• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • Tagged with
  • 16
  • 16
  • 14
  • 12
  • 9
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Unveiling Anomaly Detection: Navigating Cultural Shifts and Model Dynamics in AIOps Implementations

Sandén, Therese January 2024 (has links)
This report examines Artificial Intelligence for IT Operations, commonly known as AIOps, delving deeper into the area of anomaly detection and also investigating the effects of the shift in working methods when a company starts using AI-driven tools. Two anomaly detection machine learning algorithms were explored, Isolation Forest(IF)and Local Outlier Factor(LOF), and compared by testing with a focuson throughput and resource efficiency, to mirror how they would operate in a real-time cloud environment. From a throughput and efficiency perspective, LOF outperforms IF when using default parameters, making it a more suitable choice for cloud environments where processing speed is critical. The higher throughput of LOF indicates that it can handle a larger volume of log data more quickly, which is essential for real-time anomaly detection in dynamic cloud settings. However,  LOF’s higher memory usage suggests that it may be less scalable in memory-constrained environments within the cloud. This could lead to increased costs due to the need for more memory resources. The tests show, however, that tuning the models’ parameters are essential to fit them to different types of data. Through a literature study, it is evident that the integration of AI and automation into routine tasks presents an opportunity for workforce development and operational improvement.Addressing cultural barriers and fostering collaboration across IT teamsare essential for successful adoption and implementation.
12

Deep Learning Empowered Unsupervised Contextual Information Extraction and its applications in Communication Systems

Gusain, Kunal 16 January 2023 (has links)
Master of Science / There has been an astronomical increase in data at the network edge due to the rapid development of 5G infrastructure and the proliferation of the Internet of Things (IoT). In order to improve the network controller's decision-making capabilities and improve the user experience, it is of paramount importance to properly analyze this data. However, transporting such a large amount of data from edge devices to the network controller requires large bandwidth and increased latency, presenting a significant challenge to resource-constrained wireless networks. By using information processing techniques, one could effectively address this problem by sending only pertinent and critical information to the network controller. Nevertheless, finding critical information from high-dimensional observation is not an easy task, especially when large amounts of background information are present. Our thesis proposes to extract critical but low-dimensional information from high-dimensional observations using an information-theoretic deep learning framework. We focus on two distinct problems where critical information extraction is imperative. In the first problem, we study the problem of feature extraction from video frames collected in a dynamic environment and showcase its effectiveness using a video game simulation experiment. In the second problem, we investigate the detection of anomaly signals in the spectrum by extracting and analyzing useful features from spectrograms. Using extensive simulation experiments based on a practical data set, we conclude that our proposed approach is highly effective in detecting anomaly signals in a wide range of signal-to-noise ratios.
13

Exploring Integration of Predictive Maintenance using Anomaly Detection : Enhancing Productivity in Manufacturing / Utforska integration av prediktivt underhåll med hjälp av avvikelsedetektering : Förbättra produktiviteten inom tillverkning

Bülund, Malin January 2024 (has links)
In the manufacturing industry, predictive maintenance (PdM) stands out by leveraging data analytics and IoT technologies to predict machine failures, offering a significant advancement over traditional reactive and scheduled maintenance practices. The aim of this thesis was to examine how anomaly detection algorithms could be utilized to anticipate potential breakdowns in manufacturing operations, while also investigating the feasibility and potential benefits of integrating PdM strategies into a production line. The methodology of this projectconsisted of a literature review, application of machine learning (ML) algorithms, and conducting interviews. Firstly, the literature review provided a foundational basis to explore the benefits of PdM and its impact on production line productivity, thereby shaping the development of interview questions. Secondly, ML algorithms were employed to analyze data and predict equipment failures. The algorithms used in this project were: Isolation Forest (IF), Local Outlier Factor (LOF), Logistic Regression (LR), One-Class Support Vector Machine(OC-SVM) and Random Forest (RF). Lastly, interviews with production line personnel provided qualitative insights into the current maintenance practices and perceptions of PdM. The findings from this project underscore the efficacy of the IF model in identifying potential equipment failures, emphasizing its key role in improving future PdM strategies to enhance maintenance schedules and boost operational efficiency. Insights gained from both literature and interviews underscore the transformative potential of PdM in refining maintenance strategies, enhancing operational efficiency, and minimizing unplanned downtime. More broadly, the successful implementation of these technologies is expected to revolutionize manufacturing processes, driving towards more sustainable and efficient industrial operations. / I tillverkningsindustrin utmärker sig prediktivt underhåll (PdM) genom att använda dataanalys och IoT-teknologier för att förutse maskinfel, vilket erbjuder ett betydande framsteg jämfört med traditionella reaktiva och schemalagda underhållsstrategier. Syftet med denna avhandling var att undersöka hur algoritmer för avvikelsedetektering kunde användas för att förutse potentiella haverier i tillverkningsoperationer, samtidigt som genomförbarheten och de potentiella fördelarna med att integrera PdM-strategier i en produktionslinje undersöktes. Metodologin för detta projekt bestod av en litteraturöversikt, tillämpning av maskininlärningsalgoritmer (ML) och genomförande av intervjuer. Först och främst gav litteraturöversikten en grundläggande bas för att utforska fördelarna med PdM och dess inverkan på produktionslinjens produktivitet, vilket därmed påverkade utformningen av intervjufrågorna. För det andra användes ML-algoritmer för att analysera data och förutsäga utrustningsfel. Algoritmerna som användes i detta projekt var: Isolation Forest (IF), Local Outlier Factor (LOF), Logistic Regression (LR), One-Class Support Vector Machine (OCSVM) och Random Forest (RF). Slutligen gav intervjuer med produktionslinjepersonal kvalitativa insikter i de nuvarande underhållsstrategierna och uppfattningarna om PdM.Resultaten från detta projekt understryker effektiviteten hos IF-modellen för att identifiera potentiella utrustningsfel, vilket betonar dess centrala roll i att förbättra framtida PdM-strategier för att förbättra underhållsscheman och öka den operativa effektiviteten. Insikter vunna från både litteratur och intervjuer understryker PdM:s transformativa potential att finslipa underhållsstrategier, öka operativ effektivitet och minimera oplanerade driftstopp. Mer generellt förväntas den framgångsrika implementeringen av dessa teknologier revolutionera tillverkningsprocesser och driva mot mer hållbara och effektiva industriella operationer.
14

Detecting anomalies in data streams driven by ajump-diffusion process / Anomalidetektion i dataströmmar för hopp-diffusionsprocesser

Paulin, Carl January 2021 (has links)
Jump-diffusion processes often model financial time series as they can simulate the random jumps that they frequently exhibit. These jumps can be seen as anomalies and are essential for financial analysis and model building, making them vital to detect.The realized variation, realized bipower variation, and realized semi-variation were tested to see if one could use them to detect jumps in a jump-diffusion process and if anomaly detection algorithms can use them as features to improve their accuracy. The algorithms tested were Isolation Forest, Robust Random Cut Forest, and Isolation Forest Algorithm for Streaming Data, where the latter two use streaming data. This was done by generating a Merton jump-diffusion process with a varying jump-rate and tested using each algorithm with each of the features. The performance of each algorithm was measured using the F1-score to compare the difference between features and algorithms. It was found that the algorithms were improved from using the features; Isolation Forest saw improvement from using one, or more, of the named features. For the streaming algorithms, Robust Random Cut Forest performed the best for every jump-rate except the lowest. Using a combination of the features gave the highest F1-score for both streaming algorithms. These results show one can use these features to extract jumps, as anomaly scores, and improve the accuracy of the algorithms, both in a batch and stream setting. / Hopp-diffusionsprocesser används regelbundet för att modellera finansiella tidsserier eftersom de kan simulera de slumpmässiga hopp som ofta uppstår. Dessa hopp kan ses som anomalier och är viktiga för finansiell analys och modellbyggnad, vilket gör dom väldigt viktiga att hitta. Den realiserade variationen, realiserade bipower variationen, och realiserade semi-variationen är faktorer av en tidsserie som kan användas för att hitta hopp i hopp-diffusionprocesser. De används här för att testa om anomali-detektionsalgoritmer kan använda funktionerna för att förbättra dess förmåga att detektera hopp. Algoritmerna som testades var Isolation Forest, Robust Random Cut Forest, och Isolation Forest Algoritmen för Strömmande data, där de två sistnämnda använder strömmande data. Detta gjordes genom att genera data från en Merton hopp-diffusionprocess med varierande hoppfrekvens där de olika algoritmerna testades med varje funktion samt med kombinationer av funktioner. Prestationen av varje algoritm beräknades med hjälp av F1-värde för att kunna jämföra algoritmerna och funktionerna med varandra. Det hittades att funktionerna kan användas för att extrahera hopp från hopp-diffusionprocesser och även använda de som en indikator för när hopp skulle ha hänt. Algoritmerna fick även ett högre F1-värde när de använde funktionerna. Isolation Forest fick ett förbättrat F1-värde genom att använda en eller fler utav funktionerna och hade ett högre F1-värde än att bara använda funktionerna för att detektera hopp. Robust Random Cut Forest hade högst F1-värde av de två algoritmer som använde strömmande data och båda fick högst F1-värde när man använde en kombination utav alla funktioner. Resultatet visar att dessa funktioner fungerar för att extrahera hopp från hopprocesser, använda dem för att detektera hopp, och att algoritmernas förmåga att detektera hoppen ökade med hjälp av funktionerna.
15

Market Surveillance Using Empirical Quantile Model and Machine Learning / Marknadsövervakning med hjälp av empirisk kvantilmodell och maskininlärning

Landberg, Daniel January 2022 (has links)
In recent years, financial trading has become more available. This has led to more market participants and more trades taking place each day. The increased activity also implies an increasing number of abusive trades. To detect the abusive trades, market surveillance systems are developed and used. In this thesis, two different methods were tested to detect these abusive trades on high-dimensional data. One was based on empirical quantiles, and the other was based on an unsupervised machine learning technique called isolation forest. The empirical quantile method uses empirical quantiles on dimensionally reduced data to determine if a datapoint is an outlier or not. Principal Component Analysis (PCA) is used to reduce the dimensionality of the data and handle the correlation between features.Isolation forest is a machine learning method that detects outliers by sorting each datapoint in a tree structure. If a datapoint is close to the root, it is more likely to be an outlier. Isolation forest have been proven to detect outliers in high-dimensional datasets successfully, but have not been tested before for market surveillance. The performance of both the quantile method and isolation forest was tested by using recall and run-time.  The conclusion was that the empirical quantile method did not detect outliers accurately when all dimensions of the data were used. The method most likely suffered from the curse of dimensionality and could not handle high dimensional data. However, the performance increased when the dimensionality was reduced. Isolation forest performed better than the empirical quantile method and detected 99% of all outliers by classifying 226 datapoints as outliers out of a dataset with 184 true outliers and 1882 datapoints. / Under de senaste åren har finansiell handel blivit mer tillgänglig för allmänheten. Detta har lett till fler deltagare på marknaderna och att fler affärer sker varje dag. Den ökade aktiviteten innebär också att de missbruk som förekommer ökar. För att upptäcka otillåtna affärer utvecklas och används marknadsövervakningssystem. I den här avhandlingen testades två olika metoder för att upptäcka dessa missbruk utifrån högdimensionell data. Den ena baserades på empiriska kvantiler och den andra baserades på en oövervakad maskininlärningsteknik som kallas isolationsskog. Den empiriska kvantilmetoden använder empiriska kvantiler på dimensionellt reducerad data för att avgöra om en datapunkt är ett extremvärde eller inte. För att reducera dimensionen av datan, och för att hantera korrelationen mellan variabler, används huvudkomponent analys (HKA).Isolationsskog är en maskininlärnings metod som upptäcker extremvärden genom att sortera varje datapunkt i en trädstruktur. Om en datapunkt är nära roten är det mer sannolikt att det är en extremvärde. Isolationsskog har visat sig framgångsrikt upptäcka extremvärden i högdimensionella datauppsättningar, men har inte testats för marknadsövervakning tidigare. För att mäta prestanda för båda metoderna användes recall och körtid. Slutsatsen är att den empiriska kvantilmetoden inte hittade extremvärden när alla dimensioner av datan användes. Metoden led med största sannolikhet av dimensionalitetens förbannelse och kunde inte hantera högdimensionell data, men när dimensionaliteten reducerades ökade prestandan. Isolationsskog presterade bättre än den empiriska kvantilmetoden och lyckades detektera 99% av alla extremvärden genom att klassificera 226 datapunkter som extremvärden ur ett dataset med 184 verkliga extremvärden och 1882 datapunkter.
16

A deep learning based anomaly detection pipeline for battery fleets

Khongbantabam, Nabakumar Singh January 2021 (has links)
This thesis proposes a deep learning anomaly detection pipeline to detect possible anomalies during the operation of a fleet of batteries and presents its development and evaluation. The pipeline employs sensors that connect to each battery in the fleet to remotely collect real-time measurements of their operating characteristics, such as voltage, current, and temperature. The deep learning based time-series anomaly detection model was developed using Variational Autoencoder (VAE) architecture that utilizes either Long Short-Term Memory (LSTM) or, its cousin, Gated Recurrent Unit (GRU) as the encoder and the decoder networks (LSTMVAE and GRUVAE). Both variants were evaluated against three well-known conventional anomaly detection algorithms Isolation Nearest Neighbour (iNNE), Isolation Forest (iForest), and kth Nearest Neighbour (k-NN) algorithms. All five models were trained using two variations in the training dataset (full-year dataset and partial recent dataset), producing a total of 10 different model variants. The models were trained using the unsupervised method and the results were evaluated using a test dataset consisting of a few known anomaly days in the past operation of the customer’s battery fleet. The results demonstrated that k-NN and GRUVAE performed close to each other, outperforming the rest of the models with a notable margin. LSTMVAE and iForest performed moderately, while the iNNE and iForest variant trained with the full dataset, performed the worst in the evaluation. A general observation also reveals that limiting the training dataset to only a recent period produces better results nearly consistently across all models. / Detta examensarbete föreslår en pipeline för djupinlärning av avvikelser för att upptäcka möjliga anomalier under driften av en flotta av batterier och presenterar dess utveckling och utvärdering. Rörledningen använder sensorer som ansluter till varje batteri i flottan för att på distans samla in realtidsmätningar av deras driftsegenskaper, såsom spänning, ström och temperatur. Den djupinlärningsbaserade tidsserieanomalidetekteringsmodellen utvecklades med VAE-arkitektur som använder antingen LSTM eller, dess kusin, GRU som kodare och avkodarnätverk (LSTMVAE och GRU) VAE). Båda varianterna utvärderades mot tre välkända konventionella anomalidetekteringsalgoritmer -iNNE, iForest och k-NN algoritmer. Alla fem modellerna tränades med hjälp av två varianter av träningsdatauppsättningen (helårsdatauppsättning och delvis färsk datauppsättning), vilket producerade totalt 10 olika modellvarianter. Modellerna tränades med den oövervakade metoden och resultaten utvärderades med hjälp av en testdatauppsättning bestående av några kända anomalidagar under tidigare drift av kundens batteriflotta. Resultaten visade att k-NN och GRUVAE presterade nära varandra och överträffade resten av modellerna med en anmärkningsvärd marginal. LSTMVAE och iForest presterade måttligt, medan varianten iNNE och iForest tränade med hela datasetet presterade sämst i utvärderingen. En allmän observation avslöjar också att en begränsning av träningsdatauppsättningen till endast en ny period ger bättre resultat nästan konsekvent över alla modeller.

Page generated in 0.0861 seconds