Spelling suggestions: "subject:"ionmolecule creactions"" "subject:"ionmolecule coreactions""
1 |
Investigation of the gas-phase reactions of 2-methoxypropene with protonated pyridine- and aniline- based compoundsTanya Peng (16636068) 08 August 2023 (has links)
<p>The purpose of this thesis research was to examine the gas-phase reactions of 2- methoxypropene (MOP) with protonated nitrogen-containing compounds, specifically pyridine, and aniline derivatives, in a linear quadrupole ion trap mass spectrometer. In addition, to maintain consistency with past experiments, several previously investigated sulfoxides were included in this study. The analytes were protonated via atmospheric pressure chemical ionization (APCI) in a linear quadrupole ion trap spectrometer, transferred into the ion trap, isolated, and then allowed to react with MOP inside the ion trap. </p>
<p>All the protonated sulfoxides examined reacted with MOP to generate a stable adduct, as expected. They also transferred a proton to MOP. All protonated anilines reacted in the same manner with MOP. The diagnostic adduct formation reaction is proposed to involve proton transfer from the protonated analyte to MOP followed by addition of the neutral analyte to protonated MOP. In sharp contrast to sulfoxides and anilines, protonated pyridines were unreactive toward MOP. Therefore, the formation of a stable adduct is diagnostic for both sulfoxides and anilines but these compounds can be differentiated from pyridines due to the lack of reactivity of their protonated forms toward MOP. </p>
|
2 |
Hmotnostní spektrometrie v proudové trubici s vybranými ionty, SIFT-MS / Selected ion flow tube mass spectrometry, SIFT-MSSovová, Kristýna January 2013 (has links)
This thesis describes research that has been carried out during the years 2009-2013 as a part of my PhD project related to the method of selected ion flow tube mass spectrometry (SIFT-MS) and its application in interdisciplinary areas of research. SIFT-MS is a method that allows accurate quantification of trace gases and vapours presented in humid air with the focus on human breath; without any sample preparation and in real time. The thesis is divided into several parts. The first part reviews the history of mass spectrometry as a background for the quantitative analytical methods as PTR-MS and SIFT-MS. The second part discusses the detailed history of development of SIFT-MS, starting from principles of selected ion flow tube (SIFT) technique that has been used for study of ion-molecule reactions in the gas phase and forms the basis of SIFT-MS. The next part discusses volatile organic compounds of different biological origin: bacterial, plant and human breath metabolites that can be analyzed in real time using SIFT-MS. The main part "Results and Discussion" is divided into several subsections that serve as commentaries to the enclosed research papers published in peer reviewed journals. The first is a detailed step by step overview of the kinetics of ion molecule reactions which is the basis of...
|
3 |
Development of a field portable mass spectrometer for quantitative analysis of volatile organic compounds in airDavey, Nicholas 26 April 2016 (has links)
The typical strategy for atmospheric analysis of volatile organic compounds
(VOCs), is to collect discrete samples which are then transported to a laboratory for
analysis. This method has limited spatial and temporal resolution, and can be both
costly and time consuming. To overcome these limitations, a mobile monitoring
platform was developed for real-time quantitative chemical analysis. This work
describes the development of membrane introduction mass spectrometer and
identi es the necessary requirements to make a reliable and e ective instrument for
in-situ chemical analysis. These include, the integration of a membrane interface
with a miniaturized mass spectrometer, development of a data management
strategy, reducing the e ects of isobaric interferences and employing an internal
standard for quantitative measurements. Furthermore, the negative e ects of
environmental variables, such as the Earth's magnetic eld, were examined and
e ectively eliminated. In addition, this work demonstrates quantitative mapping of
atmospheric VOCs in real-time, which allows rapid identi cation of chemical plumes
and therefore, areas of potential concern. Both lab and eld-based comparisons of
iv
membrane introduction mass spectrometer data and traditional whole air sampling
canister data were undertaken. The primary eld site was near Ft. McMurray, AB
where baseline data was collected around a steam assisted gravity drainage (SAGD)
facility and surrounding public roads. Monitoring for fugitive emissions at this
facility and surrounding bitumen mining and processing operations is demonstrated.
Field data were also obtained, near an industrial site in Ft.Saskatchewan, AB, that
demonstrate the e cacy of an adaptive sampling strategy. Finally, chemical
ionization was investigated as a soft ionization strategy to improve chemical
selectivity for the analysis of complex hydrocarbon mixtures. The development of an
in-line liquid chemical ionization reagent delivery system is presented and proposed
as an e ective strategy for eliminating interferences arising from biogenic terpenes
and alkyl aromatics. In all, this thesis presents the design and implementation of a
mobile membrane introduction mass spectrometer for atmospheric chemical
analysis. Results that improve performance and demonstrate the novelty of the
data-type are provided, along with avenues for future development. / Graduate / 0486 / 0799 / 0608
|
4 |
DEVELOPMENT OF MASS SPECTROMETRIC METHODS FOR FAST IDENTIFICATION OF DRUG METABOLITES AND FOR DETERMINATION OF THE CHEMICAL COMPOSITIONS OF CRUDE OILS OF DIFFERENT API GRAVITIESEdouard Niyonsaba (6953621) 15 August 2019 (has links)
<p>Mass spectrometry (MS)
alone or coupled with high-performance liquid chromatography (HPLC) or gas
chromatography (GC) is a versatile analytical tool that is routinely employed
for identification of unknown compounds in complex mixtures. MS operates by separating
ionized analytes based on their mass-to-charge (<i>m/z</i>) ratios. If the analyte can be ionized without complete
fragmentation, MS provides molecular weight information and, if performed at
high resolution, elemental compositions for the ionized analytes. Tandem mass
spectrometry (MS<sup>n</sup>, n <u>></u> 2 where each MS step corresponds to
an ion isolation or separation event) also provides structural information of
ionized analytes. With this approach, structural information of the ionized
analytes is obtained by isolating the ionized analytes of interest and
subjecting them to fragmentation experiments, such as collision-activated
dissociation (CAD). The ions of interest can also be isolated and allowed to
react with gaseous molecules to generate product ions (ion-molecule reactions).
</p>
The
experiments described in this dissertation focused on the development of tandem
mass spectrometry methods based on CAD and/or gas-phase ion-molecule reactions
for the differentiation of acyl, <i>N</i>-
and <i>O</i>-glucuronide drug metabolites
and for identification of primary carbamates as potentially mutagenic
impurities. Further, by using a previously published method titled Distillation, Precipitation,
Fractionation Mass Spectrometry (DPF MS), the chemical compositions of
five crude oil samples, including heavy, medium, and light crude oils with
different API gravities, were determined. Additionally, the gravimetric
percentages of different compound classes found in these crude oils are
reported as well as the correlations found between
API gravities and the chemical compositions of crude oils.
|
5 |
Reações de íons de compostos oxigenados em fase gasosa estudadas por espectroscopia de ressonância ciclotrônica de ions / Reactions of ions of oxygen compounds in the gas phase studied by ion cyclotron resonance spectroscopyTiedemann, Peter Wilhelm 06 May 1974 (has links)
A técnica de ressonância ciclotrônica de íons permite aprisionar numa cela adequada íons produzidos por impacto de elétrons sobre um gás a baixa pressão (10-7 - 10-4 Torr) . Os íons são mantidos na cela por tempos de 3 a 10 ms e dessa maneira podem reagir com moléculas neutras do gás do qual provém ou, de algum outro gás introduzido no espectrômetro. Resultam dessas reações produtos iônicos, que frequentemente foram observados reagirem novamente com moléculas neutras, dando origem a íons terciários. Todos os íons são detectados pela potência que absorvem de um campo de rádio-frequência conveniente, podendo ser registrado um espectro, no qual cada íon é caracterizado por sua massa, sendo a intensidade do pico correspondente proporcional à corrente iônica parcial do lon na cela. Contudo, a situação é tal que íons de massa maior permanecem por tempos mais longos na cela, de modo a reagirem em maior extensão e absorverem maior potência do oscilador de rádio-frequência. Essa discriminação de massa precisa ser levada em conta ao interpretar os espectros de ressonância ciclotrônica de íons e, para esclarecer a natureza das correções necessárias, as principais equações que descrevem o movimento dos íons na cela foram deduzidas e discutidas na primeira parte deste trabalho. Tais equações sugerem urna série de experiências, que tornam a espectroscopia de ressonância ciclotrônica de íons uma técnica muito versátil. Estas experiências foram todas apresentadas na primeira parte, devendo-se salientar a experiência de ressonância dupla, que permite identificar de maneira inequívoca o precursor de algum produto iônico, a experiência de ejeção de íons, que permite remover seletivamente um íon de dada espécie da cela, além de experiências que visam a obtenção de constantes de velocidade de reações de íons com moléculas. É justamente esta última grandeza mencionada, a saber, a constante de velocidade de uma reação, a que pode ser com parada com valores calculados a partir de modelos teóricos. Esses modelos baseiam-se em sua maioria na interação do íon, considerado como carga puntiforme, com a molécula neutra de certa polarizabilidade e momento dipolar (modelo de polarização) ou, na fragmentação de um complexo intermediário (modelos estatísticos). Os aspectos teóricos das reações entre íons e moléculas em fase gasosa foram analisados e os modelos mencionados, discutidos, além de modelos chamados \"diretos\" mais apropriados para comparações com resultados de experiências de feixes iônicos. A espectroscopia de ressonância ciclotrônica de íons foi utilizada para o estudo de reações de acilação em cetonas, reações bastante gerais (foi verificado que ocorrem também em outros sistemas carbonílicos) e que podem ser representadas pela equação RCOR\'+ + RCOR\' → RCO+ (RCOR\') + R\'. Estudos de variação das correntes iônicas relativas de todos os íons das cetonas, em função da pressão de cetona neutra, possibitaram a dedução de um mecanismo de formação desses íons acilados. Os resultados estão de acordo com um esquema no qual esse produto é formado pela fragmentação de um dímero intermediário, para o qual se supõe existirem condições de estado estacionário. Esta fragmentação se dá de maneira análoga à fragmentação dos íons moleculares de cetonas em espectroscopia de massa usual, tratando-se então de uma fragmentação induzida por uma espécie neutra. A pressões elevadas, nas quais o dímero pode sofrer colisões não-reativas e relaxar o excesso de energia interna, o mesmo é estabilizado, fornecendo um pico no espectro. Cetonas de polarizabilidade maior têm uma afinidade maior para o grupo acila; isto foi concluído, quando foram observadas reações de transferência de grupos acila, como por exemplo a transferência de CH3CO+ da cetona para a butanona num sistema formado pela mistura dessas duas cetonas. Estudos de basicidade relativa de álcoois, ácidos, ésteres e cetonas revelaram que há uma relação de proporcionalidade entre a basicidade desses compostos e seu potencial de ionização. Isto havia sido mostrado anteriormente para o caso das aminas, por outros pesquisadores. O conhecimento da basicidade de álcoois, ácidos e ésteres permitiu analisar reações de esterificação e transesterificação sob o ponto de vista termoquímico. Trata-se de reações entre moléculas protonadas das espécies mencionadas, que podem ser consideradas análogas às reações catalisadas por ácidos em solução. O fato de uma reação ser exotérmica não significa que ela ocorra. Assim, foi observado que ácido fórmico não é esterificado por metanol ou etanol nas condições reinantes numa cela de ressonância ciclotrônica de íons, enquanto quê ácido acético o é. A ordem relativa de basicidades em fase gasosa foi determinada como sendo HCOOH < ( CH30H < C2H5OH < CH3COOH. Dessa maneira os resultados estão de acordo com um ataque nucleófilo por parte do álcool no ácido protonado; porém, se este é menos básico que o álcool, ocorre a transferência de próton e não a esterificação. Reações de transesterificação não foram observadas de maneira alguma, mas uma outra reação entre ésteres e álcoois foi encontrada e que pode ser exemplificada pela equação (CH3)2CHOH2+ + HCOOC3H7 → HCO2(C3H7) (C3H7)+ + H2O. Esta reação só se dá com álcoois capazes de produzir íons de carbônio mais estáveis que os primários; portanto metanol e etanol não reagem. O produto formado pode fragmentar novamente O que revelou que o grupo alquila proveniente do álcool retém um excesso de energia na sua ligação, pois na decomposição é esta a ligação que rompe. Em todos estes estudos, isto é, nos de acilação de cetonas e de esterificação, bem como nos estudos de basicidade, foi sempre salientada a importância de examinar essas reações em fase gasosa, pelo fato de serem reações mais simples, uma vez que se dão na ausência de solventes e portanto revelarem propriedades intrínsecas das espécies envolvidas. Finalmente foram descritas algumas modificações realizadas no espectrômetro de ressonância ciclotrônica de íons, para poder operá-lo de forma pulsada. Com isso é possível manter os íons por tempos maiores na cela (500 ms) e, o que é mais importante, esses tempos podem ser definidos com grande precisão, o que torna viável a obtenção de resultados quantitativos (constantes de velocidade de reação) melhores. / Ions can be trapped for times as long as 10 ms by the combined action of magnetic and electric fields in the cell of an ion cyclotron resonance spectrometer. Despite the low operating pressure (10-7 - 10-4 Torr), the ions experience many collisions during this time, some of which may be reactive, leading to product ions. The ion cyclotron resonance spectrum thus displays a series of peaks corresponding to the various primary, secondary, and eventually tertiary ions; the peak heights, after suitable mass correction, yield ion currents. The double resonance technique allows one to establish unambiguously the precursor ions of a given product ion, by accelerating the suspected reagent ions and examining the effect on the product ion. Ions can also be selectively ejected from the cell. These techniques, which were described in this thesis after an outline of the basic principles of ion cyclotron resonance spectroscopy, allow, one to unravel the gaseous ion chemistry in any chemical system. Rate constants of ion-molecule reactions can be determined by ion cyclotron resonance spectroscopy. The necessary equations, based on the equations relating measured peak intensities to ion currents, were derived and their limitations, as well as those of the experimental procedures for obtaining the input parameters for the expressions, were discussed. Rate constants can also be calculated theoretically and there are a few microscopic models which treat the collision of an ion with a polarizable neutral molecule (polarization model) or the unimolecular fragmentation of an intermediate complex (statistical models). Direct models, although more suitable for comparison with results from beam experiments, were presented together with the above mentioned models, and their importance for the interpretation of the basic aspects of ion-molecule chemistry was discussed. The ion cyclotron resonance spectrometer was used to study an acylation reaction in ketones, which seems to be general for carbonyl compounds. RCOR\'+ + RCOR\' → RCO+ (RCOR\') + R\'. Pressure plots of the ion currents in ketones allowed us to propose a mechanism according to which the acylated ketones are formed by the fragmentation of an excited dimer ion, in a fashion analogous to the fragmentation of ketone parent ions in ordinary mass spectroscopy. Steady state conditions prevail for the excited dimer, which can be stabilized at pressures high enough for the ion to collide with a neutral in a time short compared to his life time, thus relaxing excess energy. The acyl group can be transferred from a ketone of lower polarizability to one of higher polarizability; thus CH3CO+ is for instance transferred from acetone to butanone in a mixture of these two compounds, as detected by double resonance. Relative proton affinities of alcohols, acids, esters, and ketones were determined and the results are in agreement with the assumption of constant hydrogen affinity within a homologous series, as has been shown previously for the case of amines by others. Of particular interest is the following order of proton affinities: HCOOH < ( CH30H < C2H5OH < CH3COOH. The positive ion spectra of mixtures of acetic acid with methanol or ethanol revealed that this acid reacts with the alcohols yielding a protonated ester, in a process apparently analogous to the acid catalized esterification in solution. On the other hand,formic acid was found not to behave in this way, although the reactions are all exothermic. These results could be rationalized assuming that a nucleophilic attack takes place on the protonated acid by the alcohol. If the alcohol is more basic, only proton transfer is observed. Transesterification reactions were not detected, but this failure was compensated by a reaction which all higher alcohols, namely those capable of producing a secondary or tertiary carbonium ion, undergo with the esters. This reaction can be exemplified by (CH3)2CHOH2+ + HCOOC3H7 → HCO2(C3H7) (C3H7)+ + H2O. Although in this particular reaction both alkyl groups seem equivalent, they are not so with respect to internal vibrational energy; this was demonstrated by the decomposition reactions which the ionic products like the one in the reaction above undergo: the alkyl group originally in the alcohol is always eliminated. All the reactions mentioned above, namely, acylation of ketones, proton transfer, and esterification, show the importance of ion-molecule reaction studies in the gas phase, where the intrinsic properties of the reacting species can be examined, free from solvation effects. This point has been repeatedly stressed. In a last chapter in this thesis the necessary modifications of the ion cyclotron resonance spectrometer, in order to operate it in a pulsed mode, were described. With this kind of operation a bunch of ions is formed by a pulse of the electron beam and the ions react for a known period of time, after which they are removed from the cell. Kinetic studies can be more easily carried out in this way than in the conventional one. Some preliminary results were shown.
|
6 |
A espectrometria de massas e as bio-moleculas = relação estrutura/reatividade de peptideos por reações ion/molecula e mobilidade de ions e busca de novos biomarcadores em clinica medica por imageamento quimio-seletivo de tecidos / Mass spectrometry and bio-molecules : structure-reactivity relation of peptides by ion/molecule reactions and ion mobility and search for new biomarkers in clinical medicini for chemo-selective imaging of tissuesAbdelnur, Patricia Verardi 06 February 2010 (has links)
Orientador: Marcos Nogueira Eberlin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-15T20:42:56Z (GMT). No. of bitstreams: 1
Abdelnur_PatriciaVerardi_D.pdf: 5557128 bytes, checksum: 61ed7f2c805466ffbfeb599d933481d4 (MD5)
Previous issue date: 2010 / Resumo: O objetivo principal deste projeto de doutorado foi o de estudar novas aplicações da espectrometria de massas (MS) para bio-moléculas com o emprego de novas técnicas e aborgadens recentes. Um dos objetivos foi estudar identificação seletiva e mais rapida de um AA em uma sequência peptídica. Estudou-se também as formas tridimensionais dos pepíideos e de seus íons fragmentos formados (a, b e y), utilizando ferramentas modernas de MS, como a IMMS e reações íon/molécula, uma vez que a estrutura tridimensional exata destes íons ainda não é totalmente elucidada. Uma técnica recente em espectrometria de massas, o imageamento químico por MALDI-MS, foi também empregado na busca de biomarcadores proteicos para câncer. Esta técnica apresenta perspectivas de aplicações em diversas áreas de grande importância como na área médica, uma vez que fornece uma imagem dos constituintes químicos de tecidos. Esta imagem pode detectar um câncer a partir de dados químicos e não apenas pela morfologia das células como é feito atualmente. Neste trabalho, analisou-se amostras de tecidos pancreáticos normais, tumorais e com pancreatite, e algumas proteinas foram identificadas e apresentaram-se potencial como biomarcadores para este tipo de câncer / Abstract: The aim of this doctoral project was to study new applications of mass spectrometry (MS) to bio-molecules by using new techniques and recent approaches room pressure, with the goal of obtaining a more rapid and selective identification of an AA in a peptide sequence. Three-dimensional forms of the peptides and their fragment ions formed (a, b and y), were also studied using modern tools of MS, as ion-mobility mass spectrometry (IMMS) and ion / molecule reactions. This study was important because the exact three-dimensional structure of these ions is not yet fully elucidated. A recent technique in mass spectrometry, the chemical imaging by MALDI-MS, was also employed in the search for protein biomarkers for cancer. This technique presents prospects for applications in several areas of great importance as in the medical field since it provides a picture of the chemical constituents of tissues. In this image, cancer can be detected cancer based on the chemical data and not only on the morphology of cells as is normally done today. In this study, we analyzed samples of normal pancreatic tissue, tumor and pancreatitis, and some proteins have been identified and presented themselves as potential biomarkers for this cancer / Doutorado / Quimica Organica / Doutor em Ciências
|
7 |
Reações de íons de compostos oxigenados em fase gasosa estudadas por espectroscopia de ressonância ciclotrônica de ions / Reactions of ions of oxygen compounds in the gas phase studied by ion cyclotron resonance spectroscopyPeter Wilhelm Tiedemann 06 May 1974 (has links)
A técnica de ressonância ciclotrônica de íons permite aprisionar numa cela adequada íons produzidos por impacto de elétrons sobre um gás a baixa pressão (10-7 - 10-4 Torr) . Os íons são mantidos na cela por tempos de 3 a 10 ms e dessa maneira podem reagir com moléculas neutras do gás do qual provém ou, de algum outro gás introduzido no espectrômetro. Resultam dessas reações produtos iônicos, que frequentemente foram observados reagirem novamente com moléculas neutras, dando origem a íons terciários. Todos os íons são detectados pela potência que absorvem de um campo de rádio-frequência conveniente, podendo ser registrado um espectro, no qual cada íon é caracterizado por sua massa, sendo a intensidade do pico correspondente proporcional à corrente iônica parcial do lon na cela. Contudo, a situação é tal que íons de massa maior permanecem por tempos mais longos na cela, de modo a reagirem em maior extensão e absorverem maior potência do oscilador de rádio-frequência. Essa discriminação de massa precisa ser levada em conta ao interpretar os espectros de ressonância ciclotrônica de íons e, para esclarecer a natureza das correções necessárias, as principais equações que descrevem o movimento dos íons na cela foram deduzidas e discutidas na primeira parte deste trabalho. Tais equações sugerem urna série de experiências, que tornam a espectroscopia de ressonância ciclotrônica de íons uma técnica muito versátil. Estas experiências foram todas apresentadas na primeira parte, devendo-se salientar a experiência de ressonância dupla, que permite identificar de maneira inequívoca o precursor de algum produto iônico, a experiência de ejeção de íons, que permite remover seletivamente um íon de dada espécie da cela, além de experiências que visam a obtenção de constantes de velocidade de reações de íons com moléculas. É justamente esta última grandeza mencionada, a saber, a constante de velocidade de uma reação, a que pode ser com parada com valores calculados a partir de modelos teóricos. Esses modelos baseiam-se em sua maioria na interação do íon, considerado como carga puntiforme, com a molécula neutra de certa polarizabilidade e momento dipolar (modelo de polarização) ou, na fragmentação de um complexo intermediário (modelos estatísticos). Os aspectos teóricos das reações entre íons e moléculas em fase gasosa foram analisados e os modelos mencionados, discutidos, além de modelos chamados \"diretos\" mais apropriados para comparações com resultados de experiências de feixes iônicos. A espectroscopia de ressonância ciclotrônica de íons foi utilizada para o estudo de reações de acilação em cetonas, reações bastante gerais (foi verificado que ocorrem também em outros sistemas carbonílicos) e que podem ser representadas pela equação RCOR\'+ + RCOR\' → RCO+ (RCOR\') + R\'. Estudos de variação das correntes iônicas relativas de todos os íons das cetonas, em função da pressão de cetona neutra, possibitaram a dedução de um mecanismo de formação desses íons acilados. Os resultados estão de acordo com um esquema no qual esse produto é formado pela fragmentação de um dímero intermediário, para o qual se supõe existirem condições de estado estacionário. Esta fragmentação se dá de maneira análoga à fragmentação dos íons moleculares de cetonas em espectroscopia de massa usual, tratando-se então de uma fragmentação induzida por uma espécie neutra. A pressões elevadas, nas quais o dímero pode sofrer colisões não-reativas e relaxar o excesso de energia interna, o mesmo é estabilizado, fornecendo um pico no espectro. Cetonas de polarizabilidade maior têm uma afinidade maior para o grupo acila; isto foi concluído, quando foram observadas reações de transferência de grupos acila, como por exemplo a transferência de CH3CO+ da cetona para a butanona num sistema formado pela mistura dessas duas cetonas. Estudos de basicidade relativa de álcoois, ácidos, ésteres e cetonas revelaram que há uma relação de proporcionalidade entre a basicidade desses compostos e seu potencial de ionização. Isto havia sido mostrado anteriormente para o caso das aminas, por outros pesquisadores. O conhecimento da basicidade de álcoois, ácidos e ésteres permitiu analisar reações de esterificação e transesterificação sob o ponto de vista termoquímico. Trata-se de reações entre moléculas protonadas das espécies mencionadas, que podem ser consideradas análogas às reações catalisadas por ácidos em solução. O fato de uma reação ser exotérmica não significa que ela ocorra. Assim, foi observado que ácido fórmico não é esterificado por metanol ou etanol nas condições reinantes numa cela de ressonância ciclotrônica de íons, enquanto quê ácido acético o é. A ordem relativa de basicidades em fase gasosa foi determinada como sendo HCOOH < ( CH30H < C2H5OH < CH3COOH. Dessa maneira os resultados estão de acordo com um ataque nucleófilo por parte do álcool no ácido protonado; porém, se este é menos básico que o álcool, ocorre a transferência de próton e não a esterificação. Reações de transesterificação não foram observadas de maneira alguma, mas uma outra reação entre ésteres e álcoois foi encontrada e que pode ser exemplificada pela equação (CH3)2CHOH2+ + HCOOC3H7 → HCO2(C3H7) (C3H7)+ + H2O. Esta reação só se dá com álcoois capazes de produzir íons de carbônio mais estáveis que os primários; portanto metanol e etanol não reagem. O produto formado pode fragmentar novamente O que revelou que o grupo alquila proveniente do álcool retém um excesso de energia na sua ligação, pois na decomposição é esta a ligação que rompe. Em todos estes estudos, isto é, nos de acilação de cetonas e de esterificação, bem como nos estudos de basicidade, foi sempre salientada a importância de examinar essas reações em fase gasosa, pelo fato de serem reações mais simples, uma vez que se dão na ausência de solventes e portanto revelarem propriedades intrínsecas das espécies envolvidas. Finalmente foram descritas algumas modificações realizadas no espectrômetro de ressonância ciclotrônica de íons, para poder operá-lo de forma pulsada. Com isso é possível manter os íons por tempos maiores na cela (500 ms) e, o que é mais importante, esses tempos podem ser definidos com grande precisão, o que torna viável a obtenção de resultados quantitativos (constantes de velocidade de reação) melhores. / Ions can be trapped for times as long as 10 ms by the combined action of magnetic and electric fields in the cell of an ion cyclotron resonance spectrometer. Despite the low operating pressure (10-7 - 10-4 Torr), the ions experience many collisions during this time, some of which may be reactive, leading to product ions. The ion cyclotron resonance spectrum thus displays a series of peaks corresponding to the various primary, secondary, and eventually tertiary ions; the peak heights, after suitable mass correction, yield ion currents. The double resonance technique allows one to establish unambiguously the precursor ions of a given product ion, by accelerating the suspected reagent ions and examining the effect on the product ion. Ions can also be selectively ejected from the cell. These techniques, which were described in this thesis after an outline of the basic principles of ion cyclotron resonance spectroscopy, allow, one to unravel the gaseous ion chemistry in any chemical system. Rate constants of ion-molecule reactions can be determined by ion cyclotron resonance spectroscopy. The necessary equations, based on the equations relating measured peak intensities to ion currents, were derived and their limitations, as well as those of the experimental procedures for obtaining the input parameters for the expressions, were discussed. Rate constants can also be calculated theoretically and there are a few microscopic models which treat the collision of an ion with a polarizable neutral molecule (polarization model) or the unimolecular fragmentation of an intermediate complex (statistical models). Direct models, although more suitable for comparison with results from beam experiments, were presented together with the above mentioned models, and their importance for the interpretation of the basic aspects of ion-molecule chemistry was discussed. The ion cyclotron resonance spectrometer was used to study an acylation reaction in ketones, which seems to be general for carbonyl compounds. RCOR\'+ + RCOR\' → RCO+ (RCOR\') + R\'. Pressure plots of the ion currents in ketones allowed us to propose a mechanism according to which the acylated ketones are formed by the fragmentation of an excited dimer ion, in a fashion analogous to the fragmentation of ketone parent ions in ordinary mass spectroscopy. Steady state conditions prevail for the excited dimer, which can be stabilized at pressures high enough for the ion to collide with a neutral in a time short compared to his life time, thus relaxing excess energy. The acyl group can be transferred from a ketone of lower polarizability to one of higher polarizability; thus CH3CO+ is for instance transferred from acetone to butanone in a mixture of these two compounds, as detected by double resonance. Relative proton affinities of alcohols, acids, esters, and ketones were determined and the results are in agreement with the assumption of constant hydrogen affinity within a homologous series, as has been shown previously for the case of amines by others. Of particular interest is the following order of proton affinities: HCOOH < ( CH30H < C2H5OH < CH3COOH. The positive ion spectra of mixtures of acetic acid with methanol or ethanol revealed that this acid reacts with the alcohols yielding a protonated ester, in a process apparently analogous to the acid catalized esterification in solution. On the other hand,formic acid was found not to behave in this way, although the reactions are all exothermic. These results could be rationalized assuming that a nucleophilic attack takes place on the protonated acid by the alcohol. If the alcohol is more basic, only proton transfer is observed. Transesterification reactions were not detected, but this failure was compensated by a reaction which all higher alcohols, namely those capable of producing a secondary or tertiary carbonium ion, undergo with the esters. This reaction can be exemplified by (CH3)2CHOH2+ + HCOOC3H7 → HCO2(C3H7) (C3H7)+ + H2O. Although in this particular reaction both alkyl groups seem equivalent, they are not so with respect to internal vibrational energy; this was demonstrated by the decomposition reactions which the ionic products like the one in the reaction above undergo: the alkyl group originally in the alcohol is always eliminated. All the reactions mentioned above, namely, acylation of ketones, proton transfer, and esterification, show the importance of ion-molecule reaction studies in the gas phase, where the intrinsic properties of the reacting species can be examined, free from solvation effects. This point has been repeatedly stressed. In a last chapter in this thesis the necessary modifications of the ion cyclotron resonance spectrometer, in order to operate it in a pulsed mode, were described. With this kind of operation a bunch of ions is formed by a pulse of the electron beam and the ions react for a known period of time, after which they are removed from the cell. Kinetic studies can be more easily carried out in this way than in the conventional one. Some preliminary results were shown.
|
8 |
Flowing afterglow studies of recombination of electrons with heavy Ions using FALP-MS / Etude post-décharge en écoulement de la recombinaison d'électrons avec des ions lourds utilisant FALP-MSAlshammari, Suliman 06 February 2018 (has links)
La recombinaison dissociative (RD) est le processus dans lequel un ion moléculaire positif se recombine avec un électron et se dissocie après en fragments neutres. Parmi les différents types de réactions entre ions moléculaires et électrons, la RD mérite une attention particulière à cause du rôle important qu'elle joue dans les plasmas à basse température et de faible densité, telles que celles rencontrées dans les ionosphères planétaires et les nuages interstellaires. En dépit de l'apparente simplicité de la RD, son étude s'est avéré difficile aussi bien du point de vue expérimental que théorique. Afin d'apporter plus de lumière sur ce processus, la technique de la post-décharge en écoulement a été introduite et a été largement utilisée ces dernières décennies. La présente thèse est dédiée aux études expérimentales de la réaction RD, à l'aide du spectromètre de masse à sonde Langmuir (FALP-MS) en post-décharge en écoulement, à l'Université de Rennes 1, à Rennes, en France. Nous avons étudié la réaction RD à température ambiante a été étudiée pour les ions moléculaires d'acétone ( ) et les cations de diméthylamine cations ( ainsi que les vitesses de réaction des cations de triméthylamine ( cations, et nous avons obtenu des valeurs avec des incertitudes de of ± 30 %. De plus, nous avons étudié l'attachement électronique à la diméthylamine neutre et nous avons trouvé une constante de vitesse de = 4.81 x 10-10 cm3 s-1. Un nouveau système d'injection pour l'anneau de stockage électrostatique de KACST a été conçu et construit dans le laboratoire de l'IPR à Rennes. Le couplage de la source d'ions avec un analyseur de masse quadripolaire et l'utilisation d'un système de vannes pulsées assurant un pompage différentiel entre différentes régions de la ligne d'injection constitue une méthode nouvelle dans le contexte d'un anneau de stockage. Le but final de ce projet est l'étude des réactions à ions lourds tels que les ions moléculaires biologiques. / Dissociative recombination (DR) is a process in which a positive molecular ion recombines with an electron and subsequently dissociates into neutral fragments. Among the different types of molecular ion-electron reactions DR deserves particular attention due to the important role it plays in low-temperature and low-density plasmas such as those encountered in planetary ionospheres and interstellar clouds. Despite the apparent simplicity of the DR reaction, its investigation has proven to be a difficult task from both experimental and theoretical perspectives. In order to shed more light upon this process the flowing afterglow technique has been introduced and utilised extensively for the last few decades. This thesis is devoted to experimental studies into the DR reaction using the flowing afterglow Langmuir probe mass spectrometer FALP-MS at the University of Rennes 1, in Rennes, France. The DR reaction at room temperature has been investigated for the acetone molecular ions ( ) and dimethylamine cations ( as well as the reaction rates of trimethylamine ( cations, and the obtained values were with uncertainties of ± 30 %. In addition, the electronic attachment to neutral dimethylamine was also studied and the rate constant was determined to be = 4.81 x 10-10 cm3 s-1. A new ion injection system system for the KACST electrostatic storage ring has been designed and built in the IPR laboratory in Rennes. The coupling of an ion source with a quadrupole mass analyzer and the use of a gas pulsing system to maintain the differential pumping between different regions of the injection line, is a novel technique for use with a storage ring. The final goal of this system is to study the reactivity of heavy ions such as biological molecular ions.
|
9 |
Réactions ion-molécule en phase gaz pour la chimie des ionosphères planétaires et des plasmas / Gaz-phase ion-molecule reactions for the study of planetary ionospheres and plasmasLopes, Allan 21 December 2017 (has links)
La thèse porte sur des études expérimentales de réactions d’ions positifs et négatifs pour lesquelles on cherche à caractériser l’effet des différentes formes d’énergie : excitation des ions parents et/ou énergie de collision sur la réactivité. Deux buts sont poursuivis. Le premier, fondamental, est de comprendre la dynamique réactionnelle des systèmes étudiés. Le deuxième est plus appliqué. Il s’agit de fournir des données pour la modélisation de la chimie des milieux complexes (ionosphères, plasmas…). Les systèmes étudiés concernent la réactivité de cations excités CH₃⁺ avec des hydrocarbures saturés et insaturés (alc-ane, -ènes et -ynes en C1 à C4) pour sonder la réactivité sur des molécules de fonctionnalité et de tailles variées ainsi que la réactivité de l’anion C₃N⁻ avec l’acétylène C₂H₂. Ces systèmes sont d’intérêt pour l’étude de l’ionosphère de Titan. Nous avons étudié la réactivité de ces systèmes sur le dispositif CERISES en fonction de l’énergie de collision et de l’énergie interne des ions parents. Les anions C₃N⁻ sont produits par attachement dissociatif d’électrons sur le précurseur BrC₃N. Les cations CH₃⁺ peuvent être formés par deux méthodes. Au laboratoire, l’impact électronique conduit, sur le méthane CH₄, à la formation de CH₃⁺ peu excité, et sur le chlorométhane CH₃Cl, à la formation de CH₃⁺ plus excité. Cette observation a permis de préparer les expériences au synchrotron SOLEIL où on utilise la photoionisation des radicaux CH₃ produits par la pyrolyse du nitrométhane CH₃NO₂ pour former les ions CH₃⁺ et contrôler leur excitation. La variation de l’énergie de photon entre 9.8 et 15 eV a permis de faire varier la distribution d’énergie vibrationnelle ou électronique des ions CH₃⁺. Le développement d’un détecteur de photoélectrons adapté à la source de radicaux a permis la réalisation d’expériences TPEPICO (Threshold PhotoElectron PhotoIon Coincidence) où les ions sont extraits de la source en coïncidence avec des électrons de seuil permettant ainsi un contrôle complet de leur énergie. Nous avons observé que l’énergie interne de CH₃⁺ peut jouer un rôle important sur sa réactivité en ouvrant certaines voies de réaction comme la dissociation séquentielle de certains produits (réactions avec le méthane, le propène…) ou bien la voie de transfert de charge endothermique (réactions avec le méthane, l’éthène) que l’énergie de collision ne favorise pas efficacement. L’observation de l’évolution de la section efficace de formation des produits en fonction des deux types d’énergie nous a également permis de discuter les mécanismes de formation de certains produits, comme ceux passant par la décomposition d’un complexe ou par des transferts plus directs. On a pu montrer que la réaction de C₃N⁻ + C₂H₂ produisait des ions C₂H⁻, CN⁻ et C₅N⁻ en faibles quantités et seulement au-dessus de seuils en énergie de collision qui excluent leur formation dans des atmosphères très froides comme celle de Titan, sauf s’il existe des processus formant les anions C₃N⁻ avec de l’énergie. / This PhD project is focused on the experimental study of reactions of positive and negative ions for which we want to characterize the effect of different energies: internal energy of parents ions and/or collisional energy on the reactivity. There are two main goals. The first is to understand the reaction dynamics of the studied systems. The second one is to obtain data for modelisation of the chemistry in complex areas (ionosphere, plasmas...). Studied systems will concern the reactivity of excited cations CH₃⁺ with saturated and unsaturated hydrocarbons (alcane, alcene and alcyne from C1 to C4) as well as the reactivity of the C₃N⁻ anion with acetylene C₂H₂. Targets are chosen for theirs different chemical functions and interesting size for theoretical studies of Titan. We have studied the reactivity of these systems on the CERISES setup as a function of internal and collisional energies of the parent ions. C₃N⁻ anions are produced by dissociative electron attachment on BrC₃N. CH₃⁺ cations can be produced by two different methods. At the LCP, electronic impact on methane CH₄ produce CH₃⁺ cations with low internal energy whereas electronic impact on chloromethane CH₃Cl produce CH₃⁺ cations with more internal energy. This observation allowed us to prepare for the experiments at the SOLEIL synchrotron where CH₃⁺ cations are produced with controlled internal energy by photoionisation of CH₃ radicals produced in-situ by pyrolysis of nitromethane CH₃NO₂. Tuning of the photon energy between 9.8 and 15 eV allowed us to change the vibrational or electronic energy distribution of the CH₃⁺ cations. The development of a photoelectron detector fitted to the radical source enabled TPEPICO experiments (Threshold PhotoElectron PhotoIon Coincidence) where ions are extracted from the source in coincidence with threshold electrons which allow a total control of their energy.We saw that the internal energy of CH₃⁺ can have an important role on its reactivity by opening paths of reaction like sequential dissociation of products (seen in reactions with methane, propene…) or endothermic charge transfer (with methane and ethene) which is not efficiently enhanced by collisional energy. From the evolution of the absolute reaction cross section with the two different energies we discussed the mechanisms of formation of the observed products (decomposition of a complex or direct transfer). The reaction C₃N⁻ + C₂H₂ produce C₂H⁻, CN⁻ and C₅N⁻ anions in small quantities and only above collisional energy threshold which exclude their formation in cold atmosphere like Titan’s one unless there is processes leading to the production of C₃N⁻ with energy.
|
10 |
Nové metody hmotnostní spektrometrie pro stopovou analýzu látek v lidském dechu. / New mass spectrometric methods for trace gas analysis of human breath.Brůhová Michalčíková, Regina January 2019 (has links)
This dissertation thesis summarizes results of experiments that have been carried out during my PhD studies related to the new mass spectrometric methods for trace gas analysis of human breath. The thesis is divided into the theoretical and experimental part. The chapter at the beginning of this dissertation summarizes the current research in the area of breath analysis. It is describing the common breath metabolites, benefits and challenges of the method for therapeutic monitoring and clinical diagnosis and current applications. The next chapter of the theoretical introduction describes the techniques suitable for this area of research, with a special emphasis on mass-spectrometric techniques (in particular the selected ion flow tube mass spectrometry, SIFT-MS, method that allows accurate quantification of trace gases and vapours in humid air/human breath). All these parts are elaborated via the scientific literature review. The following chapters are then directly related to my own research and describes the conducted experiment, including the results obtained. This experimental part "Results and Discussion" is divided to the individual subsections, which are conceived as the commentaries to the enclosed research papers published in peer reviewed journals. The first is the detailed step by step...
|
Page generated in 0.0916 seconds