Spelling suggestions: "subject:"inverter"" "subject:"converter""
321 |
Implementation and evaluation of V/f and vector control in high–speed PMSM drives / Kruger G.L.Kruger, Gert Lodewikus. January 2011 (has links)
The McTronX research group, at the Potchefstroom campus of the North–West University, has
been researching Active Magnetic Bearings (AMBs). A fully suspended, flywheel energy storage
system (FESS) has been developed. Due to excessive unbalance on the rotor, the motor drive
could not be tested up to its rated speed. In the interim, until the rotor can be balanced and
other rotor dynamic effects have been investigated, the group decided that the existing drive
control should be improved and tested on a high–speed permanent magnet synchronous motor
(PMSM), using normal roller element bearings.
In order to test the motor control a second (identical) PMSM, mechanically coupled to the
former, operates in generator mode which serves as the torque load. Two different control algorithms,
namely V/f and vector control, are designed and implemented on a rapid control
prototyping system, i.e. dSPACE®. The V/f control is an open–loop, position sensorless technique,
whilst the vector controller makes use of a position sensor.
From the design and implementation it became clear that the vector control is more robust,
in the sense that it is less sensitive on parameter variations and disturbances. It can start up
reliably even under full load conditions.
The V/f control is an attractive alternative to the vector control, especially in AMB systems,
where it may be difficult to mount the position sensor, has to operate in a hazardous environment
not suited to the sensor or could degrade the reliability of the AMB system. The cost of the
position sensor is not really a concern compared to the cost of an AMB system. The V/f control
is more suited to fan and pump applications, which has a low dynamic requirement. The V/f
control has high startup currents and is not recommended for applications requiring a high
starting torque or fast acceleration during operation.
The inverter, which drives the PMSM, also had to be developed. With regard to the motor
control, the effects of inverter non–idealities had to be accounted, especially for the V/f control.
The implemented control algorithms were tested up to 20 krpm. Discrepancies between the expected
and actual results are discussed. Overall, the controllers performed as desired. Generally,
the project goals have been reached satisfactorily. / Thesis (M.Ing. (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2011.
|
322 |
Numerical modeling of uncertainty and variability in the technology, manufacturing, and economics of crystalline silicon photovoltaicsRistow, Alan Hugo 19 May 2008 (has links)
Electricity generated from photovoltaics (PV) promises to satisfy the world's ever-growing thirst for energy without significant pollution and greenhouse gas emissions. At present, however, PV is several times too expensive to compete economically with conventional sources of electricity delivered via the power grid. To ensure long-term success, must achieve cost parity with electricity generated by conventional sources of electricity. This requires detailed understanding of the relationship between technology and economics as it pertains to PV devices and systems. The research tasks of this thesis focus on developing and using four types of models in concert to develop a complete picture of how solar cell technology and design choices affect the quantity and cost of energy produced by PV systems. It is shown in this thesis that high-efficiency solar cells can leverage balance-of-systems (BOS) costs to gain an economic advantage over solar cells with low efficiencies. This advantage is quantified and dubbed the "efficiency premium." Solar cell device models are linked to models of manufacturing cost and PV system performance to estimate both PV system cost and performance. These, in turn, are linked to a model of levelized electricity cost to estimate the per-kilowatt-hour cost of electricity produced by the PV system. A numerical PV module manufacturing cost model is developed to facilitate this analysis. The models and methods developed in this thesis are used to propose a roadmap to high-efficiency multicrystalline silicon PV modules that achieve cost parity with electricity from the grid. The impact of PV system failures on the cost of electricity is also investigated; from this, a methodology is proposed for improving the reliability of PV inverters.
|
323 |
Experimental results from the Lysekil Wave Power Research SiteSvensson, Olle January 2012 (has links)
This thesis presents how experimental results, from wave power research performed offshore at the Lysekil research site, were obtained. The data were used to verify theoretical models as well as evaluate the feasibility of wave power as a future sustainable energy source. The first experiments carried out at the research site was the measurement of the force in a line where one end was connected to a buoy with a diameter of 3 m and the other end to a set of springs with limited stroke length. The system is exposed to high peak forces compared to average forces. The maximum measured force in the line, when the buoy motion is limited by a stiff stopper rope is ten times the average force in that particular sea state. The experiment performed on the first wave energy converter tested at the Lysekil Research Site is described. The infrastructure of the site is presented where the central connection point is the measuring station. The key finding is that it is possible to transform the motions of ocean waves into electrical energy and distribute it to land. Many wave energy converters must be interconnected if large amounts of energy are to be harvested from the waves. The first submerged substation intended for aggregation of energy from wave power converters is described, with focus on the measurement and control system placed inside the substation. During this experiment period the generators were equipped with many different sensors; these measurements are explained in the thesis. The system that aggregates power from the studied wave energy converter is regularly exposed to peak power of up to 20 times the maximum average output from the converter. Vertical and horizontal movement of the buoy has been measured in different ways. The result is that the vertical displacement of the buoy can be measured with a simple accelerometer circuit but it is much more complicated to measure the horizontal displacement. A special method for measuring the horizontal displacement has been implemented by measuring the strain in the enclosure and the force in the line. / Den här avhandlingen berättar om hur experimenten vid Lysekils forskningsområde för vågkraft har utförts. Insamlade mätdata har använts för att verifiera teoretiska samband som modulerats vid Elektricitetslära, Uppsala universitet. De teoretiska och praktiska resultaten har visat på att vågkraft har förutsättningarna att implementeras som en hållbar framtida energikälla. Intressanta mätmetoder har utvecklas och påfrestningarna på utrustningin och dess samband med medel effekten har studerats. / Lysekils projektet
|
324 |
Analysis of electromagnetic force and noise in inverter driven induction motorsAstfalck, Allen, Electrical Engineering, Australian Defence Force Academy, UNSW January 2002 (has links)
This thesis is part of a major research project to analyse vibro-acoustic characteristics from variable speed inverter driven induction motors (VSIDIM). The overall projects??? aimed at providing a better understanding of the mechanisms of sound generation from electromagnetic origins and developing a numerical model to predict the sound power emitted from a VSIDIM. The scope of this thesis is to assess experimentally the effect of various controller strategies on the radiated sound power and to develop a finite element method for calculating the electromagnetic force distribution over the stator. Various sources of noise in induction motors and their behaviour with speed and load have been reviewed. Models of the electromagnetic field and vibro-acoustic character have been discussed. An outline of various techniques of reducing noise in induction motors through design of inverters and modifications to the motor structure has been given. Experiments were conducted to assess the effect of controller strategies on the radiated sound power. Three different supplies were tested: a dynamotor which produces an almost sinusoidal supply with very low harmonic content, an inverter with a low switching frequency (less than 1kHz) and an inverter with a high switching frequency (8kHz) and various levels of random modulation. Results indicate that the sound power level of the MSC drive is a lot higher than that of the VSC 2000 drive and the dynamotor drive. The sound power level of the VSC 2000 drive and the dynamotor drive increases almost linearly with motor speed, that for the MSC drive is almost independent of speed. The sound power level of the MSC drive is almost 28dB higher than that of the dynamotor drive at 450rpm and the difference is reduced to 14dB at 1500rpm where the aerodynamic noise becomes more dominant. It has been found that at the rated speed (1500rpm), the sound power level varies by less than 3dB from no load to full load for all three sources. Although increasing the switching frequency increases the cost of the inverters and switching losses, results from the MSC and VSC 2000 drives clearly show that it reduces the radiated sound power by shifting the harmonics into higher and inaudible frequency range. The tonal nature around the switching frequency has been reduced by increasing the levels of random modulation to spread the energy over a wider range of frequencies, although the sound power level has not varied by more than 0.2dB. A finite element model has been developed to calculate the electromagnetic force distribution. The quasi-static solution method has been implemented by stepping the rotor through the time domain using a fine regular mesh in the air gap. The stator currents were experimentally obtained while the rotor currents were obtained using a 4 parameter state space model of the motor. Results of the simulation indicate the influence of stator and rotor slots, saturation and time harmonics in the current. The calculated electromagnetic force distribution has been used in a FEM/BEM acoustic model and SEA acoustic model to predict the radiated sound power which agrees reasonably well with the measured sound, thus validating indirectly the electromagnetic force simulations.
|
325 |
Improvement of Commutation Failure Prediction in HVDC Classic LinksIvarsson, Johanna January 2011 (has links)
In this thesis, an evaluation of the existing control system for ABB: s HVDC Classic Links is performed in order to investigate whether a possible improvement to commutation failure prediction is possible and to be recommended. The thesis starts with a theoretical approach to the complexity of consequences of increasing the extinction angle (γ) in order to prevent commutation failure in inverter operation, which is later confirmed through using the simulation software PSCAD to evaluate coherence between simulation results and theory. Dynamic power studies are performed through simulations in the electromagnetic time domain transient tool PSCAD in order to establish a possible improvement to the existing commutation failure prediction today used in ABB control systems for HVDC applications.
|
326 |
Inversor fotovoltaico não isolado NPC intercalado / Transformerless photovoltaic interleaved NPC inverterFinamor, Gustavo Andres 04 March 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Throughout the twentieth century, the supply of electricity, mainly obtained from
fossil fuels like oil and coal, it has supported the growth and transformation of the world
economy. In the early years of this century, the scenario has changed to a new reality, the
need for sustainable development. In other words, the challenge is to gradually replace
the traditional sources of electricity from renewable energy sources, in which the solar
photovoltaic energy has highlighted. Photovoltaic inverters may be constituted in different
ways, presenting in recent decades a high research progress. The main study efforts
focus on getting high efficiency, high power density and high reliability, to increase the
overall performance of the photovoltaic installation. In this direction, this Master Thesis
aims to propose, analyze, design and implement a single-phase grid-tied photovoltaic
inverter, which provides high efficiency and high power density. This circuit is called
Transformerless Photovoltaic Interleaved Multilevel NPC Inverter , that use uncoupled
inductors, Gallium Nitride power transistors and employs interleaving strategy beside the
LCL filter, synthesizing 9 levels. Are introduced studies on the operation, modulation
and design methodology of power stages, considering the static performance. Results
are presented for the 1 kW, in order to support the validity of the proposed topology in
conjunction with the standard aspects, especially in relation to THD (Total Harmonic
Distortion) of grid current, leakage current, efficiency and power density. / Durante todo o século XX, a oferta de energia elétrica, obtida principalmente a
partir dos combustíveis fósseis como petróleo e o carvão mineral, deu suporte ao crescimento
e as transformações da economia mundial. Já nos primeiros anos do século atual,
o cenário mudou para uma nova realidade, a necessidade do desenvolvimento sustentável.
Em outras palavras, o desafio é substituir gradativamente as fontes tradicionais de energia
elétrica por fontes de energia renovável, onde a energia solar fotovoltaica tem destaque.
Os conversores eletrônicos para sistemas fotovoltaicos, também chamados de inversores,
podem ser constituídos de diversas maneiras, apresentando nas últimas décadas um acentuado
progresso de pesquisa. Os principais esforços de estudo tem se concentrado em
obter alto rendimento, alta densidade de potência e alta confiabilidade, de modo a aumentar
o desempenho global da instalação fotovoltaica. Neste horizonte, esta dissertação
tem por objetivo propor, analisar, projetar e implementar um inversor fotovoltaico monofásico,
para aplicação conectada à rede, de alto rendimento e alta densidade de potência.
Esta estrutura é denominada de Inversor Fotovoltaico NPC Multinível Intercalado sem
Transformador , que utiliza indutores não acoplados, interruptores de Nitreto de Gálio
e emprega a técnica interleaving junto ao filtro LCL, sintetizando 9 níveis. No decorrer
do trabalho são introduzidos estudos relativos à operação, modulação, metodologia de
projeto e estágios de potência, estabelecendo critérios, enquanto considera a performance
estática. São apresentados resultados, observando a potência de 1 kW, com a finalidade
de corroborar a validade da topologia proposta juntamente as normativas e aspectos que
norteiam a aplicação, especialmente com respeito à THD (Total Harmonic Distortion) da
corrente da rede, corrente de fuga, rendimento e densidade de potência.
|
327 |
Análise e projeto do conversor fonte-y para uso em sistemas de geração de energia fotovoltaica de baixa tensão / Analysis and design of the y-source converter for use in low-voltage photovoltaic generation systemsMartins, Alex de Sá 26 October 2017 (has links)
Submitted by Alex de Sá Martins null (lex.martins@hotmail.com) on 2017-12-16T23:31:27Z
No. of bitstreams: 1
ANÁLISE E PROJETO DO CONVERSOR FONTE-Y PARA USO....pdf: 2723184 bytes, checksum: 9e77f24832992941e605e87a84c25d1a (MD5) / Approved for entry into archive by Maria Marlene Zaniboni null (zaniboni@bauru.unesp.br) on 2017-12-18T12:51:16Z (GMT) No. of bitstreams: 1
martins_as_me_bauru.pdf: 2723184 bytes, checksum: 9e77f24832992941e605e87a84c25d1a (MD5) / Made available in DSpace on 2017-12-18T12:51:16Z (GMT). No. of bitstreams: 1
martins_as_me_bauru.pdf: 2723184 bytes, checksum: 9e77f24832992941e605e87a84c25d1a (MD5)
Previous issue date: 2017-10-26 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Este trabalho aborda o estudo de topologia de conversor de energia baseada no uso de configuração de rede de impedância denominada fonte-Y, com o objetivo de ser aplicado em sistemas de geração distribuída de energia, em redes de baixa tensão. Em sistemas de geração distribuída de energia usualmente se faz necessária a existência de um estágio elevador de tensão e um estágio inversor, ambos controlados para produzir tensão e/ou corrente senoidal com mesma frequência, amplitude e fase da rede elétrica. Nesse sentido, este trabalho propõe a aplicação do conversor fonte- Y entre a geração e a conexão com e rede elétrica, de forma que as ações de conversão relacionadas com a elevação (CC-CC) e inversão (CC-CA) sejam efetuadas de forma integrada por uma única estrutura, contribuindo com a possibilidade de melhoria no rendimento global devido à minimização de estágios de conversão em cascata. Inicialmente, é efetuado um levantamento bibliográfico relacionando as principais topologias de conversores utilizando redes de impedância com indutores acoplados, considerando os aspectos operacionais, arranjo de impedância e ganho estático idealizado, desprezando perdas entre tensão de entrada e tensão máxima de saída obtida. Segue-se o estudo da operação de conversor CCCC empregando rede de impedância do tipo Y, definição das equações que regem o comportamento no tempo das tensões e correntes nos capacitores e indutores. É feita uma avaliação comparativa do ganho estático de tensão obtido e dos esforços nos semicondutores em função das variáveis de controle de projeto e operação disponíveis. Prossegue-se com o estudo da operação do conversor CC-CA empregando rede de impedância do tipo Y, considerando extensão das expressões encontradas para a operação como conversor CC-CC. Por fim, simulações computacionais foram desenvolvidas no ambiente PSIM contemplando o emprego dos circuitos e estratégias de modulação relacionadas com aplicações do conversor fonte- Y, em operação CC-CC e operação CC-CA visando a integração em sistemas de geração de energia, para demonstrar as vantagens e desvantagens do uso dessa topologia. / This paper deals with the study of energy converter topology based on the use of impedance network configuration called Y-source, with the objective of being applied in photovoltaic energy cogeneration systems in low voltage grids. In photovoltaic energy generation systems, it is usually necessary to have a voltage boost stage and an inverter stage, both controlled to produce voltage and / or sine current with the same frequency, amplitude and phase of the power grid. In this sense, this work proposes the application of the Y-source converter between the photovoltaic generation and the connection with the electric grid, so that the conversion actions related to elevation (DC-DC) and inversion (DC-AC) in a way integrated by a single structure, contributing to the possibility of improvement in the overall yield due to the minimization of cascade conversion stages. Initially a bibliographical survey was performed relating the main inverter topologies using impedance networks with coupled inductors considering the operational aspects, impedance arrangement and ideal static gain between the input voltage and the maximum output obtained. ext, the study of the DC-DC converter operation using the Y-type impedance network, definition of the equations governing the time behavior of the voltages and currents in the capacitors and inductors, is presented. It is also done the comparative evaluation of the static voltage gain obtained and the stresses in the semiconductors according to the available control and design control variables. Study of the operation of the DC-AC converter employing type Y impedance network, considering the extension of the expressions found for the operation as DC-DC converter. Finally, computational simulations were developed in the PSIM environment, considering the use of circuits and modulation strategies related to Y-source converter applications, in DC-DC operation and DC-AC operation for integration into power cogeneration systems, to demonstrate advantages and disadvantages of using this topology. / 134173/2017-1
|
328 |
Desenvolvimento e implementação de um sistema de controle de posição e velocidade de uma esteira transportadora usando inversor de frequência e microcontrolador /Raniel, Thiago. January 2011 (has links)
Orientador: Jozué Vieira Filho / Banca: Carlos Antonio Alves / Banca: Tony Inácio da Silva / Resumo: A automação de esteiras rolantes é algo comum e importante em sistemas industriais, mas problemas práticos ainda representam desafios. Um dos desses desafios é manter a precisão em sistemas que exigem paradas sistemáticas, pois folgas mecânicas tendem a provocar variações nas posições de paradas ao longo do tempo. A aplicação de motores de indução têm se tornado comum e soluções eficientes e de baixo custo têm sido pesquisadas. Neste trabalho foi desenvolvido e implementado um sistema de controle de posição e velocidade aplicado em esteiras transportadoras utilizando inversor de frequência, microcontrolador, encoder óptico incremental e sensor indutivo. O movimento da esteira transportadora é efetuado por um motor de indução trifásico, que é acionado pelo conjunto microcontrolador - inversor de frequência. Este conjunto impõe uma frequência no estator do motor através de uma troca de mensagens entre microcontrolador e inversor de frequência (Sistema Mestre-Escravo). Para o envio e recebimento das mensagens, utilizou-se o protocolo de comunicação serial USS® (Universal Serial Interface Protocol) através do padrão RS-485. Os controles de posição e velocidade de rotação do eixo do motor fundamentam-se no sinal gerado pelo encoder óptico incremental, responsável por informar a posição do eixo do motor ao longo da trajetória, e no sensor indutivo que determina uma referência externa importante para a esteira transportadora. Para o funcionamento automático da esteira, elaborou-se um software em linguagem de programação C. Como resultado obteve-se um sistema de controle de posição e velocidade do eixo do motor de indução trifásico que apresenta bons resultados / Abstract: Automated conveyors system have been largely used in industrial applications. However, there are still practical issues to be overcome. One of them is due to the system mechanical limitation which can lead to low accuracy for applications based on "stop-and-go" movements. Induction motors have been largely used in such applications and low costs solutions have been searched. In this work it was developed and implemented a system of positioning and velocity control applied to conveyors which is based on frequency inverter, microcontroller, optical incremental encoder and inductive sensor. The conveyor's movement is made by means of a three-phase induction motor, which is driven by the couple microcontroller-frequency inverter. There are messages exchange between the microcontroller and the frequency inverter (Master - Slave configuration) which is based on the communication serial protocol USS through the RS-485 standard. The position and velocity of the motor spindle are controlled using an optical incremental encoder, which is responsible to provide the position of the trajectory, and an inductive sensor which determines the initial reference to the conveyor. The software used to control the system was developed in C language. The results show a low cost system with good results / Mestre
|
329 |
Modelling, characterisation and application of GaN switching devicesMurillo Carrasco, Luis January 2016 (has links)
The recent application of semiconductor materials, such as GaN, to power electronics has led to the development of a new generation of devices, which promise lower losses, higher operating frequencies and reductions in equipment size. The aim of this research is to study the capabilities of emerging GaN power devices, to understand their advantages, drawbacks, the challenges of their implementation and their potential impact on the performance of power converters. The thesis starts by presenting the development of a simple model for the switching transients of a GaN cascode device under inductive load conditions. The model enables accurate predictions to be made of the switching losses and provides an understanding of the switching process and associated energy flows within the device. The model predictions are validated through experimental measurements. The model reveals the suitability of the cascode device to soft-switching converter topologies. Two GaN cascode transistors are characterised through experimental measurement of their switching parameters (switching speed and switching loss). The study confirms the limited effect of the driver voltage and gate resistance on the turn-off switching process of a cascode device. The performance of the GaN cascode devices is compared against state-of-the-art super junction Si transistors. The results confirm the feasibility of applying the GaN cascode devices in half and full-bridge circuits. Finally, GaN cascode transistors are used to implement a 270V - 28V, 1.5kW, 1 MHz phase-shifted full-bridge isolated converter demonstrating the use of the devices in soft-switching converters. Compared with a 100 kHz silicon counterpart, the magnetic component weight is reduced by 69% whilst achieving a similar efficiency of 91%.
|
330 |
Contribution à l'estimation et à l'amélioration de la production de l'énergie photovoltaïque / Contribution to the estimation and to the improvement of the photovoltaic energy productionCaldeira Nabo, Adelphe 03 July 2013 (has links)
Ces travaux de thèse consistent à proposer des outils matériels et logiciels pour estimer et améliorer le rendement énergétique de la chaine de conversion d’énergie photovoltaïque pour les applications de l’habitat. Nous avons dans un premier temps proposé une nouvelle architecture mixte d’onduleur à 5 niveaux. Ce type de structure, fondé sur un couplage d’un onduleur en pont complet et d’une architecture NPC, permet de diminuer le THD de la tension de sortie du convertisseur tout en limitant les niveaux de courant de fuite induits par les modules photovoltaïques. Ce type d’architecture est constitué d’un nombre limité de dispositifs à semi-conducteurs par rapport à une structure NPC et permet d’améliorer la robustesse de l’onduleur. Ces premiers résultats de test à puissances réduite permettent de valider le concept proposé. On s’intéresse ensuite à l’étude des paramètres environnant du système pouvant impacter la production d’énergie. Il est mis en évidence l’influence de la variation du coefficient d’échange convectif avec la vitesse du vent. Pour cela, un outil flexible d’estimation de production a été développé. Il est alors possible de quantifier et de qualifier l’impact des conditions météorologiques sur la production d’énergie photovoltaïque. / This study deals with the development of hardware and software tools to estimate and improve the efficiency of the PV energy conversion chain for household photovoltaic applications. We firstly proposed a new mixed 5-level inverter. This type of structure, based on the mixture of a full bridge inverter and NPC architecture, reduces the converter output voltage THD while reducing levels of leakage current induced by the PV modules. This architecture consists of a limited number of semiconductor devices with respect to a NPC structure and improves the robustness of the inverter. Several test results in reduced power validate the concept proposed. Finally, we focus on some parameters that could perturb the system and impact the energy production. It is highlighted that the impact of the convective heat transfer coefficient variation with wind speed is important. For this purpose, a flexible tool was developed to estimate the PV production. It is then possible to quantify and qualify the impact of wind speed on the photovoltaic energy production.
|
Page generated in 0.0465 seconds