• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 26
  • 20
  • 18
  • 7
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 318
  • 59
  • 49
  • 42
  • 41
  • 38
  • 36
  • 30
  • 26
  • 23
  • 21
  • 21
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Development and Characterization of an Iridium-Modified Electrochemical Biosensor for Potential Diabetic Patient Management

Fang, Lei January 2009 (has links)
No description available.
312

Metal Containing Nucleosides that Function as Therapeutic and Diagnostic Agents Against Brain Cancer

Williams, Jennifer Nicole 02 September 2014 (has links)
No description available.
313

Direct Current Block of Peripheral Nerve: Electrode and Waveform Development

Vrabec, Tina L. 27 January 2016 (has links)
No description available.
314

Photophysics and photochemistry of diiodomethane and hexabromoiridate - paradigm molecules for organic and inorganic chemistry - studied with sub-50-fs broadband pump-probe spectroscopy

Matveev, Sergey M. 15 July 2016 (has links)
No description available.
315

Controlled and localized synthesis of molecularly imprinted polymers for chemical sensors / Synthèse localisée et contrôlée de polymères à empreintes moléculaires pour capteurs chimiques

Kaya, Zeynep 05 November 2015 (has links)
Les polymères à empreintes moléculaires (MIP), également appelés "anticorps en plastique", sont des récepteurs biomimétiques synthétiques qui sont capables de reconnaître et lier une molécule cible avec une affinité et une spécificité comparables à celles des récepteurs naturels tels que des enzymes ou des anticorps. En effet, les MIP sont utilisés comme éléments de reconnaissance synthétiques dans les biocapteurs et biopuces pour la détection de petits analytes et les protéines. La technique d'impression moléculaire est basée sur la formation de cavités de reconnaissance spécifiques dans des matrices polymères par un procédé de moulage à l'échelle moléculaire. Pour la conception de capteurs et biopuces, une cinétique d'adsorption et une réponse du capteur rapide, l'intégration des polymères avec des transducteurs, et une haute sensibilité de détection sont parmi les principaux défis. Dans cette thèse, ces problèmes ont été abordés par le développement de nanocomposites MIP / d'or via le greffage du MIP sur les surfaces en utilisant des techniques de polymérisation dédiées comme l'ATRP qui est une technique de polymérisation radicalaire contrôlée (CRP). Ces techniques CRP sophistiquées sont en mesure d'améliorer considérablement les matériaux polymères. L'utilisation de l'ATRP dans le domaine de MIP a été limitée jusqu'à présent en raison de son incompatibilité inhérente avec des monomères acides comme l'acide méthacrylique (MAA), qui est de loin le monomère fonctionnel le plus largement utilisé dans les MIP. Ici, un nouveau procédé est décrit pour la synthèse de MIP par ATRP photo-initiée utilisant fac-[Ir(Ppy)3] comme catalyseur. La synthèse est possible à température ambiante et est compatible avec des monomères acides. Cette étude élargit considérablement la gamme de monomères fonctionnels et de molécules empreintes qui peuvent être utilisés lors de la synthèse de MIP par ATRP. La méthode proposée a été utilisée pour la fabrication de nanocomposites hiérarchiquement organisés sur des surfaces métalliques nanostructurés avec des nano-trous et nano-ilots, présentant des effets plasmoniques pour l'amplification du signal. La synthèse de films de MIP à l'échelle du nanomètre localisés sur la surface d'or a été démontrée. Des méthodes de transduction optiques, à savoir la résonance de plasmons de surface localisée (LSPR) et la spectroscopie Raman exaltée par effet de surface (SERS) ont été exploitées. Ces techniques se sont montrées prometteuses pour l'amélioration de la limite de détection dans la détection d'analytes biologiquement pertinents, y compris les protéines et le médicament propranolol. / Molecularly imprinted polymers (MIPs), also referred to as plastic antibodies, are synthetic biomimetic receptors that are able to bind target molecules with similar affinity and specificity as natural receptors such as enzymes or antibodies. Indeed, MIPs are used as synthetic recognition elements in biosensors and biochips for the detection of small analytes and proteins. The molecular imprinting technique is based on the formation of specific recognition cavities in polymer matrices by a templating process at the molecular level. For sensor and biochip development, fast binding kinetics of the MIP for a rapid sensor response, the integration of the polymers with transducers, and a high sensitivity of detection are among the main challenges. In this thesis, the above issues are addressed by developing MIP/gold nanocomposites by grafting MIPs on surfaces, using dedicated techniques like atom transfer radical polymerization (ATRP) which is a versatile controlled radical polymerization (CRP) technique. Theses ophisticated CRP techniques, are able to greatly improve the polymeric materials. The use of ATRP in the MIP field has been limited so far due to its inherent incompatibility with acidic monomers like methacrylic acid (MAA), which is by far the most widely used functional monomer. Herein, a new method is described for the MIP synthesis through photo-initiated ATRP using fac-[Ir(ppy)3] as ATRP catalyst. The synthesis is possible at room temperature and is compatible with acidic monomers. This study considerably widens the range of functional monomers and thus molecular templates that can be used when MIPs are synthesized by ATRP. The proposed method was used for fabrication of hierarchically organised nanocomposites based on MIPs and nanostructured metal surfaces containing nanoholes or nanoislands, exhibiting plasmonic effects for signal amplification. The fabrication of nanometer scale MIP coatings localized on gold surface was demonstrated. Optical transduction methods, namely Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) were exploited and shown that they hold great promise for enhancing the limit of detection in sensing of biologically relevant analytes including proteins and the drug propranolol.
316

Investigation of electrochemical properties and performance of stimulation/sensing electrodes for pacemaker applications

Norlin, Anna January 2005 (has links)
People suffering from certain types of arrhythmia may benefit from the implantation of a cardiac pacemaker. Pacemakers artificially stimulate the heart by applying short electrical pulses to the cardiac tissue to restore and maintain a steady heart rhythm. By adjusting the pulse delivery rate the heart is stimulated to beat at desired pace. The stimulation pulses are transferred from the pacemaker to the heart via an electrode, which is implanted into the cardiac tissue. Additionally, the electrode must also sense the cardiac response and transfer those signals back to the electronics in the pacemaker for processing. The communication between the electrode and the tissue takes place on the electrode/electrolyte (tissue) interface. This interface serves as the contact point where the electronic current in the electrode is converted to ionic currents capable to operate in the body. The stimulation/sensing signals are transferred across the interface via three electrochemical mechanisms: i) non-faradaic charging/discharging of the electrochemical double layer, ii) reversible and iii) irreversible faradaic reactions. It is necessary to study the contribution of each mechanism to the total charge transferred to evaluate the pacing/sensing performance of the pacemaker electrode. In this thesis, the electrochemical properties and performance of stimulation/sensing electrodes for pacemaker applications have been investigated by electrochemical impedance spectroscopy, cyclic voltammetry and transient electrochemical techniques. All measurements were performed in synthetic body fluid with buffer capacity. Complementary surface analysis was performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The results reveal different interfacial behaviour and stability for electrode materials such as Pt, TiN, porous carbon, conducting oxides (RuO2 and IrO2 and mixed oxides) and porous Nb2O5 oxide. The influence of the charge/discharge rate on the electrode characteristics also has been evaluated. Although the rough and porous electrodes provide a high interfacial capacitance, the maximum capacitance cannot be fully employed at high charge/discharge rates because only a small part of the effective surface area is accessible. The benefit of pseudo-capacitive material properties on charge delivery was observed. However, these materials suffer similar limitations at high charge/discharge rate and, hence, are only utilising the surface bound pseudo-capacitive sites. Porous Nb2O5 electrodes were investigated to study the performance of capacitor electrodes. These electrodes predominantly deliver the charge via reversible non-faradaic mechanisms and hence do not produce irreversible by-products. They can deliver very high potential pulses while maintaining high impedance and, thus, charge lost by faradaic currents are kept low. By producing Nb oxide by plasma electrolysis oxidation a porous surface structure is obtained which has the potential to provide a biocompatible interface for cell adherence and growth. This thesis covers a multidisciplinary area. In an attempt to connect diverse fields, such as electrophysiology, materials science and electrochemistry, the first chapters have been attributed to explaining fundamental aspects of the respective fields. This thesis also reviews the current opinion of pacing and sensing theory, with special focus on some areas where detailed explanation is needed for the fundamental nature of electrostimulation/sensing. / QC 20101014
317

Synthesis, Characterization, and Reactivity Studies of Au, Ag, and Pd Colloids Prepared by the Solvated Metal Atom Dispersion (SMAD) Method

Jose, Deepa January 2009 (has links) (PDF)
Surfactant bound stable colloids of Au, Ag, and Pd were prepared by the solvated Metal Atom Dispersion (SMAD) method, a method involving co-condensation of metal and solvent vapors on the walls of a reactor at 77 k. The as=prepared dodecanethiol-capped Au and Ag colloids consisting of polydisperse nanoparticles were transformed into colloids consisting of highly monodisperse nanoparticles by the digestive ripening process. In the case of Pd colloids, digestive ripening led to the formation of thiolate complexes. The [Pd(SC12H25)2]6 complex formed from the dodecanethiol-capped Pd nanoparticles was found to be a versatile precursor for the synthesis of a variety of Pd nanophases such as Pd(0), PdS, and Pd@PdO by soventless thermolysis. Co-digestive ripening of as-prepared dodecanethiol-capped Au or Ag colloids with Pd colloid resulted in Au@Pd and Ag@Pd core-shell nanoparticles, respectively; attempts to transform the core-shell structures into alloy phases even at high temperatures were unsuccessful. Phosphine-capped Au nanoparticles were also prepared by the SMAD method and refluxing of this colloid resulted in an Ostwald ripening process rather than the expected digestive ripening due to the labile nature of bound PPh3. The labile nature of the bound phosphine was studied using 31P NMR spectroscopy and utilized in the adsorption of CO. Palladium nanoparticles obtained from the SMAD Pd-butanone colloids and Pd@PdO nanoparticles prepared by the solventless thermolysis of Pd-dodecanethiolate complex were found to be good catalysts for the generation of H2 from AB via either hydrolysis and methanolysis. The active hydrogen atoms produced during the hydrolysis and methanolysis diffuse into the Pd lattice. It was also noticed that hydrogen atoms that were buried deep inside the Pd lattice cannot be removed completely by heating the sample even at 600°C. Wet chemical reduction method was employed for the synthesis of PVP capped, nearly monodisperse, spherical Ir nanoparticles which undergo a polymer driven self-assembly at 80°C to afford rectangular structures and interlinked particles.
318

Synthèse et caractérisation de nouveaux matériaux organophosphorés pour des applications en optoélectronique / Synthesis and characterisation of new organophosphorus materials for optoelectronic applications

Delaunay, Wylliam 26 November 2013 (has links)
Ce manuscrit décrit la synthèse et la caractérisation de nouvelles molécules incluant un cœur organophosphoré, le phosphole. Certaines de ces molécules ont été utilisées pour la fabrication de dispositifs OLEDs ou de cellules photovoltaïques organiques. Le premier chapitre fait un état de l'art de la chimie du phosphole dans le domaine des matériaux organiques entre 2010 et 2013. Le second chapitre décrit la synthèse et l'étude physico-chimique de molécules qui permettent de moduler l'angle de torsion dans les systèmes π conjugués pour faire varier les propriétés optiques et rédox. Une de ces molécules a permis la fabrication d'une diode blanche organique. Le troisième chapitre de ce manuscrit présente une structure tridimensionnelle intéressante, le 1,1-biphosphole. En plus de posséder une structure tridimensionnelle, ces structures présentent un mode de conjugaison original, la conjugaison σ-π, qui permet de réduire l'écart HO-BV de nos systèmes. Une de ces molécules a permis la fabrication de la première cellule photovoltaïque organique avec un dérivé du phosphole inséré dans la couche active. Dans une deuxième partie, ce chapitre traite également de la réactivité originale du 1,1'-biphosphole qui permet de fonctionnaliser l'atome de phosphore par une simple substitution nucléophile, permettant d'insérer une grande variété de substituants pour moduler les propriétés des molécules. Pour finir, ce manuscrit présente un quatrième chapitre qui implique le phosphole comme unité coordinante afin de réaliser des nouveaux complexes qui permettent de réaliser une ortho-métallation par activation C-H. De nouveaux complexes ortho-métallés d'Ir(III) et de Rh(III) ont été synthétisés et caractérisés. / This thesis describes the synthesis and the characterization of new molecules including an organophosphorous unit, the phosphole ring. Some molecules have been used to build devices like organic light emitting diodes or organic photovoltaic cells.The first chapter describes the state of the art of the phosphole chemistry in organic materials between 2010 and 2013. The second chapter describes molecules having a tuneable twist angle allowing a fine control of the properties of the molecules like the HOMO-LUMO gap. One of those molecules has been used to build a white organic light emitting diode. The third chapter of this thesis presents an interesting three dimensional structure, the 1,1'-biphosphole. Beside this three dimensional structure, the molecules possess an original conjugation mode, the σ-π conjugation which allows a decrease of the HOMO-LUMO gap. One molecule from this chapter was used as absorber in organic photovoltaic cell. In the second part of this chapter, the 1,1'-biphosphole structure shows an interesting reactivity toward nucleophilic attack in order to functionalize the phosphorus center. This reactivity has been used to make new molecules and offer the opportunity to attach a wide range of substituents to the phosphorus atom in order to tune the properties of the molecules. The fourth chapter deals with the coordination chemistry of the phosphole in order to realize new ortho-metalated complexes. New Ir(III) and Rh(III) complexes have been synthesized and characterized.

Page generated in 0.0469 seconds