Spelling suggestions: "subject:"kähler manifold"" "subject:"wähler manifold""
1 |
Théorèmes d'annulation et théorèmes de structure sur les variétés kähleriennes compactes / Vanishing theorems and structure theorems of compact kähler manifoldsCao, Junyan 18 September 2013 (has links)
L'objet principal de cette thèse est de généraliser un certain nombre de résultats bien connus de la géométrie algébrique au cas k"{a}hlerien non nécessairement projectif. On généralise d'abord le théorème d'annulation de Nadel au cas k"{a}hlerien arbitraire. On obtient aussi un cas particulier du théorème d'annulation de Kawamata-Viehweg pour les variétés qui admettent une fibration vers un tore dont la fibre générique est projective. En utilisant ce résultat, on étudie le problème de déformation pour les variétés k"{a}hlériennes compactes sous une hypothèse portant sur les fibrés canoniques. On étudie enfin les variétés à fibré anticonique nef. On montre que si le fibré anticanonique est nef, alors le fibré tangent est à pentes semi-positif relative à la filtration de Harder-Narasimhan pour la polarization $omega_X ^{n-1}$. Comme application, on donne une preuve simple de la surjectivité de l'application d'Albanese, et on étudie aussi la trivialité locale de l'application d'Albanese. / The aim of this thesis is to generalize a certain number of results of algebraic geometry to K"{a}hler geometry. We first generalize the Nadel vanishing theorem to arbitrary compact K"{a}hler manifolds. We prove also a particular version of the Kawamata-Viehweg vanishing theorem for manifolds admitting a fibration to a torus such that the generic fiber is projective. Using this result, we study the theory of deformations of compact Kähler manifolds under certain assumptions on their canonical bundles. Finally, we study varieties with nef anticanonical bundles. We prove that the slopes of the Harder-Narasimhan filtration of the tangent bundles with respect to a polarization of the form $omega_X^{n-1}$ are semi-positive. As an application, we give a simple proof of the surjectivity of the Albanese map, and we investigate also the local triviality of the Albanese map.
|
2 |
Théorie spectrale inverse pour les opérateurs de Toeplitz 1D / Inverse spectral theory for 1D Toeplitz operatorsLe Floch, Yohann 19 June 2014 (has links)
Dans cette thèse, nous prouvons des résultats de théorie spectrale, directe et inverse, dans la limite semi-classique, pour les opérateurs de Toeplitz autoadjoints sur les surfaces. Pour les opérateurs pseudo-différentiels, les résultats en question sont déjà connus, et il est naturel de vouloir les étendre aux opérateurs de Toeplitz. Les conditions de Bohr-Sommerfeld usuelles, qui caractérisent les valeurs propres proches d'une valeur régulière du symbole principal, ont été obtenues il y a quelques années seulement pour les opérateurs de Toeplitz. Notre contribution consiste en l'extension de ces conditions près de valeurs critiques non dégénérées. Nous traitons le cas d'une valeur critique elliptique à l'aide d'une technique de forme normale ; l'opérateur modèle est la réalisation de l'oscillateur harmonique sur l'espace de Bargmann, dont le spectre est bien connu. Dans le cas d'une valeur critique hyperbolique, la forme normale ne suffit plus et nous complétons l'étude en faisant appel à des arguments dus à Colin de Verdière et Parisse, à qui l'on doit le résultat analogue dans le cas pseudo-différentiel. Enfin, nous établissons un résultat de théorie spectrale inverse pour les opérateurs de Toeplitz autoadjoints sur les surfaces ; plus précisément, nous montrons que sous certaines hypothèses génériques, la connaissance du spectre à l'ordre deux dans la limite semi-classique permet de retrouver le symbole principal à symplectomorphisme près. Ce résultat s'appuie en grande partie sur l'écriture des règles de Bohr-Sommerfeld. / In this thesis, we prove some direct and inverse spectral results, in the semiclassical limit, for self-adjoint Toeplitz operators on surfaces. For pseudodifferential operators, these results are already known, and it is natural to expect their extension to the Toeplitz setting. The usual Bohr-Sommerfeld conditions, characterizing the eigenvalues close to a regular value of the principal symbol, have been obtained a few years ago for Toeplitz operators. Our contribution consists in extending these conditions near nondegenerate critical values. We handle the case of an elliptic value thanks to a normal form technique; the model operator is the realization of the harmonic oscillator in the Bargmann space, whose spectrum is well-known. In the case of a hyperbolic value, the normal form is no longer sufficient and we conclude by using additional arguments due to Colin de Verdière and Parisse, who derived the analogous result for pseudodifferential operators. Finally, we write an inverse spectral result for self-adjoint Toeplitz operators on surfaces; more precisely, we show that under some generic hypotheses, the knowledge of the spectrum up to order two in the semiclassical limit allows to recover the principal symbol up to symplectomorphism. This result essentially relies on Bohr-Sommerfeld rules.
|
3 |
Variétés toriques à éventail infini et construction de nouvelles variétés complexes compactes : quotients de groupes de Lie complexes et discrets.Battisti, Laurent 10 December 2012 (has links)
L'objet de cette thèse est l'étude de certaines classes de variétés complexes compactes non kählériennes. On regarde d'abord la classe des surfaces de Kato. Étant donnés une surface de Kato minimale S, D le diviseur maximal de S formé des courbes rationnelles de S et ϖ : Š ͢ S le revêtement universel de S, on démontre que Š \ϖ-1 (D) est une variété de Stein. Les variétés LVMB sont la seconde classe de variétés non kählériennes étudiées. Ces variétés complexes sont obtenues en quotientant un ouvert U de Pn par un sous-groupe de Lie fermé G de (C*)n de dimension m. On reformule ce procédé en remplaçant U par la donnée d'un sous-éventail de celui de Pn et G par un sous-espace vectoriel de Rn convenable. On construit ensuite de nouvelles variétés complexes compactes non kählériennes en combinant une méthode due à Sankaran et celle donnant les variétés LVMB. Sankaran considère un ouvert U d'une variété torique dont le quotient par un groupe W discret est une variété compacte. Ici, on munit une certaine variété torique Y de l'action d'un sous-groupe de Lie G de (C*)n de sorte que le quotient X de Y par G soit une variété, puis on quotiente un ouvert de X par un groupe discret W analogue à celui de Sankaran.Enfin, on étudie les variétés OT, une autre classe de variétés non kählériennes, dont on démontre que leur dimension algébrique est nulle. Ces variétés sont obtenues comme quotient d'un ouvert de Cm par le produit semi-direct du réseau des entiers d'une extension de corps finie K de Q et d'un sous-groupe des unités de K bien choisi. / In this thesis we study certain classes of complex compact non-Kähler manifolds. We first look at the class of Kato surfaces. Given a minimal Kato surface S, D the divisor consisting of all rational curves of S and ϖ : Š ͢ S the universal covering of S, we show that Š \ϖ-1 (D) is a Stein manifold. LVMB manifolds are the second class of non-Kähler manifolds that we study here. These complex compact manifolds are obtained as quotient of an open subset U of Pn by a closed Lie subgroup G of (C*)n of dimension m. We reformulate this procedure by replacing U by the choice of a subfan of the fan of Pn and G by a suitable vector subspace of R^{n}. We then build new complex compact non Kähler manifolds by combining a method of Sankaran and the one giving LVMB manifolds. Sankaran considers an open subset U of a toric manifold whose quotient by a discrete group W is a compact manifold. Here, we endow some toric manifold Y with the action of a Lie subgroup G of (C^{*})^{n} such that the quotient X of Y by G is a manifold, and we take the quotient of an open subset of X by a discrete group W similar to Sankaran's one.Finally, we consider OT manifolds, another class of non-Kähler manifolds, and we show that their algebraic dimension is 0. These manifolds are obtained as quotient of an open subset of C^{m} by the semi-direct product of the lattice of integers of a finite field extension K over Q and a subgroup of units of K well-chosen.
|
4 |
Fundamentos da geometria complexa: aspectos geométricos, topológicos e analiticos. / Foundations of Complex Geometry: geometric, topological and analytic aspects.Sacchetto, Lucas Kaufmann 03 May 2012 (has links)
Este trabalho tem como objetivo apresentar um estudo detalhado dos fundamentos da Geometria Complexa, ressaltando seus aspectos geométricos, topológicos e analíticos. Começando com materiais preliminares, como resultados básicos sobre funções holomorfas de uma ou mais variáveis e a definição e primeiros exemplos de variedades complexas, passamos a uma introdução à teoria de feixes e sua cohomologia, ferramenta indispensável para o restante do trabalho. Após um estudo sobre fibrados de linha e divisores damos atenção à Geometria de Kähler e alguns de seus resultados centrais, como por exemplo o Teorema da Decomposição de Hodge, o Teorema ``Difícil\'\' e o Teorema das $(1,1)$-classes de Lefschetz. Em seguida, nos dedicamos ao estudo dos fibrados vetoriais complexos e sua geometria, abordando os conceitos de conexões, curvatura e Classes de Chern. Terminamos o trabalho descrevendo alguns aspectos da topologia de variedades complexas, como o Teorema dos Hiperplanos de Lefschetz e algumas de suas consequências. / The main goal of this work is to present a detailed study of the foundations of Complex Geometry, highlighting its geometric, topological and analytical aspects. Beginning with a preliminary material, such as the basic results on holomorphic functions in one or more variables and the definition and first examples of a complex manifold, we move on to an introduction to sheaf theory and its cohomology, an essential tool to the rest of the work. After a discussion on divisors and line bundles we turn attention to Kähler Geometry and its central results, such as the Hodge Decomposition Theorem, the Hard Lefschetz Theorem and the Lefschetz Theorem on $(1,1)$-classes. After that, we study complex vector bundles and its geometry, focusing on the concepts of connections, curvature and Chern classes. Finally, we finish by describing some aspects of the topology of complex manifolds, such as the Lefschetz Hyperplane Theorem and some of its consequences.
|
5 |
K-stabilité et variétés kähleriennes avec classe transcendante / K-stability and Kähler manifolds with transcendental cohomology classSjöström Dyrefelt, Zakarias 15 September 2017 (has links)
Dans cette thèse nous étudions des questions de stabilité géométrique pour des variétés kähleriennes à courbure scalaire constante (cscK) avec classe de cohomologie transcendante. En tant que point de départ, nous introduisons des notions généralisées de K-stabilité, étendant une image classique introduite par G. Tian et S. Donaldson dans le cadre des variétés polarisées. Contrairement à la théorie classique, ce formalisme nous permet de traiter des questions de stabilité pour des variétés kähleriennes compactes non projectives ainsi que des variétés projectives munis de polarisations non rationnelles. Dans une première partie, nous étudions les rayons sous-géodésiques associés aux configurations tests dites cohomologiques, objets introduitent dans cette thèse. Nous établissons ainsi des formules fondamentales pour la pente asymptotique d'une famille de fonctionnelles d'énergie, le long de ces rayons géodésiques. Ceci est lié au couplage de Deligne en géométrie algébrique, et ce formalise permet en particulier de comprendre le comportement asymptotique d'un grand nombre de fonctionnelles d'énergie classiques en géométrie kählerienne, y compris la fonctionnelle d'Aubin-Mabuchi et la K-énergie. En particulier, ceci fournit une approche pluripotentielle naturelle pour étudier le comportement asymptotique des fonctionnelles d'énergie dans la théorie de K-stabilité. En s'appuyant sur cette première partie, nous démontrons ensuite un certain nombre de résultats de stabilité pour les variétés cscK. Tout d'abord, nous prouvons que les variétés cscK sont K-semistables dans notre sens généralisé, prolongeant ainsi un résultat dû à Donaldson dans le cadre projectif. En supposant que le groupe d'automorphisme est discret, nous montrons en outre que la K-stabilité est une condition nécessaire pour l'existence des métriques cscK sur des variétés kähleriennes compactes. Plus précisément, nous prouvons que la coercivité de la K-énergie implique la K-stabilité uniforme, ainsi généralisant des résultats de Mabuchi, Stoppa, Berman, Dervan et Boucksom-Hisamoto-Jonsson pour des variétés polarisées. Cela donne une preuve nouvelle et plus générale d'une direction de la conjecture Yau-Tian-Donaldson dans ce contexte. L'autre direction (suffisance de K-stabilité) est considérée comme l'un des problèmes ouverts les plus importants en géométrie kählerienne. Nous donnons enfin des résultats partiels dans le cas des variétés kähleriennes compactes qui admettent des champs de vecteurs holomorphes non triviaux. Nous discutons également autour des perspectives et applications de notre théorie de K-stabilité pour les variétés kähleriennes avec classe transcendante, notamment à l'étude des lieux de stabilité dans le cône de Kähler. / In this thesis we are interested in questions of geometric stability for constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class. As a starting point we develop generalized notions of K-stability, extending a classical picture for polarized manifolds due to G. Tian, S. Donaldson, and others, to the setting of arbitrary compact Kähler manifolds. We refer to these notions as cohomological K-stability. By contrast to the classical theory, this formalism allows us to treat stability questions for non-projective compact Kähler manifolds as well as projective manifolds endowed with non-rational polarizations. As a first main result and a fundamental tool in this thesis, we study subgeodesic rays associated to test configurations in our generalized sense, and establish formulas for the asymptotic slope of a certain family of energy functionals along these rays. This is related to the Deligne pairing construction in algebraic geometry, and covers many of the classical energy functionals in Kähler geometry (including Aubin's J-functional and the Mabuchi K-energy functional). In particular, this yields a natural potential-theoretic aproach to energy functional asymptotics in the theory of K-stability. Building on this foundation we establish a number of stability results for cscK manifolds: First, we show that cscK manifolds are K-semistable in our generalized sense, extending a result due to S. Donaldson in the projective setting. Assuming that the automorphism group is discrete we further show that K-stability is a necessary condition for existence of constant scalar curvature Kähler metrics on compact Kähler manifolds. More precisely, we prove that coercivity of the Mabuchi functional implies uniform K-stability, generalizing results of T. Mabuchi, J. Stoppa, R. Berman, R. Dervan as well as S. Boucksom, T. Hisamoto and M. Jonsson for polarized manifolds. This gives a new and more general proof of one direction of the Yau-Tian-Donaldson conjecture in this setting. The other direction (sufficiency of K-stability) is considered to be one of the most important open problems in Kähler geometry. We finally give some partial results in the case of compact Kähler manifolds admitting non-trivial holomorphic vector fields, discuss some further perspectives and applications of the theory of K-stability for compact Kähler manifolds with transcendental cohomology class, and ask some questions related to stability loci in the Kähler cone.
|
6 |
Fundamentos da geometria complexa: aspectos geométricos, topológicos e analiticos. / Foundations of Complex Geometry: geometric, topological and analytic aspects.Lucas Kaufmann Sacchetto 03 May 2012 (has links)
Este trabalho tem como objetivo apresentar um estudo detalhado dos fundamentos da Geometria Complexa, ressaltando seus aspectos geométricos, topológicos e analíticos. Começando com materiais preliminares, como resultados básicos sobre funções holomorfas de uma ou mais variáveis e a definição e primeiros exemplos de variedades complexas, passamos a uma introdução à teoria de feixes e sua cohomologia, ferramenta indispensável para o restante do trabalho. Após um estudo sobre fibrados de linha e divisores damos atenção à Geometria de Kähler e alguns de seus resultados centrais, como por exemplo o Teorema da Decomposição de Hodge, o Teorema ``Difícil\'\' e o Teorema das $(1,1)$-classes de Lefschetz. Em seguida, nos dedicamos ao estudo dos fibrados vetoriais complexos e sua geometria, abordando os conceitos de conexões, curvatura e Classes de Chern. Terminamos o trabalho descrevendo alguns aspectos da topologia de variedades complexas, como o Teorema dos Hiperplanos de Lefschetz e algumas de suas consequências. / The main goal of this work is to present a detailed study of the foundations of Complex Geometry, highlighting its geometric, topological and analytical aspects. Beginning with a preliminary material, such as the basic results on holomorphic functions in one or more variables and the definition and first examples of a complex manifold, we move on to an introduction to sheaf theory and its cohomology, an essential tool to the rest of the work. After a discussion on divisors and line bundles we turn attention to Kähler Geometry and its central results, such as the Hodge Decomposition Theorem, the Hard Lefschetz Theorem and the Lefschetz Theorem on $(1,1)$-classes. After that, we study complex vector bundles and its geometry, focusing on the concepts of connections, curvature and Chern classes. Finally, we finish by describing some aspects of the topology of complex manifolds, such as the Lefschetz Hyperplane Theorem and some of its consequences.
|
Page generated in 0.041 seconds