• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 842
  • 316
  • 175
  • 114
  • 44
  • 41
  • 27
  • 24
  • 19
  • 18
  • 12
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 1898
  • 1139
  • 413
  • 374
  • 373
  • 298
  • 262
  • 174
  • 173
  • 172
  • 171
  • 170
  • 168
  • 167
  • 152
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Filtros de Kalman no tempo e freqüência discretos combinados com subtração espectral / Kalman filters of time and frequency discrete combined with spectral subtraction

Silva, Leandro Aureliano da 20 July 2007 (has links)
Este trabalho tem a finalidade de apresentar e comparar técnicas de redução de ruído utilizando como critérios de avaliação a mínima distorção espectral e a redução de ruído, na reconstrução dos sinais de voz degradados por ruído. Para tanto, utilizou-se os filtros de Kalman de tempo discreto e de freqüência discreta em conjunto com a técnica de subtração espectral de potência. Os sinais utilizados foram contaminados por ruídos branco e colorido, e a avaliação do desempenho dos algoritmos foi realizada tendo-se como parâmetros a relação sinal/ruído segmentada (SNRseg) e a distância de Itakura-Saito (d(a,b)). Após o processamento, verificou-se que a técnica, proposta neste trabalho, de filtragem de Kalman no tempo em conjunto com a subtração espectral de potência, apresentou resultados um pouco melhores em relação à filtragem de Kalman na freqüência em conjunto com a subtração espectral de potência. / This work has as main objective to present and to compare techniques of noise reduction using as evaluation criterion the low spectral distortion and the noise reduction in the reconstruction of corrupted speech signals. For so much, it was used the Kalman\'s filters in the time and frequency domain together with the technique of power spectral subtraction. The used signals were corrupted by white and colored noises and the evaluation of effectiveness of the algorithms was accomplished using the segmental signal-to-noise ratio (SNRseg) and the Itakura-Saito distance (d(a,b)). After the processing, it was noticed that the Kalman filtering in the time together with power spectral subtraction presented better results than the Kalman filtering in the frequency together with power spectral subtraction.
262

Filtragem de Kalman não linear com redes neurais embarcada em uma arquitetura reconfigurável para uso na tomografia de Raios-X para amostras da física de solos / Nonlinear Kalman filtering with neural network embedded in a reconfigurable architecture for use in X-ray tomography for samples of soil physics

Laia, Marcos Antonio de Matos 06 June 2013 (has links)
Estudar as propriedades físicas do solo envolve conhecer a umidade, o transporte de água e solutos, a densidade, a identificação da porosidade, o que é essencial para o crescimento de raízes das plantas. Para esses estudos, a tomografia de raios X tem se mostrado uma técnica útil. As imagens tomográficas são obtidas através de projeções (sinais) que são reconstruídos com algoritmos adequados. No processo de aquisição dessas projeções, podem surgir ruídos provenientes de diferentes fontes. O sinal tomográfico apresenta ruídos que possuem uma distribuição de Poisson gerada pela contagem de fótons, bem como o detector de fótons é influenciado por uma presença de ruído eletrônico com uma distribuição Gaussiana. Essas diferentes distribuições podem ser mapeadas com transformadas não lineares específicas que alteram uma distribuição Gaussiana para outros tipos de distribuições, como a de transformada de Anscombe (Poisson) ou transformada de Box-Muller (Uniforme), mas são aproximações que apresentam erros acumulativos. As transformadas podem ser então mapeadas por um sistema de redes neurais, o que garante um melhor resultado com o filtro de Kalman não linear em que os pesos da rede e as medidas das projeções são estimados em conjunto. Este trabalho apresenta uma nova solução com filtragem de Kalman descentralizada utilizando redes neurais artificiais embarcada em uma arquitetura reconfigurável com o intuito de obter se um valor ótimo de melhoria na relação Sinal/Ruído de projeções tomográficas e consequentemente nas imagens reconstruídas proporcionando melhorias para os métodos de análise dos físicos de solos agrícolas. / To study the physical properties of soil moisture involves knowing the transport of water and solutes, density, porosity identification, which is essential for the growth of plant roots. For these studies, X-ray tomography has been shown to be a useful technique. The tomographic images are obtained through projections (signals) that are reconstructed with appropriate algorithms. In the process of acquiring these projections, noise can arise from different sources. The tomographic signal is noisy which have a Poisson distribution generated by photon counting, and the photon detector is influenced by a presence of electronic noise with a Gaussian distribution. These different distributions can be mapped to specific nonlinear transformed altering a Gaussian distribution for other types of distributions, such as the Anscombe transform (Poisson) or Box-Muller transform (Uniform), but are approximations that have cumulative errors. Transforms can then be mapped by a neural network system, which ensures a better result with nonlinear Kalman filter in which the network weights and measures of the projections are estimated together. This work presents a new solution to the unscented Kalman filtering using artificial neural networks embedded in a reconfigurable architecture in order to obtain an optimum value of improvement in S/N ratio of tomographic projections and consequently the images reconstructed by providing improvements for the methods of physical parameters of the agricultural soils.
263

Estabilidade do filtro de kalman para sistemas lineares com saltos markovianos / Stability of Kalman filter for linear systems with systems with Markovian jumping

Gomes, Maria Josiane Ferreira 30 March 2010 (has links)
O filtro de Kalman é amplamente conhecido e utilizado em aplicações, em virtude de apresentar diversas propriedades interessantes. Este trabalho aborda uma das características mais importantes, a estabilidade do filtro de Kalman aplicado a sistemas lineares discretos com saltos Markovianos. Sistemas desta classe são muito empregados em problemas práticos. Neste trabalho mostramos que o conceito de controlabilidade fraca e detetabilidade estocástica são condições suficientes para estabilidade do filtro de Kalman com relação a condição inicial. No que se refere a estabilidade no sentido mais usual, apresentamos resultados parciais, dependentes de uma condição adicional sobre a cadeia de Markov, bem como uma conjectura. O estudo da estabilidade do filtro de Kalman é relevante, pois filtros instáveis oferecem estimativas de baixa qualidade. O tema tem interesse teórico inerente e é bastante relevante para aplicações.O filtro de Kalman é amplamente conhecido e utilizado em aplicações, em virtude de apresentar diversas propriedades interessantes. Este trabalho aborda uma das características mais importantes, a estabilidade do filtro de Kalman aplicado a sistemas lineares discretos com saltos Markovianos. Sistemas desta classe são muito empregados em problemas práticos. Neste trabalho mostramos que o conceito de controlabilidade fraca e detetabilidade estocástica são condições suficientes para estabilidade do filtro de Kalman com relação a condição inicial. No que se refere a estabilidade no sentido mais usual, apresentamos resultados parciais, dependentes de uma condição adicional sobre a cadeia de Markov, bem como uma conjectura. O estudo da estabilidade do filtro de Kalman é relevante, pois filtros instáveis oferecem estimativas de baixa qualidade. O tema tem interesse teórico inerente e é bastante relevante para aplicações / Kalman filters present several interesting features that make them relevant for many applications. In this work we study one of the main issues in Kalman filtering - stability. We deal with Kalman filters for Markov jump linear systems, a class of systems with applications in many different areas. We consider the concepts of weak controllability and stochastic detectability and we show that they ensure stability of the Kalman filter with respect to the initial condition. As for the stability, we present some results relying in a conjecture and an additional condition on the Markov chain. The study of the stability of the Kalman filter is important, since unstable filters may lead to poor estimates. The stability issue has inherent theoretical interest and is relevant for applications
264

Filtro de mínimos quadrados e filtro robusto para sistemas lineares com saltos Markovianos e ruídos multiplicativos. / Kalman type filter and robust filter to linear filter to linear systems subject to Markovian jumps and multiplicative noises.

Benites, Guilherme Rafael Antonelli Molina 08 November 2012 (has links)
Esse trabalho contempla o estudo sobre o estimador de mínimos quadrados obtido para sistemas lineares discretos sujeitos a ruídos aditivos e a ruídos multiplicativos em seus parâmetros. Supõe-se, adicionalmente, que os parâmetros do sistema estão sujeitos a saltos Markovianos, e que a cadeia de Markov não é conhecida. A solução do problema, sob essas hipóteses, é uma inovação apresentada nesse trabalho. Sob as mesmas hipóteses, o caso estacionário também foi contemplado, e o trabalho apresenta uma demonstração para a convergência da matriz de covariância dos erros do estimador a um valor estacionário, supondo-se estabilidade do sistema e ergodicidade da cadeia de Markov associada. Mostra-se, também, que existe uma única solução positiva semi-definida para a equação de Riccati estacionária e, ainda mais, que tal solução é o limite da matriz de covariância dos erros. A partir da introdução de uma hipótese adicional - de que os parâmetros do sistema estão sujeitos a incertezas na forma de politopos convexos - constrói-se um filtro linear dinâmico em que as iterações possuem estabilidade na média quadrática e que minimiza o limitante superior para o valor esperado do erro quadrático. Uma formulação do tipo LMI (Linear Matrix Inequalities) é proposta para a solução do problema. / This thesis deals with the linear filtering problem for discrete-time Markov jump linear systems with both additive and multiplicative noises. It is assumed that the values of the Markov chain are not available. This is the first time that a solution to the problem with these parameters is presented. By using some usual geometric arguments it is obtained a Kalman type filter conveniently implementable in a recurrence form. The stationary case is also studied and a proof for the convergence of the associated Lyapunov and Riccati like equations is presented. By adding an additional hypotesis - that the parameters of the systems are subject to convex polytopic uncertainties - it was designed a dynamic linear filter such that the closed loop system is mean square stable and minimizes an upper bound for the stationary expected value of the square error. A Linear Matrix Inequalities (LMI) formulation is proposed to solve the problem.
265

Rastreamento de jogadores de futebol em sequências de imagens. / Tracking soccer players in image sequences.

Arnaut, Rodrigo Dias 30 November 2009 (has links)
Rastreamento visual em sequências de imagens tem sido muito estudado nos últimos 30 anos devido às inúmeras aplicações que possui em sistemas de visão computacional em tempo real; entretanto, poucos são os algoritmos disponíveis para que tal tarefa seja realizada com sucesso. Esta dissertação apresenta um método e uma arquitetura eficazes e eficientes para rastrear jogadores em jogos de futebol. A entrada do sistema consiste de vídeos capturados por câmeras estáticas instaladas em estádios de futebol. A saída é a trajetória descrita pelo jogador durante uma partida de futebol, dada no plano de imagem. O sistema possui dois estágios de processamento: inicialização e rastreamento. A inicialização do sistema é crítica no desempenho do rastreador e seu objetivo consiste em produzir uma estimativa aproximada da configuração e características de cada alvo, a qual é usada como uma estimativa inicial do estado pelo rastreador. O sistema de rastreamento utiliza Filtros de Kalman para modelar o contorno, posição e velocidade dos jogadores. Resultados são apresentados usando dados reais. Avaliações quantitativas são fornecidas e o sistema proposto é comparado com outro sistema correlato. Os experimentos mostram que o sistema proposto apresenta resultados bastante promissores. / Visual tracking in image sequences has been extensively studied in the last 30 years because of the many applications it has in real-time computer vision systems; however, there are few algorithms available for this task so that it is performed successfully. This work presents an effective and efficient system architecture and method to track players in soccer games. The system input consists of videos captured by static cameras installed in soccer stadiums. The output is the trajectory described by the player during a soccer match, given in the image plane. The system comprises two processing stages: initialization and tracking. The system startup is critical in the tracking performance and its goal is to produce a rough estimate of the configuration and characteristics of each target, which is used as an initial estimate of the state by the visual tracker. The tracking system uses Kalman filters to model the shape, position and speed of the players. Results are presented using real data. Quantitative assessments are provided and the proposed system is compared with related systems. The experiments show that our system can achieve very promising results.
266

Algoritmos array para filtragem de sistemas singulares / not available

Padoan Junior, Antonio Carlos 24 June 2005 (has links)
Esta dissertação apresenta novos resultados para a solução de problemas de implementação computacional na estimativa de sistemas singulares e sistemas Markovianos. São apresentados algoritmos alternativos para problemas de filtragem de maneira a minimizar problemas causados principalmente por erros de arredondamento e mal condicionamento de matrizes. O trabalho envolve basicamente algoritmos array e filtragem de informação para a estimativa de sistemas singulares nominais e robustos. Também é deduzido um algoritmo array para a filtragem de sistemas lineares sujeitos a saltos Markovianos. / This dissertation presents new results to solve computational implementation problems to estimate singular and Markovian systems. Alternative algorithms to handle computational filtering errors due rounding errors and ill-conditioned matrices are developed. This dissertation comprehends basically array algorithms and information filters for the estimate of nominal and robust singular systems. Also, it is developed an array algorithm for Markovian jump linear systems filtering.
267

Restauração de imagens médicas utilizando o filtro de Kalman / not available

Mello, Edson Batista de 13 October 1998 (has links)
Neste trabalho técnicas de restauração de imagens aplicadas à filtragem de imagens médicas foram estudadas. Considera-se uma abordagem recursiva de filtragem e suas diversas implementações em duas dimensões. A implementação utilizada neste trabalho foi a do filtro de Kalman de atualização reduzida (RUKF). Na implementação do filtro de Kalman de atualização reduzida um quarto de plano (QP) foi tomado como região de suporte e um modelo autoregressivo bidimensional (AR 2-D) foi utilizado como modelo de imagem. Os parâmetros do modelo AR 2-D e a variância do ruído foram encontrados através de uma implementação do algoritmo de Levinson para duas dimensões baseada no algoritmo de Levinson em configuração multicanal. A ordem do modelo AR 2-D foi determinada pelo critério de informação de Akaike (AIC). Para análise de resultados o filtro de Kalman de atualização reduzida foi aplicado em uma imagem planar, considerada invariante no espaço e com ruído ele observação não estacionário, e os resultados comparados àqueles obtidos com o filtro de Wiener. / In this work image restoration techniques for the filtering of medicai images are studied. Emphasis is given to the recursive approach to image restoration and its different implementations are described. The implementation used in the restoration procedure is the reduced update Kalman filter (RUKF). In the implementation of the reduced update Kalman filter a quarter plane is adopted as the region of support and a 2-D autoregressive (AR) model is used as the image model. The parameters of the 2-D AR model and the variance of the driving noise are found by a 2-D implementation of the Levinson algorithm. The model order of the 2-D AR model is determined by the Akaike information criterion (AIC). For the analysis of the results, the reduced update Kalman filter is applied to a space invariant plane image with nonstationary noise. The results are compared to the results of the Wiener filter.
268

Contrôle acoustique d'un parc éolien / Acoustic control of wind farms

Dumortier, Baldwin 25 September 2018 (has links)
Actuellement, la construction d’un parc éolien nécessite une étude acoustique qui doit assurer la tranquillité des habitants aux alentours et la conformité au regard de la réglementation en vigueur. Pour ce faire, des mesures acoustiques sont réalisées sur une période d’environ deux semaines. Durant ces mesures, des cycles de marche et d’arrêt des machines sont réalisés afin de mesurer la différence de niveau sonore entre le bruit ambiant (éoliennes en fonctionnement) et le bruit résiduel (éoliennes à l’arrêt). Un plan de bridage des machines est alors calculé et fourni à l’exploitant afin de l’implémenter dans le système de contrôle local des éoliennes (SCADA). Actuellement, ce plan dépend grossièrement des conditions météorologiques et des périodes de la journée, supposées corrélées aux conditions acoustiques. En pratique, cette manière de procéder engendre fréquemment des dépassements du critère réglementaire et/ou des pertes de production électrique. Ceci est dû aux conditions acoustiques qui évoluent sans cesse, à la fois pour le bruit particulier (bruit des éoliennes seules) qui dépend finement des conditions météorologiques, et pour le bruit résiduel qui dépend de toutes les autres sources de l’environnement et qui est fondamentalement de nature stochastique. La thèse vise à proposer un algorithme de contrôle du parc éolien en temps réel basé sur un nouveau paradigme de contrôle. On y étudie la possibilité de contrôler un parc éolien à partir d’un système en boite noire d’estimation temps-réel du niveau résiduel et du niveau particulier par séparation de sources. Dans le manuscrit, on définit tout d’abord une formulation du problème dans le cadre du contrôle en identifiant les problématiques propres à ce sujet, une définition des variables du problème et en se rattachant à l’état de l’art du contrôle. Ensuite, on propose deux solutions complètes de contrôle et une évaluation expérimentale. La première est une solution déterministe, qui s’appuie sur un algorithme d’optimisation combinatoire sous contrainte, et qui s’inspire du contrôle actuel des parcs éoliens tout en tenant compte de l’estimation par séparation de sources, alors supposée exacte. On y propose en outre une étude de la capacité du système déterministe à satisfaire le critère réglementaire français qui est aujourd’hui calculé à l’aide de médianes temporelles des variables acoustiques. La seconde est une solution stochastique, qui est basée sur une représentation d’état des variables acoustiques et des incertitudes gaussiennes. Elle inclut un filtrage de Kalman non-linéaire, afin de fusionner l’incertitude sur le modèle acoustique et l’incertitude de séparation de sources, un algorithme espérance-maximisation afin de ré-estimer les incertitudes du problème qui varient d’un parc à un autre, et une adaptation robuste de l’algorithme combinatoire afin de prendre en compte les incertitudes estimées / Currently, acoustic studies are required to set wind farms up. They must ensure the tranquility of the inhabitants around the farms in accordance with current regulations. For this purpose, acoustic measurements are made during a couple of weeks. When measuring, the wind turbines are periodically stopped in order to evaluate the difference between ambient noise levels (with the turbines on) and residual noise levels (with the turbines off). A curtailment plan is then computed and sent to the wind farm owner in order to set it up in the local turbine control system (SCADA). Currently, the curtailment plan roughly depends on the weather conditions and the time of the day which are allegedly correlated to the acoustic variables. In practice, it frequently leads to violations of the acoustic constraints or electrical power loss. This is because the acoustic conditions constantly and strongly evolve over time: the wind turbine noise level finely depends on the weather conditions and the residual noise level depends on all the other acoustic sources and has therefore a stochastic nature. The goal of the thesis is to design a principled real-time control algorithm for wind farms. To do so, we investigate the use of a black-box source separation system that estimates the residual noise level and the wind turbine noise level. We first provide a theoretical formulation of the problem by accounting for specific practical issues, by defining the variables of the problem and by binding these issues to the state of the art. Then, we propose two complete control solutions and run an experimental evaluation. The first solution is a deterministic algorithm based on a constrained combinatorial optimization algorithm, which is inspired by the current approach for controlling wind farms while exploiting the source separation system. Moreover, we present a study of its ability to fulfill the French acoustic constraints that are computed as temporal medians of the acoustic variables. The second solution is stochastic and based on a state-space model defined by means of Gaussian uncertainties. It features a nonlinear Kalman filter in order to fuse the uncertainties of the model and of the source separation system, an Expectation-Maximization algorithm that computes the uncertainties for a specific farm, and a robust variant of the deterministic algorithm that takes the estimated uncertainties into account when computing the optimal command
269

Exploration intégrée probabiliste pour robots mobiles évoluant en environnements complexes / Probabilistic Integrated Exploration for Mobile Robots in Complex Environments

Toriz Palacios, Alfredo 20 March 2012 (has links)
L'un des défis fondamentaux de la robotique d'aujourd'hui est d'obtenir des cartes robustes en utilisant des mécanismes efficaces pour l'exploration et la modélisation des environnements toujours plus complexes. Ce problème est connu comme celui de la planification, de la localisation et de la cartographie simultanée (SPLAM).Dans cette thèse nous avons développé des outils pour obtenir une stratégie de SPLAM. D'abord, l'exploration est faite par le graphe d'exploration aléatoire (REG) basé sur la création d'une structure de graphe et sur un contrôle de frontières. Ensuite, le problème de localisation et de cartographie simultanée (SLAM) est résolu avec une stratégie topologique basée sur des B-Splines. Pour valider notre stratégie, nous avons créé une autre approche de SPLAM basée sur des outils connus comme le Filtre de Kalman étendu pour le SLAM et sur l'arbre aléatoire (SRT) pour l'exploration. Ces résultats sont comparés avec les résultats de notre stratégie. / One of the fundamental challenges of today's robotics is to obtain robust maps using efficient mechanisms for exploring and modeling increasingly complex environments. This is known as simultaneous planning, localization and mapping (SPLAM) problem.Considering this problem, in this thesis we have developed some tools to obtain a SPLAM strategy. First, the exploration is made by the Random Exploration Graph approach (REG) which is based on the creation of a graph structure and on a frontier control. Next, the simultaneous localization and mapping (SLAM) problem is solved using a B-Spline based topologic strategy. To validate our strategy, we have created another SPLAM approach based on well known tools as the Extended Kalman Filter for SLAM and on the Sensor based Random tree (SRT) for the exploration problem. Its results are confronted with the results obtained by our strategy.
270

Redução de erro numérico no filtro estendido de Kalman aplicado à tomografia por impedância elétrica. / Numerical error reduction in the extended Kalman filter applied to electrical impedance tomography.

Vanegas Molina, Nelson Antonio 16 December 2002 (has links)
A Tomografia por Impedância Elétrica (TIE) aplica-se no monitoramento contínuo e detecção de alterações pulmonares sérias. Principalmente no ambiente das unidades de terapia intensiva (UTI) para a avaliação das condições do paciente em estado crítico submetido à ventilação artificial sem que seja necessário retirar o paciente da UTI e dos diferentes instrumentos de assistência à vida. A técnica permite estimar alterações de impedância nos pulmões. O objetivo deste trabalho é diminuir o erro numérico num algoritmo desenvolvido para TIE, utilizando o Filtro Estendido de Kalman. Especificamente, esse algoritmo aplica-se na a obtenção de imagens dos pulmões do corpo humano. Para realizar tal objetivo foram projetados phantoms compostos por um recipiente circular com solução salina, dentro do qual é colado um objeto cilíndrico de vidro e 32 eletrodos localizados no contorno do recipiente. Foi desenvolvido um algoritmo em linguagem C, utilizando a técnica de Filtro Estendido de Kalman para estimação de parâmetros de um modelo de elementos finitos. Foram implementados o procedimento de renumeração da malha de elementos finitos, com o objetivo de obter uma matriz de condutividade de banda, e o procedimento de melhoramento iterativo da solução para diminuir o erro numérico de soluções de sistemas lineares. Foram comparados dois algoritmos, um utilizando matriz de condutividade esparsa Alg Esparsa e outro com matriz de condutividade de banda limitada, obtida por renumeração da malha, e aplicando refinamento iterativo na solução de sistemas lineares, Alg RRI. Obtiveram-se melhores estimativas de impedância e uma melhor estabilidade do algoritmo do Filtro de Kalman com o algoritmo Alg RRI. O erro numérico na inversa da matriz de condutividade e o erro numérico na matriz de sensibilidade são significativamente menores quando se utiliza renumeração da malha e refinamento iterativo da solução de sistemas lineares. A redução de erro numérico nestas matrizes leva a melhores imagens. / The Electrical Impedance Tomography (EIT) is applied for the continuing monitoring and detection of serious pulmonar change. It may be used in intensive care units for the evaluation of patient condition in critical state submitted to artificial ventilation. It is not necessary to leave the intensive care unit and disconnect life assist devices. This technique allow estimation of impedance distribution on a cross section of the thorax. The main of this work is the reduction of numerical error in the Kalman Filter for EIT image estimation. Specifically, this algorithm may be applied for estimating lunge impedance distribution. To obtain this objective a phantom was developed. It is constituted by a cilindrical container with saline solution, a glass object is glued to the container, and 32 electrodes attached to the container wall. An algorithm in C language, using the Extended Kalman Filter technique was developed, it is a parameter estimation procedure. Mesh renumbering, to obtain a band limited conductivity matrix and the iterative improvement of the solution of linear systems were implemented. The estimation of impedance distribution was performed. Two different algorithms were considered. One algorithm uses a sparse conductivity matrix, Alg sparse. Another algorithm uses a band limited conductivity matrix and iterative refinement of the solution of linear systems, Alg RRI. Better impedance estimation and better stability of Kalman Filter algorithm was obtained using Alg RRI. The numerical error on the inverse of the conductivity matrix and the numerical error on the sensitivity matrix were smaller on algorithm Alg RRI. The numerical error reduction on the conductivity matrix and on the sensitivity matrix produced better images.

Page generated in 0.1775 seconds