Spelling suggestions: "subject:"känsloigenkänning"" "subject:"känsloigenkänningens""
1 |
Syna: Emotion Recognition based on Spatio-Temporal Machine LearningShahrokhian, Daniyal January 2017 (has links)
The analysis of emotions in humans is a field that has been studied for centuries. Through the last decade, multiple approaches towards automatic emotion recognition have been developed to tackle the task of making this analysis autonomous. More specifically, facial expressions in the form of Action Units have been considered until now the most efficient way to recognize emotions. In recent years, applying machine learning for this task has shown outstanding improvements in the accuracy of the solutions. Through this technique, the features can now be automatically learned from the training data, instead of relying on expert domain knowledge and hand-crafted rules. In this thesis, I present Syna and DeepSyna, two models capable of classifying emotional expressions by using both spatial and temporal features. The experimental results demonstrate the effectiveness of Syna in constrained environments, while there is still room for improvement in both constrained and in-the-wild settings. DeepSyna, while addressing this problem, on the other hand suffers from data scarcity and irrelevant transfer learning, which can be solved by future work. / Mänsklig känsloigenkänning har studerats i århundraden. Det senaste årtiondet har mängder av tillvägagångssätt för automatiska processer studerats, för att möjliggöra autonomi; mer specifikt så har ansiktsuttryck i form av Action Units ansetts vara mest effektiva. Maskininlärning har dock nyligen visat att enorma framsteg är möjliga vad gäller bra lösningar på problemen. Så kallade features kan nu automatiskt läras in från träningsdata, även utan expertkunskap och heuristik. Jag presenterar här Syna och DeepSyna, två modeller för ändamålet som använder både spatiala och temporala features. Experiment demonstrerar Synas effektivitet i vissa begränsade omgivningar, medan mycket lämnas att önska vad gäller generella sådana. DeepSyna löser detta men lider samtidigt av databristproblem och onödig så kallad transfer learning, vilket här lämnas till framtida arbete.
|
2 |
Känsloigenkänningens könsskillnader : Biologiskt eller socialt baserade / Gender differences in emotion recognition : Biologically or socially basedJerenvik, Lisa January 2022 (has links)
Som känt sedan tidigare är känsloigenkänning en viktig funktion för en individs förståelse och interaktion med andra. Hittills har forskning bland annat upptäckt att förmågan kan se olika ut för kvinnor och män, där studierna ofta är baserat ur antingen ett biologiskt eller socialt synsätt. I denna systematiska översikt inkluderas båda dessa perspektiv för att granska vilket som könsskillnaderna, mellan vuxna kvinnor och män över 18 år, inom känsloigenkänning främst grundas i. Syftet var att undersöka hur neurovetenskapen bidrar till förståelsen av könsskillnaderna inom området. I litteratursökningen användes PubMed och Scopus där tio artiklar analyserades. Artiklarna hade störst fokus på och diskuterade främst biologiska könsskillnader i jämförelse med sociala faktorer, vilket utmynnade i en svårbedömd situation. Däremot kan det konstateras att det finns både sociala och biologiska könsskillnader som bidrar till känsloigenkänningens olikheter. Genom neurovetenskapens tekniker såsom EEG, fMRI och eye-tracking, har vi fått en bättre inblick i hur den typiska kvinnliga och manliga hjärnan fungerar i relation till bearbetning av andras känslor.
|
3 |
Speech Emotion Recognition from Raw Audio using Deep Learning / Känsloigenkänning från rå ljuddata med hjälp av djupinlärningRintala, Jonathan January 2020 (has links)
Traditionally, in Speech Emotion Recognition, models require a large number of manually engineered features and intermediate representations such as spectrograms for training. However, to hand-engineer such features often requires both expert domain knowledge and resources. Recently, with the emerging paradigm of deep-learning, end-to-end models that extract features themselves and learn from the raw speech signal directly have been explored. A previous approach has been to combine multiple parallel CNNs with different filter lengths to extract multiple temporal features from the audio signal, and then feed the resulting sequence to a recurrent block. Also, other recent work present high accuracies when utilizing local feature learning blocks (LFLBs) for reducing the dimensionality of a raw audio signal, extracting the most important information. Thus, this study will combine the idea of LFLBs for feature extraction with a block of parallel CNNs with different filter lengths for capturing multitemporal features; this will finally be fed into an LSTM layer for global contextual feature learning. To the best of our knowledge, such a combined architecture has yet not been properly investigated. Further, this study will investigate different configurations of such an architecture. The proposed model is then trained and evaluated on the well-known speech databases EmoDB and RAVDESS, both in a speaker-dependent and speaker-independent manner. The results indicate that the proposed architecture can produce comparable results with state-of-the-art; despite excluding data augmentation and advanced pre-processing. It was reported 3 parallel CNN pipes yielded the highest accuracy, together with a series of modified LFLBs that utilize averagepooling and ReLU activation. This shows the power of leaving the feature learning up to the network and opens up for interesting future research on time-complexity and trade-off between introducing complexity in pre-processing or in the model architecture itself. / Traditionellt sätt, vid talbaserad känsloigenkänning, kräver modeller ett stort antal manuellt konstruerade attribut och mellanliggande representationer, såsom spektrogram, för träning. Men att konstruera sådana attribut för hand kräver ofta både domänspecifika expertkunskaper och resurser. Nyligen har djupinlärningens framväxande end-to-end modeller, som utvinner attribut och lär sig direkt från den råa ljudsignalen, undersökts. Ett tidigare tillvägagångssätt har varit att kombinera parallella CNN:er med olika filterlängder för att extrahera flera temporala attribut från ljudsignalen och sedan låta den resulterande sekvensen passera vidare in i ett så kallat Recurrent Neural Network. Andra tidigare studier har också nått en hög noggrannhet när man använder lokala inlärningsblock (LFLB) för att reducera dimensionaliteten hos den råa ljudsignalen, och på så sätt extraheras den viktigaste informationen från ljudet. Således kombinerar denna studie idén om att nyttja LFLB:er för extraktion av attribut, tillsammans med ett block av parallella CNN:er som har olika filterlängder för att fånga multitemporala attribut; detta kommer slutligen att matas in i ett LSTM-lager för global inlärning av kontextuell information. Så vitt vi vet har en sådan kombinerad arkitektur ännu inte undersökts. Vidare kommer denna studie att undersöka olika konfigurationer av en sådan arkitektur. Den föreslagna modellen tränas och utvärderas sedan på de välkända taldatabaserna EmoDB och RAVDESS, både via ett talarberoende och talaroberoende tillvägagångssätt. Resultaten indikerar att den föreslagna arkitekturen kan ge jämförbara resultat med state-of-the-art, trots att ingen ökning av data eller avancerad förbehandling har inkluderats. Det rapporteras att 3 parallella CNN-lager gav högsta noggrannhet, tillsammans med en serie av modifierade LFLB:er som nyttjar average-pooling och ReLU som aktiveringsfunktion. Detta visar fördelarna med att lämna inlärningen av attribut till nätverket och öppnar upp för intressant framtida forskning kring tidskomplexitet och avvägning mellan introduktion av komplexitet i förbehandlingen eller i själva modellarkitekturen.
|
4 |
Automated Multimodal Emotion Recognition / Automatiserad multimodal känsloigenkänningFernández Carbonell, Marcos January 2020 (has links)
Being able to read and interpret affective states plays a significant role in human society. However, this is difficult in some situations, especially when information is limited to either vocal or visual cues. Many researchers have investigated the so-called basic emotions in a supervised way. This thesis holds the results of a multimodal supervised and unsupervised study of a more realistic number of emotions. To that end, audio and video features are extracted from the GEMEP dataset employing openSMILE and OpenFace, respectively. The supervised approach includes the comparison of multiple solutions and proves that multimodal pipelines can outperform unimodal ones, even with a higher number of affective states. The unsupervised approach embraces a traditional and an exploratory method to find meaningful patterns in the multimodal dataset. It also contains an innovative procedure to better understand the output of clustering techniques. / Att kunna läsa och tolka affektiva tillstånd spelar en viktig roll i det mänskliga samhället. Detta är emellertid svårt i vissa situationer, särskilt när information är begränsad till antingen vokala eller visuella signaler. Många forskare har undersökt de så kallade grundläggande känslorna på ett övervakat sätt. Det här examensarbetet innehåller resultaten från en multimodal övervakad och oövervakad studie av ett mer realistiskt antal känslor. För detta ändamål extraheras ljud- och videoegenskaper från GEMEP-data med openSMILE respektive OpenFace. Det övervakade tillvägagångssättet inkluderar jämförelse av flera lösningar och visar att multimodala pipelines kan överträffa unimodala sådana, även med ett större antal affektiva tillstånd. Den oövervakade metoden omfattar en konservativ och en utforskande metod för att hitta meningsfulla mönster i det multimodala datat. Den innehåller också ett innovativt förfarande för att bättre förstå resultatet av klustringstekniker.
|
5 |
Multilingual Speech Emotion Recognition using pretrained models powered by Self-Supervised Learning / Flerspråkig känsloigenkänning från tal med hjälp av förtränade tal-modeller baserat på själv-övervakad InlärningLuthman, Felix January 2022 (has links)
Society is based on communication, for which speech is the most prevalent medium. In day to day interactions we talk to each other, but it is not only the words spoken that matters, but the emotional delivery as well. Extracting emotion from speech has therefore become a topic of research in the area of speech tasks. This area as a whole has in recent years adopted a Self- Supervised Learning approach for learning speech representations from raw speech audio, without the need for any supplementary labelling. These speech representations can be leveraged for solving tasks limited by the availability of annotated data, be it for low-resource language, or a general lack of data for the task itself. This thesis aims to evaluate the performances of a set of pre-trained speech models by fine-tuning them in different multilingual environments, and evaluating their performance thereafter. The model presented in this paper is based on wav2vec 2.0 and manages to correctly classify 86.58% of samples over eight different languages and four emotional classes when trained on those same languages. Experiments were conducted to garner how well a model trained on seven languages would perform on the one left out, which showed that there is quite a large margin of similarity in how different cultures express vocal emotions, and further investigations showed that as little as just a few minutes of in-domain data is able to increase the performance substantially. This shows promising results even for niche languages, as the amount of available data may not be as large of a hurdle as one might think. With that said, increasing the amount of data from minutes to hours does still garner substantial improvements, albeit to a lesser degree. / Hela vårt samhälle är byggt på kommunikation mellan olika människor, varav tal är det vanligaste mediet. På en daglig basis interagerar vi genom att prata med varandra, men det är inte bara orden som förmedlar våra intentioner, utan även hur vi uttrycker dem. Till exempel kan samma mening ge helt olika intryck beroende på ifall den sägs med ett argt eller glatt tonfall. Talbaserad forskning är ett stort vetenskapligt område i vilket talbaserad känsloigenkänning vuxit fram. Detta stora tal-område har under de senaste åren sett en tendens att utnyttja en teknik kallad själv-övervakad inlärning för att utnyttja omärkt ljuddata för att lära sig generella språkrepresentationer, vilket kan liknas vid att lära sig strukturen av tal. Dessa representationer, eller förtränade modeller, kan sedan utnyttjas som en bas för att lösa problem med begränsad tillgång till märkt data, vilket kan vara fallet för sällsynta språk eller unika uppgifter. Målet med denna rapport är att utvärdera olika applikationer av denna representations inlärning i en flerspråkig miljö genom att finjustera förtränade modeller för känsloigenkänning. I detta syfte presenterar vi en modell baserad på wav2vec 2.0 som lyckas klassifiera 86.58% av ljudklipp tagna från åtta olika språk över fyra olika känslo-klasser, efter att modellen tränats på dessa språk. För att avgöra hur bra en modell kan klassifiera data från ett språk den inte tränats på skapades modeller tränade på sju språk, och evaluerades sedan på det språk som var kvar. Dessa experiment visar att sättet vi uttrycker känslor mellan olika kulturer är tillräckligt lika för att modellen ska prestera acceptabelt även i det fall då modellen inte sett språket under träningsfasen. Den sista undersökningen utforskar hur olika mängd data från ett språk påverkar prestandan på det språket, och visar att så lite som endast ett par minuter data kan förbättra resultet nämnvärt, vilket är lovande för att utvidga modellen för fler språk i framtiden. Med det sagt är ytterligare data att föredra, då detta medför fortsatta förbättringar, om än i en lägre grad.
|
Page generated in 0.0868 seconds