes during early development, the general consensus is that a P8-10 rodent brain corresponds roughly to the brain of a term infant; therefore, we used this time window as reference to develop a preclinical model of MPA in mouse. We first established a protocol that allows us to reliably observe hypoxia-induced seizures in postnatal mice. We found that exposing P8-9 pups directly to 4% O2 for 8 minutes reliably induces seizures with a latency of about 5’ in 3 mouse strains (FVB, C57Bl/6, 129S6). This aspect is clinically relevant as seizures are the most prominent neonatal hallmark of Stage 2 (Moderate) encephalopathy as defined by the Sarnat Scale. Adult MPA mice show long-term sequelae on specific cognitive performance, including deficits in recognition memory and cognitive flexibility, but no impairment in motor and emotional behavior. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin (5-HT) project to the PFC, and compounds modulating 5-HT activity influence emotion and cognition. Whether 5-HT dysregulations contribute to MPA-induced cognitive problems is unknown. In a first study, we found that 5-HT expression levels, quantified by immunohistochemistry, and 5-HT release, quantified by in vivo microdialysis in awake mice, are reduced in PFC of adult MPA mice. MPA mice also show impaired body temperature regulation following injection of the 5-HT1A receptor agonist 8-OH-DPAT, suggesting the presence of deficits in 5-HT auto-receptor function on raphe neurons. Finally, chronic treatment of adult MPA mice with fluoxetine, an inhibitor of 5-HT reuptake transporter, or the 5-HT1A receptor agonist tandospirone rescues cognitive flexibility and memory impairments. All together, these data demonstrate that the development of 5-HT system function is vulnerable to moderate perinatal asphyxia. 5-HT hypofunction might in turn contribute to long-term cognitive impairment in adulthood, indicating a potential target for pharmacological therapies. GABAergic circuits comprise an astonishing variety of different cell types, which are likely recruited by different behavioral events. An important subtype of GABAergic cells, the fast-spiking, parvalbumin-positive (PV) cells, generate action potentials at high frequency and synchronize the activity of excitatory pyramidal neurons. PV cells are particularly important for the generation of gamma oscillations, which in turn regulate many cognitive functions including goal-directed attentional processing and working memory. Recent findings indicate that PV cells utilize much more energy than other cortical neurons, which may render them highly vulnerable to conditions of metabolic and oxidative stress caused by MPA. Our data showed that PV expression is impaired in adult MPA mice. We further found that the expression level of the neurotrophin receptor p75NTR, which limits PV cell maturation during the first postnatal week, is increased in MPA mice. Genetic deletion of p75NTR in GABAergic neurons expressing the transcription factor Nkx2.1, which include PV cells, protects mice from PV levels loss and the long-term cognitive effects of MPA. Finally, one week treatment with a p75NTR inhibitor starting after MPA completely rescues the cognitive and cortical activity deficits in adult mice. All together this data reveals a potential molecular target for the treatment of the cognitive alterations caused by MPA.
76

Identification des canaux TRPC impliqués dans la potentialisation à long terme des interneurones de la région CA1 de l'hippocampe chez le rat

Kougioumoutzakis, André 08 1900 (has links)
Le réseau neuronal de l’hippocampe joue un rôle central dans la mémoire en modifiant de façon durable l’efficacité de ses synapses. Dans les interneurones de la couche oriens/alveus (O/A), l’induction de la potentialisation à long terme (PLT) requiert les courants postsynaptiques excitateurs évoqués par les récepteurs métabotropes du glutamate de sous-type 1a (CPSEmGluR1a) et l’entrée subséquente de Ca2+ via des canaux de la famille des transient receptor potential (TRP). Le but de ce projet était d’identifier les canaux TRP responsables des CPSEmGluR1a et d’explorer les mécanismes moléculaires régulant leur ouverture. Nous avons déterminé par des enregistrements électrophysiologiques que les CPSEmGluR1a étaient spécifiques aux interneurones O/A et qu’ils étaient indépendants de la phospholipase C. Nous avons ensuite examiné l’expression des TRPC et leur interaction avec mGluR1a par les techniques de RT-PCR, d’immunofluorescence et de co-immunoprécipitation. Nos résultats montrent que TRPC1 et mGluR1a s’associent dans l’hippocampe et que ces deux protéines sont présentes dans les dendrites des interneurones O/A. En revanche, TRPC4 ne semble s’associer à mGluR1a qu’en système recombinant et leur colocalisation paraît limitée au corps cellulaire. Finalement, nous avons procédé à des enregistrements d’interneurones dans lesquels l’expression des TRPC a été sélectivement supprimée par la transfection d’ARN interférant et avons ainsi démontré que TRPC1, mais non TRPC4, est une sous-unité obligatoire du canal responsable des CPSEmGluR1a. Ces travaux ont permis de mieux comprendre les mécanismes moléculaires à la base de la transmission synaptique des interneurones O/A et de mettre en évidence un rôle potentiel de TRPC1 dans la PLT. / The hippocampal neuronal network plays a crucial role in memory by producing long lasting changes in the efficacy of its synapses. In interneurons of stratum oriens/alveus (O/A), long term potentiation (LTP) induction requires metabotropic glutamate receptor subtype 1a (mGluR1a)-evoked excitatory postsynaptic currents (EPSCs) and subsequent Ca2+ entry through transient receptor potential (TRP) channels. The objectives of this project were to identify the TRP channels that mediate mGluR1a-evoked EPSCs and to explore molecular mechanisms that underlie their activation. Electrophysiological recordings showed that mGluR1a-evoked EPSCs were specifically observed in O/A interneurons and they were phospholipase C-independent. We then examined TRPC expression and their interaction with mGluR1a by RT-PCR, immunofluorescence and co-immunoprecipitation techniques. Our results show that TRPC1 and mGluR1a associate in hippocampus and that both proteins have overlapping distributions in dendrites of O/A interneurons. In contrast, TRPC4 seems to associate with mGluR1a only in recombinant system and their co-localization appears to be limited to the cell body. Finally, we performed recordings of interneurons in which TRPC expression was selectively suppressed by small interfering RNAs and we found that TRPC1, but not TRPC4, is an obligatory subunit of the channel that mediate mGluR1a-evoked EPSCs. This work brought new insight on molecular mechanisms underlying synaptic transmission of O/A interneurons and uncovered a potential role for TRPC1 in LTP.
77

Identification des canaux TRPC impliqués dans la potentialisation à long terme des interneurones de la région CA1 de l'hippocampe chez le rat

Kougioumoutzakis, André 08 1900 (has links)
Le réseau neuronal de l’hippocampe joue un rôle central dans la mémoire en modifiant de façon durable l’efficacité de ses synapses. Dans les interneurones de la couche oriens/alveus (O/A), l’induction de la potentialisation à long terme (PLT) requiert les courants postsynaptiques excitateurs évoqués par les récepteurs métabotropes du glutamate de sous-type 1a (CPSEmGluR1a) et l’entrée subséquente de Ca2+ via des canaux de la famille des transient receptor potential (TRP). Le but de ce projet était d’identifier les canaux TRP responsables des CPSEmGluR1a et d’explorer les mécanismes moléculaires régulant leur ouverture. Nous avons déterminé par des enregistrements électrophysiologiques que les CPSEmGluR1a étaient spécifiques aux interneurones O/A et qu’ils étaient indépendants de la phospholipase C. Nous avons ensuite examiné l’expression des TRPC et leur interaction avec mGluR1a par les techniques de RT-PCR, d’immunofluorescence et de co-immunoprécipitation. Nos résultats montrent que TRPC1 et mGluR1a s’associent dans l’hippocampe et que ces deux protéines sont présentes dans les dendrites des interneurones O/A. En revanche, TRPC4 ne semble s’associer à mGluR1a qu’en système recombinant et leur colocalisation paraît limitée au corps cellulaire. Finalement, nous avons procédé à des enregistrements d’interneurones dans lesquels l’expression des TRPC a été sélectivement supprimée par la transfection d’ARN interférant et avons ainsi démontré que TRPC1, mais non TRPC4, est une sous-unité obligatoire du canal responsable des CPSEmGluR1a. Ces travaux ont permis de mieux comprendre les mécanismes moléculaires à la base de la transmission synaptique des interneurones O/A et de mettre en évidence un rôle potentiel de TRPC1 dans la PLT. / The hippocampal neuronal network plays a crucial role in memory by producing long lasting changes in the efficacy of its synapses. In interneurons of stratum oriens/alveus (O/A), long term potentiation (LTP) induction requires metabotropic glutamate receptor subtype 1a (mGluR1a)-evoked excitatory postsynaptic currents (EPSCs) and subsequent Ca2+ entry through transient receptor potential (TRP) channels. The objectives of this project were to identify the TRP channels that mediate mGluR1a-evoked EPSCs and to explore molecular mechanisms that underlie their activation. Electrophysiological recordings showed that mGluR1a-evoked EPSCs were specifically observed in O/A interneurons and they were phospholipase C-independent. We then examined TRPC expression and their interaction with mGluR1a by RT-PCR, immunofluorescence and co-immunoprecipitation techniques. Our results show that TRPC1 and mGluR1a associate in hippocampus and that both proteins have overlapping distributions in dendrites of O/A interneurons. In contrast, TRPC4 seems to associate with mGluR1a only in recombinant system and their co-localization appears to be limited to the cell body. Finally, we performed recordings of interneurons in which TRPC expression was selectively suppressed by small interfering RNAs and we found that TRPC1, but not TRPC4, is an obligatory subunit of the channel that mediate mGluR1a-evoked EPSCs. This work brought new insight on molecular mechanisms underlying synaptic transmission of O/A interneurons and uncovered a potential role for TRPC1 in LTP.
78

Bases moléculaires et cellulaires d’un trouble neurodéveloppemental causé par l’haploinsuffisance de SYNGAP1

Berryer, Martin, H 12 1900 (has links)
No description available.
79

The role of somatostatin and parvalbumin-expressing interneurons in modulating cortical processing and cognitive function

Chehrazi, Pegah 05 1900 (has links)
Le fonctionnement du cortex cérébral nécessite l'action coordonnée de deux principaux types de neurones : les cellules principales excitatrices glutamatergiques (PC) (∼80%) et les interneurones inhibiteurs GABAergiques (IN) (∼20%). Le sous-type le plus courant d'interneurones (IN) GABAergiques, les IN exprimant la parvalbumine (Pv+), innervent le soma et les dendrites proximales d'environ 100 PC voisins. Ainsi, ils délivrent une forte impulsion inhibitrice périsomatique et, à ce titre, jouent un rôle essentiel dans l'intégration synaptique et la synchronisation des circuits corticaux. La maturation des Pv+ IN est un processus prolongé, qui n'atteint un plateau qu'après la fin de l'adolescence. Des altérations de la connectivité et de la fonction des Pv+ IN au cours du développement, en particulier dans le cortex préfrontal (PFC), ont été systématiquement signalées dans plusieurs troubles psychiatriques associés à la rigidité cognitive, ce qui suggère que des déficits des Pv+ IN pourraient être un phénotype cellulaire central de ces troubles. Une autre classe d’IN majeure est constituée par les IN exprimant la somatostatine (Sst+). Malgré des origines neurodéveloppementales similaires, les IN Sst+ présentent une morphologie et une physiologie distinctes des IN Pv+. Les IN Sst+ ciblent les dendrites apicales des PC, modulant ainsi directement les entrées excitatrices sous-jacentes aux différentes fonctions corticales. Comme pour les IN Pv+, le dysfonctionnement des IN Sst+ a été associé aux NDD. Ici, nous étudions les mécanismes moléculaires sous-jacents à la maturation de ces circuits d’IN et comment les altérations de ces mécanismes affectent la fonction corticale. Nous avons précédemment montré que la réductionde l'expression du récepteur de la neurotrophine p75 (p75NTR) par les Pv+ IN au cours du premier mois postnatal régule l'évolution temporelle de leur maturation morphologique cellulaire de façon autonome. Toutefois, il restait à déterminer si l'expression de p75NTR au cours du développement postnatal a un effet à long terme sur la connectivité des cellules Pv+ et la fonction cognitive dans le PFC. En utilisant des stratégies de knock-out conditionnel et virales, nous avons montré que l'expression de p75NTR dans les IN Pv+ du cerveau adolescent contribue à l'établissement de leurs connections afférentes et de leur plasticité dans le PFC. De plus, la délétion postnatale de p75NTR spécifiquement aux cellules Pv+ entraîne 1) une augmentation de la production efférente sur les PC, 2) une augmentation de l'agglomération des PNN autour de leurs corps cellulaires dans le PFC adulte, 3) une altération de l'engagement des cellules Pv+ dans le circuit préfrontal suite à des stimuli sensoriels et 4) une altération des oscillations γ et de la rigidité cognitive chez la souris adulte. Un autre facteur moléculaire qui joue un rôle important dans la connectivité et la fonction des IN est la cadhérine-13 (Cdh13). Cdh13 est un membre unique ancré au glycosylphosphatidylinositol de la famille des cadhérines qui est exprimé à la fois par les IN Pv+ et Sst+ et régule la transmission inhibitrice basale dans l'hippocampe. Cdh13 est un gène à risque pour les NDD ; cependant, le mécanisme par lequel Cdh13 affecte la fonction et la cognition au niveau du réseau cortical et la pathogenèse de ces troubles reste insaisissable. Nous avons utilisé la transcriptomique unicellulaire et montré que l'ARNm de Cdh13 est sélectivement enrichi en Sst+ IN corticaux chez les souris juvéniles. Nous avons ensuite analysé le patrond'expression de Cdh13 dans les IN Pv+ et Sst+ à l'aide de l’hybridation in situ de type RNAscope et avons constaté que les deux types cellulaires expriment Cdh13 à des niveaux différents. Enfin, nous avons généré des modèles de souris knock- out conditionnels SstcKO (Sst_Cre+/-; Cdh13loxP/loxP) et Pv-cKO (PV_Cre+/-; Cdh13loxP/ loxP) et effectué des enregistrements intracorticaux in vivo à partir de souris éveillées. Nous avons identifié des altérations significatives dans le traitement auditif, spécifiquement chez les souris SstcKO. Ainsi, Cdh13 joue un rôle critique et spécifique dans la fonction IN Sst+. En résumé, la compréhension des mécanismes cellulaires et moléculaires régissant le bon développement et la maturation des circuits inhibiteurs met en lumière les mécanismes par lesquels l'inhibition GABAergique contribue aux opérations du réseau cortical et à la fonction cognitive. Ces études indiquent en outre des substrats subcellulaires, potentiellement affectés dans les NDD et les troubles neuropsychiatriques et ouvrent la voie à des stratégies de diagnostic et de traitement plus efficaces. / The proper functioning of the cerebral cortex requires the coordinated action of two main types of neurons: the principal excitatory glutamatergic cells (PCs) (∼80%) and the GABAergic inhibitory interneurons (INs) (∼20%). The most common subtype of GABAergic INs, the parvalbumin-expressing (Pv+) INs, innervate the soma and proximal dendrites of around 100 neighboring PCs. Thus, they deliver a strong perisomatic inhibitory drive and, as such, play an essential role in synaptic integration and cortical circuit synchronization. Pv+ INs maturation is a prolonged process, which reaches a plateau only after the end of adolescence. Alterations in Pv+ INs connectivity and function during development, especially in the prefrontal cortex (PFC), have been consistently reported in several psychiatric disorders associated with cognitive rigidity, suggesting that Pv+ INs deficits may be a core cellular phenotype in these disorders. Another major IN class, not overlapping with Pv+ cells, is constituted by somatostatin-expressing (Sst+) INs. Despite sharing similar neurodevelopmental origins, Sst+ INs exhibit distinct morphology and physiology from Pv+ INs. Sst+ INs target apical dendrites of PCs, thus directly modulating excitatory inputs underlying different cortical functions. Like Pv+ INs, the dysfunction of Sst+ INs has been associated with NDDs. Here, we investigate the molecular mechanisms underlying the maturation of these INs circuits and how alterations of these mechanisms affect cortical function. We have previously shown that the downregulation of the p75 neurotrophin receptor (p75NTR) expression in Pv+INs during the first postnatal month regulates the time course of their morphological maturation in a cell-autonomous fashion. Whether p75NTR expression during postnatal development has a long-term effect on Pv+ cell connectivity and cognitive function in the PFC is unknown. Using conditional knock-out and viral strategies, we showed that p75NTR expression in adolescent Pv+ INs contributes to the establishment of their output and plasticity in the PFC. In addition, Pv cell-specific postnatal deletion of p75NTR leads to 1) increased efferent output onto PCs, 2) increased perineuronal net (PNN) agglomeration around their somata in adult PFC, 3) altered Pv+ cell engagement in the prefrontal circuit following sensory stimuli and 4) altered γ oscillations and cognitive rigidity in adult mice. Another molecular factor that plays a significant role in the connectivity and function of INs is Cadherin-13 (Cdh13). Cdh13 is a unique glycosylphosphatidylinositol-anchored member of the cadherin family that is expressed by both Pv+ and Sst+ INs and regulates basal inhibitory transmission in the hippocampus. Cdh13 is a risk gene for NDDs; however, the mechanism whereby Cdh13 affects cortical network function and cognition and how its dysfunction influences the pathogenesis of these disorders remains elusive. We used single-cell transcriptomics and showed that Cdh13 mRNA is selectively enriched in juvenile mice's cortical Sst+ INs. We then analyzed the expression pattern of Cdh13 in cPv+ and cSst+ INs using RNAscope and found that both cell types express Cdh13 at different levels. Finally, we generated conditional knock-out mice models (Sst_Cre+/-; Cdh13loxP/loxP; Sst-cKO and Pv_Cre+/-; Cdh13 loxP/loxP; Pv-cKO mice) and performed in vivo intracortical recording from awake mice. This approach identified significant alterations in auditory processing, specifically in Sst-cKO mice. Thus, Cdh13 plays a critical and specific role in the Sst+ INs function. In summary, understanding the cellular and molecular rules governing proper inhibitory circuitry development and maturation shed light on the mechanisms by which GABAergic inhibition contributes to cortical network operations and cognitive function. These studies further indicate subcellular substrates, potentially affected in NDDs and neuropsychiatric disorders and pave the road for more effective diagnosis and treatment strategies.

Page generated in 0.0909 seconds