• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 98
  • 66
  • 16
  • 11
  • 5
  • 2
  • 2
  • Tagged with
  • 394
  • 394
  • 136
  • 55
  • 55
  • 55
  • 54
  • 47
  • 39
  • 38
  • 34
  • 32
  • 32
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Apprentissage statistique pour la personnalisation de modèles cardiaques à partir de données d’imagerie / Statistical learning for image-based personalization of cardiac models

Le Folgoc, Loïc 27 November 2015 (has links)
Cette thèse porte sur un problème de calibration d'un modèle électromécanique de cœur, personnalisé à partir de données d'imagerie médicale 3D+t ; et sur celui - en amont - de suivi du mouvement cardiaque. A cette fin, nous adoptons une méthodologie fondée sur l'apprentissage statistique. Pour la calibration du modèle mécanique, nous introduisons une méthode efficace mêlant apprentissage automatique et une description statistique originale du mouvement cardiaque utilisant la représentation des courants 3D+t. Notre approche repose sur la construction d'un modèle statistique réduit reliant l'espace des paramètres mécaniques à celui du mouvement cardiaque. L'extraction du mouvement à partir d'images médicales avec quantification d'incertitude apparaît essentielle pour cette calibration, et constitue l'objet de la seconde partie de cette thèse. Plus généralement, nous développons un modèle bayésien parcimonieux pour le problème de recalage d'images médicales. Notre contribution est triple et porte sur un modèle étendu de similarité entre images, sur l'ajustement automatique des paramètres du recalage et sur la quantification de l'incertitude. Nous proposons une technique rapide d'inférence gloutonne, applicable à des données cliniques 4D. Enfin, nous nous intéressons de plus près à la qualité des estimations d'incertitude fournies par le modèle. Nous comparons les prédictions du schéma d'inférence gloutonne avec celles données par une procédure d'inférence fidèle au modèle, que nous développons sur la base de techniques MCMC. Nous approfondissons les propriétés théoriques et empiriques du modèle bayésien parcimonieux et des deux schémas d'inférence / This thesis focuses on the calibration of an electromechanical model of the heart from patient-specific, image-based data; and on the related task of extracting the cardiac motion from 4D images. Long-term perspectives for personalized computer simulation of the cardiac function include aid to the diagnosis, aid to the planning of therapy and prevention of risks. To this end, we explore tools and possibilities offered by statistical learning. To personalize cardiac mechanics, we introduce an efficient framework coupling machine learning and an original statistical representation of shape & motion based on 3D+t currents. The method relies on a reduced mapping between the space of mechanical parameters and the space of cardiac motion. The second focus of the thesis is on cardiac motion tracking, a key processing step in the calibration pipeline, with an emphasis on quantification of uncertainty. We develop a generic sparse Bayesian model of image registration with three main contributions: an extended image similarity term, the automated tuning of registration parameters and uncertainty quantification. We propose an approximate inference scheme that is tractable on 4D clinical data. Finally, we wish to evaluate the quality of uncertainty estimates returned by the approximate inference scheme. We compare the predictions of the approximate scheme with those of an inference scheme developed on the grounds of reversible jump MCMC. We provide more insight into the theoretical properties of the sparse structured Bayesian model and into the empirical behaviour of both inference schemes
352

Estimation par méthodes inverses des profils d’émission des machines à bois électroportatives / Emission profiles characterization by inverse method for hand-held wood working machines

Chata, Florent 27 November 2015 (has links)
Cette thèse est dédiée à l'estimation de l'intensité d'une source de polluant de type particulaire par inversion de signaux de concentration mesurés avec un nombre fini de capteurs placés loin de la source. Cette méthode d'estimation inclut deux étapes distinctes. La première étape consiste à déterminer les paramètres du modèle d'inversion en utilisant une source d'aérosol connue et les mesures de concentration en particules correspondantes. Dans une seconde étape, une source d'aérosol inconnue est reconstruite à partir de l'inversion du modèle et des mesures de la concentration. Ce manuscrit traite dans un premier temps du cas stationnaire. L'approche théorique exposée permet de proposer un placement optimal des capteurs en plus de la méthode d'estimation de la source. Dans un second temps, on considère le cas où la source inconnue d'aérosol est instationnaire. La méthode d'estimation repose sur une approche convolutive du système, en introduisant la notion d'impédance source/capteur. Après une présentation de la technique d'inversion propre à la méthode d'estimation, elle est appliquée expérimentalement au cas des machines à bois éléctroportatives, dans le but de les discriminer en fonction de leur caractère émissif / This thesis is dedicated to the determination of unknown aerosol sources emission profiles from aerosol concentration measurements in the far-field. This procedure includes two distinct steps. The first step consists in determining the model linking the aerosol source and the concentration measurements using a known source of aerosols and the corresponding dust measurements. In a second step, the unknown source of aerosols is reconstructed by inverting the model for the measured aerosol concentrations. This manuscript deals in a first time with the stationary case. The exposed theoretical approach allows to suggest an optimal sensors placement in addition to the source estimation method. In a second time, we consider the case where the unknown aerosol source is unsteady. The estimation method is then based on a convolutive system approach, introducing the concept of source/sensor impedance. After a presentation of the numerical inversion technique, the method is applied experimentally to the real case of hand-held wood working machines so as to classify the machines with respect to their emission rate
353

Régularisations de faible complexité pour les problèmes inverses / Low Complexity Regularization of Inverse Problems

Vaiter, Samuel 10 July 2014 (has links)
Cette thèse se consacre aux garanties de reconstruction et de l’analyse de sensibilité de régularisation variationnelle pour des problèmes inverses linéaires bruités. Il s’agit d’un problème d’optimisation convexe combinant un terme d’attache aux données et un terme de régularisation promouvant des solutions vivant dans un espace dit de faible complexité. Notre approche, basée sur la notion de fonctions partiellement lisses, permet l’étude d’une grande variété de régularisations comme par exemple la parcimonie de type analyse ou structurée, l’anti-Parcimonie et la structure de faible rang. Nous analysons tout d’abord la robustesse au bruit, à la fois en termes de distance entre les solutions et l’objet original, ainsi que la stabilité de l’espace modèle promu.Ensuite, nous étudions la stabilité de ces problèmes d’optimisation à des perturbations des observations. A partir d’observations aléatoires, nous construisons un estimateur non biaisé du risque afin d’obtenir un schéma de sélection de paramètre. / This thesis is concerned with recovery guarantees and sensitivity analysis of variational regularization for noisy linear inverse problems. This is cast as aconvex optimization problem by combining a data fidelity and a regularizing functional promoting solutions conforming to some notion of low complexity related to their non-Smoothness points. Our approach, based on partial smoothness, handles a variety of regularizers including analysis/structured sparsity, antisparsity and low-Rank structure. We first give an analysis of thenoise robustness guarantees, both in terms of the distance of the recovered solutions to the original object, as well as the stability of the promoted modelspace. We then turn to sensivity analysis of these optimization problems to observation perturbations. With random observations, we build un biased estimator of the risk which provides a parameter selection scheme.
354

Reconstruction of Hyperspectral Images Using Generative Adversarial Networks

Eek, Jacob January 2021 (has links)
Fast detection and identification of unknown substances is an area of interest for many parties. Raman spectroscopy is a laser-based method allowing for long range no contact investigation of substances. A Coded Aperture Snapshot Spectral Imaging (CASSI) system allows for fast and efficient measurements of hyperspectral images of a scene, containing a mixture of the spatial and spectral data. To analyze the scene and the unknown substances within it, it is required that the spectra in each spatial position are known. Utilizing the theory of compressed sensing allows for reconstruction of hyperspectral images of a scene given their CASSI measurements by assuming a sparsity prior. These reconstructions can then be utilized by a human operator to deduce and classify the unknown substances and their spatial locations in the scene. Such classifications are then applicable as decision support in various areas, for example in the judicial system. Reconstruction of hyperspectral images given CASSI-measurements is an ill-posed inverse problem typically solved by utilizing regularization techniques such as total variation (TV). These TV-based reconstruction methods are time consuming relative to the time needed to acquire the CASSI measurements, which is in the order of seconds. This leads to a reduced number of areas where the technology is applicable. In this thesis, a Generative Adversarial Network (GAN) based reconstruction method is proposed. A GAN is trained using simulated training data consisting of hyperspectral images and their respective CASSI measurements. The GAN provides a learned prior, and is used in an iterative optimization algorithm seeking to find an optimal set of latent variables such that the reconstruction error is minimized. The results of the developed GAN based reconstruction method are compared with a traditional TV method and a different machine learning based reconstruction method.  The results show that the reconstruction method developed in this thesis performs better than the compared methods in terms of reconstruction quality in short time spans.
355

Vylepšení metodiky rekonstrukce biomedicínských obrazů založené na impedanční tomografii / Improvement of the Biomedical Image Reconstruction Methodology Based on Impedance Tomography

Kořínková, Ksenia January 2016 (has links)
Disertační práce, jež má teoretický charakter, je zaměřena na vylepšení a výzkum algoritmů pro zobrazování vnitřní struktury vodivých objektů, hlavně biologických tkání a orgánů pomocí elektrické impedanční tomografie (EIT). V práci je formulován teoretický rámec EIT. Dále jsou prezentovány a porovnány algoritmy pro řešení inverzní úlohy, které zajišťují efektivní rekonstrukci prostorového rozložení elektrických vlastností ve zkoumaném objektu a jejích zobrazení. Hlavní myšlenka vylepšeného algoritmu, který je založen na deterministickém přístupu, spočívá v zavedení dodatečných technik: level set a nebo fuzzy filtru. Kromě toho, je ukázána metoda 2-D rekonstrukce rozložení konduktivity z jediného komponentu magnetického pole a to konkrétně z-tové složky magnetického toku. Byly vytvořeny numerické modely biologické tkáně s určitým rozložení admitivity (nebo konduktivity) pro otestování těchto algoritmů. Výsledky získané z rekonstrukcí pomocí vylepšených algoritmů jsou ukázány a porovnány.
356

Building and Evaluating a 3D Scanning System for Measurementsand Estimation of Antennas and Propagation Channels

Aagaard Fransson, Erik Johannes, Wall-Horgen, Tobias January 2012 (has links)
Wireless communications rely, among other things, on theunderstanding of the properties of the radio propagationchannel, the antennas and their interplay. Adequate measurementsare required to verify theoretical models and togain knowledge of the channel behavior and antenna performance.As a result of this master thesis we built a 3D fieldscanner measurement system to predict multipath propagationand to measure antenna characteristics. The 3Dscanner allows measuring a signal at the point of interestalong a line, on a surface or within a volume in space. In orderto evaluate the system, we have performed narrowbandchannel sounding measurements of the spatial distributionof waves impinging at an imaginary spherical sector. Datawas used to estimate the Angle-of-Arrivals (AoA) and amplitudeof the waves. An estimation method is presented tosolve the resulting inverse problem by means of regularizationwith truncated singular value decomposition. The regularizedsolution was then further improved with the helpof a successive interference cancellation algorithm. Beforeapplying the method to measurement data, it was testedon synthetic data to evaluate its performance as a functionof the noise level and the number of impinging waves. Inorder to minimize estimation errors it was also required tofind the phase center of the horn antenna used in the channelmeasurements. The task was accomplished by directmeasurements and by the regularization method, both resultsbeing in good agreement.
357

Identification paramétrique en dynamique transitoire : traitement d’un problème couplé aux deux bouts / Parametric identification in transiant dynamic : traitment of a boundary value problem

Nouisri, Amine 18 November 2015 (has links)
Les travaux de thèse portent sur l'identification paramétrique en dynamique transitoire à partir des mesures fortement bruitées, l'un des objectifs à long terme étant de proposer une méthode d’identification peu intrusive afin de pouvoir être implémentée dans des codes de calcul éléments finis commerciaux. Dans ce travail, le concept de l'erreur en relation de comportement modifiée a été retenu pour traiter le problème d’identification des paramètres matériau. La minimisation de la fonctionnelle coût sous contraintes débouche, dans le cas de la dynamique transitoire, sur un problème dit « aux deux bouts » dans lequel il s’agit de résoudre un problème différentiel spatio-temporel avec des conditions à la fois initiales et finales en temps. Il en résulte un problème couplé entre les champs direct et adjoint dont le traitement est délicat. Dans un premier temps, des méthodes précédemment développées telles que la « méthode de Riccati » et la « méthode de tirs » ont été étudiées. Il est montré que l’identification par ces méthodes est robuste même pour des mesures fortement corrompues, mais qu’elles sont limitées par la complexité d’implémentation dans un code industriel, des problèmes de conditionnement ou de coût de calcul. Dans un second temps, une approche itérative basée sur une méthode de sur-relaxation a été développée et comparée à celles précédemment mentionnées sur des exemples académiques, validant l’intérêt de cette nouvelle approche. Enfin, des comparaisons ont été menées entre cette technique et une variante « discrétisée » de la formulation introduite par Bonnet et Aquino [Inverse Problems, vol. 31, 2015]. / This thesis deals with parameters identification in transient dynamic in case of highly noisy experimental data. One long-term goal is the derivation of a non-intrusive method dedicated to the implementation in a commercial finite element code.In this work, the modified error in the constitutive relation framework is used to treat the identification of material parameters. The minimization of the cost function under constraints leads, in the case of transient dynamics, to a « two points boundary value problem » in which the differential space-time problem involves both initial and final time conditions. This results in a problem coupling the direct and adjoint fields, whose treatment is difficult.In the first part, methods such as those based on the « Riccati equations » and the « shooting methods » have been studied. It is shown that the identification is robust even in the case of highly corrupted measures, but these methods are limited either by the implementation intrusiveness, conditioning problems or the numerical cost.In the second part, an iterative over-relaxation approach is developed and compared to the aforementioned approaches on academic problems in order to validate the interest of the method. Finally, comparisons are carried out between this approach and a « discretized » variation of the formulation introduced by Bonnet and Aquino [Inverse Problems, vol. 31, 2015].
358

[pt] ESTIMATIVA DE PARÂMETROS DE RESERVATÓRIOS DE PETRÓLEO A PARTIR DE MODELO TRANSIENTE NÃO ISOTÉRMICO / [en] ESTIMATIVE OF PETROLEUM RESERVOIR PARAMETERS FROM NONISOTHERMAL TRANSIENT MODEL

WILLER PLANAS GONCALVES 19 May 2021 (has links)
[pt] Tradicionalmente, os testes de formação em poços de petróleo buscam caracterizar o campo de permeabilidades a partir da interpretação dos transientes de pressão (PTA) nos períodos de fluxo e estática baseados em modelos isotérmicos de escoamento em meios porosos. Com o avanço da instrumentação dos testes, registros mais precisos de temperatura passaram a estar disponíveis e fomentaram a pesquisa baseada em modelos não isotérmicos que possibilitaram a análise a partir dos transientes de temperatura (TTA). Além da caracterização de parâmetros do reservatório como permeabilidade e porosidade com a interpretação dos transientes de temperatura, os dados de pressão obtidos a partir de um modelo não isotérmico representa de forma mais fidedigna o fenômeno físico sobretudo quando os testes são submetidos a maiores diferenciais de pressão. Este trabalho consiste no desenvolvimento de um simulador para teste de formação que considera a modelagem não isotérmica de reservatório unidimensional radial acoplado a um poço produtor e na utilização deste simulador, associado a métodos de otimização multivariável, para resolução do problema inverso da caracterização de parâmetros do reservatório. Alguns métodos de otimização foram testados e o algoritmo do Simplex de Nelder-Mead apresentou melhor eficácia. Foram estabelecidos três tipos de problemas e utilizados em três casos hipotéticos considerando inclusive a imposição artificial de ruídos nos sinais de pressão e temperatura utilizados para resolução do problema inverso. / [en] Traditionally, oil well formation tests aim to characterize the reservoir permeability field from pressure transient analysis (PTA) of drawdown and build up based on isothermal flow models in porous media. With the advancement of well test instrumentation, more accurate temperature records became available and have encouraged researches based on non-isothermal models that made possible the temperature transient analysis (TTA). In addition to the characterization of reservoir parameters such as permeability and porosity by TTA, the pressure data obtained from a non-isothermal model represent better the physical phenomenon, especially when the tests are subjected to greater drawdowns. This work consists in the development of a simulator for formation test that considers non-isothermal modeling of a unidimensional radial reservoir coupled to a production well and in the use of this simulator, associated with multivariable optimization methods, to solve the inverse problem of reservoir parameters characterization. Some optimization methods were tested and the Nelder-Mead Simplex algorithm presented better efficiency. Three types of problems were established and used in three hypothetical cases, including artificially imposed noise in pressure and temperature signals used to solve the inverse problem.
359

Advances in electrical capacitance tomography

Marashdeh, Qussai Mohammad 07 August 2006 (has links)
No description available.
360

Horseshoe regularization for wavelet-based lensing inversion

Nafisi, Hasti 03 1900 (has links)
Gravitational lensing, a phenomenon in astronomy, occurs when the gravitational field of a massive object, such as a galaxy or a black hole, bends the path of light from a distant object behind it. This bending results in a distortion or magnification of the distant object's image, often seen as arcs or rings surrounding the foreground object. The Starlet wavelet transform offers a robust approach to representing galaxy images sparsely. This technique breaks down an image into wavelet coefficients at various scales and orientations, effectively capturing both large-scale structures and fine details. The Starlet wavelet transform offers a robust approach to representing galaxy images sparsely. This technique breaks down an image into wavelet coefficients at various scales and orientations, effectively capturing both large-scale structures and fine details. The horseshoe prior has emerged as a highly effective Bayesian technique for promoting sparsity and regularization in statistical modeling. It aggressively shrinks negligible values while preserving important features, making it particularly useful in situations where the reconstruction of an original image from limited noisy observations is inherently challenging. The main objective of this thesis is to apply sparse regularization techniques, particularly the horseshoe prior, to reconstruct the background source galaxy from gravitationally lensed images. By demonstrating the effectiveness of the horseshoe prior in this context, this thesis tackles the challenging inverse problem of reconstructing lensed galaxy images. Our proposed methodology involves applying the horseshoe prior to the wavelet coefficients of lensed galaxy images. By exploiting the sparsity of the wavelet representation and the noise-suppressing behavior of the horseshoe prior, we achieve well-regularized reconstructions that reduce noise and artifacts while preserving structural details. Experiments conducted on simulated lensed galaxy images demonstrate lower mean squared error and higher structural similarity with the horseshoe prior compared to alternative methods, validating its efficacy as an efficient sparse modeling technique. / Les lentilles gravitationnelles se produisent lorsque le champ gravitationnel d'un objet massif dévie la trajectoire de la lumière provenant d'un objet lointain, entraînant une distorsion ou une amplification de l'image de l'objet lointain. La transformation Starlet fournit une méthode robuste pour obtenir une représentation éparse des images de galaxies, capturant efficacement leurs caractéristiques essentielles avec un minimum de données. Cette représentation réduit les besoins de stockage et de calcul, et facilite des tâches telles que le débruitage, la compression et l'extraction de caractéristiques. La distribution a priori de fer à cheval est une technique bayésienne efficace pour promouvoir la sparsité et la régularisation dans la modélisation statistique. Elle réduit de manière agressive les valeurs négligeables tout en préservant les caractéristiques importantes, ce qui la rend particulièrement utile dans les situations où la reconstruction d'une image originale à partir d'observations bruitées est difficile. Étant donné la nature mal posée de la reconstruction des images de galaxies à partir de données bruitées, l'utilisation de la distribution a priori devient cruciale pour résoudre les ambiguïtés. Les techniques utilisant une distribution a priori favorisant la sparsité ont été efficaces pour relever des défis similaires dans divers domaines. L'objectif principal de cette thèse est d'appliquer des techniques de régularisation favorisant la sparsité, en particulier la distribution a priori de fer à cheval, pour reconstruire les galaxies d'arrière-plan à partir d'images de lentilles gravitationnelles. Notre méthodologie proposée consiste à appliquer la distribution a priori de fer à cheval aux coefficients d'ondelettes des images de galaxies lentillées. En exploitant la sparsité de la représentation en ondelettes et le comportement de suppression du bruit de la distribution a priori de fer à cheval, nous obtenons des reconstructions bien régularisées qui réduisent le bruit et les artefacts tout en préservant les détails structurels. Des expériences menées sur des images simulées de galaxies lentillées montrent une erreur quadratique moyenne inférieure et une similarité structurelle plus élevée avec la distribution a priori de fer à cheval par rapport à d'autres méthodes, validant son efficacité.

Page generated in 0.0573 seconds