• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 3
  • 1
  • Tagged with
  • 21
  • 18
  • 15
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cav2.2 Channels Sustain Vesicle Recruitment at a Mature Glutamatergic Synapse

Wender, Magdalena 09 September 2024 (has links)
Die Informationsverarbeitung im Nervensystem basiert auf der Signalübertragung an chemischen Synapsen. Um diese bei hochfrequenter Aktivität aufrecht erhalten zu können, ist das Nachfüllen von Neurotransmitter-gefüllten Vesikeln an die präsynaptische Membran von zentraler Bedeutung. Die glutamatergen Parallelfaser-Purkinjezelle-Synapsen (PF-PC-Synapsen) des Zerebellums weisen eine ausgeprägte und anhaltende Kurzzeitbahnung für bis zu 30 Aktionspotentiale (APs) bei hochfrequenter Aktivität auf, obwohl anfänglich nur eine vergleichsweise geringe Anzahl synaptischer Vesikel (~ 3) an der aktiven Zone gedockt ist. Dies wird durch ultra-schnelles Nachfüllen (Recruitment) im Millisekundenbereich ermöglicht, welches sogar zu einer Vergrößerung des Pools gedockter und freisetzungsbereiter Vesikel (Readily releasable pool, RRP) führt (Overfilling, Überfüllen). Es gibt Evidenz dafür, dass dieser Prozess mindestens teilweise Kalzium(Ca2+)-abhängig ist. Durch welche Kanäle das hierfür bereitgestellte Ca2+ in die Präsynapse gelangt, war bislang unklar. An PF-PC-Synapsen sind drei Subtypen spannungsabhängiger Ca2+-Kanäle (Cavs) vorhanden: Cav2.1 (P/Q Typ), Cav2.2 (N Typ) und Cav2.3 (R Typ). Diese stellen in jungen Mäusen (P8-10) gemeinsam das Ca2+ für die Freisetzung der Transmitter-Vesikel zur Verfügung. Während der Entwicklung verringert sich die Kopplungsdistanz zwischen Cav2.1-Kanälen und Ca2+-Sensor, sodass bei reiferen Tieren (P21–24) allein der Ca2+-Einstrom durch eng gekoppelte Cav2.1 zur Vesikelfreisetzung führt. Cav2.2 und Cav2.3 sind jedoch weiterhin an der Präsynapse vorhanden und tragen zum Aktionspotential(AP)-vermittelten Ca2+-Einstrom bei. Die Funktion dieser Kanäle in reiferen Tieren blieb bisher weitgehend ungeklärt. Vorliegend wurden folgende Hypothesen überprüft: 1. Ca2+-Einstrom durch Cav2.2 oder Cav2.3 ist für spontane, nicht AP-vermittelte Vesikelfreisetzung verantwortlich. 2. Ca2+-Einstrom durch Cav2.2 oder Cav2.3 stellt Ca2+ für ultra-schnelles Nachfüllen mit Überfüllen bereit. Um diese Hypothesen zu prüfen, wurden Whole-Cell Patch-Clamp Messungen an Purkinjezellen in akuten Hirnschnitten reifer (P21–24) C57BL/6 Mäuse durchgeführt und die Parallelfasern (PFs) extrazellulär in der Molekularschicht stimuliert. Zunächst wurde die Hypothese geprüft, ob Cav2.2 und Cav2.3 an der Ca2+-Bereitstellung für spontane Vesikelfreisetzung beteiligt sind. Dazu wurden sogenannte miniature excitatory postsynaptic currents (Miniatur-EPSCs, mEPSCs) der Purkinjezellen aufgezeichnet. Bei Erhöhung der extrazellulären Ca2+-Konzentration von 2 mM auf 5 mM zeigte sich eine deutliche Steigerung der mEPSC-Frequenz, was die Annahme stützt, dass die spontane Vesikelfreisetzung eine Ca2+-abhängige Komponente hat. Um Rückschlüsse auf die Beteiligung der Cav-Subtypen ziehen zu können, wurden Cav2 Subtyp-spezifische Toxinblocker eingesetzt. Ω-Agatoxin-IVA wurde zur Blockierung von Cav2.1 eingesetzt. Cav2.2 wurde mit Ω-Conotoxin GVIA und Cav2.3 mit SNX-482 blockiert. Unter dem Einfluss dieser Toxine konnte weder einzeln noch in Kombination ein Effekt auf die Frequenz der mEPSCs beobachtet werden. Dieses Ergebnis deutet darauf hin, dass die Funktion dieser Cav2s nicht die Ca2+-Bereitstellung für spontane Vesikelfreisetzung ist. Anschließend wurde der Einfluss der Blockade der Cav2 Subtypen auf das Vesikel-Nachfüllen untersucht. Dazu wurden Parallelfasern zunächst fünf Mal bei einer Frequenz von 20 Hz extrazellulär stimuliert und die hervorgerufenen EPSCs aufgezeichnet. Hieraus wurde das Verhältnis aus den Amplituden des zweiten bis fünften EPSCs zur Amplitude des ersten EPSCs berechnet (Ai/A1). Diese Paarpulsverhältnisse sollten sich bei einem durch Cav2-Blocker beeinträchtigtem Vesikel-Nachfüllen verkleinern. Ein solcher Effekt war jedoch bei dieser kurzen Aktivierung mit 5 Stimuli nicht zu beobachten. Da die in-vivo-Aktivität an der PF-PC-Synapse aus längeren, hochfrequenten Trains besteht und sie in der Lage ist, auch bei länger anhaltender Stimulation zu bahnen, wurde ein weiteres Experiment mit Trains aus 50 Stimuli durchgeführt. Hierbei sollte während oder zumindest gegen Ende des Trains ein Gleichgewicht aus Freisetzung und Nachfüllen (Steady State) erreicht werden. Dazu war es erforderlich, die extrazelluläre Ca2+-Konzentration auf 6 mM zu erhöhen. Die aufgezeichneten EPSC-Amplituden wurden in einem kumulativen Plot aufgetragen und mit einer Methode nach Schneggenburger et al. ausgewertet. Dabei wird der Gleichgewichtsbereich mit einer linearen Funktion gefittet, deren Anstieg ein Maß für die Nachladerate und deren y-Achsenabschnitt ein Maß für das Dekrement des RRP ist. Durch spezifische Blockade einzelner Cav-Subtypen kann man Aussagen über deren Einfluss auf Vesikel-Nachfüllen und RRP treffen. Unter Hinzugabe von Ω Agatoxin IVA konnte, wie erwartet, eine starke Reduktion bereits bei der ersten EPSC-Amplitude beobachtet werden, da der Ca2+-Einstrom durch Cav2.1 entscheidend für die Freisetzungswahrscheinlichkeit der Vesikel (pv) ist. Hierdurch erklärt sich die beobachtete Abnahme des RRP-Dekrements. Der Anstieg der Geraden im Gleichgewichtszustand zeigte sich durch Ω-Agatoxin-IVA nicht signifikant verändert. Allerdings könnte ein möglicher Effekt durch die starke Reduktion der pv maskiert sein. Daher wurde in einem weiteren Versuch eine reduzierte Dosis (100 nM statt 250 nM) Ω Agatoxin-IVA eingesetzt. Hier zeigte sich neben dem Effekt auf das RRP-Dekrement außerdem ein vermindertes Nachfüllen der Vesikel. Dieser Effekt wurde bei voller Dosis vermutlich maskiert und weist darauf hin, dass Ca2+-Einstrom durch Cav2.1 zur Aufrechterhaltung des Vesikel-Nachfüllens beiträgt. Bei Blockade von Cav2.3 mit SNX-482 konnte kein signifikanter Einfluss auf Vesikel-Nachfüllen oder RRP festgestellt werden. Unter dem Einfluss des Cav2.2-Blockers Ω-Conotoxin GVIA zeigte sich ein interessanter Effekt: Die Nachladerate wurde durch die Toxinapplikation selektiv reduziert. Hieraus lässt sich schlussfolgern, dass die Bereitstellung von Ca2+ für das Vesikel-Nachfüllen eine Funktion des Cav2.2 an dieser Synapse darstellt. Das RRP-Dekrement blieb davon unbeeinflusst, was zu dem beschriebenen Befund passt, nach dem Cav2.2s in diesem Alter nicht an der Vesikelfreisetzung beteiligt sind. Unter Cav2.1-Block dagegen, blieben die EPSC-Amplituden am Ende verhältnismäßig unbeeinflusst, während die ersten stark reduziert waren. Dieser Befund passt zu der Annahme, dass Ω-Agatoxin-IVA pv stark verringert, während das Nachfüllen über den erhaltenen Ca2+-Einstrom durch Cav2.2 weiterläuft. Anhand unserer Daten ist allerdings nicht auszuschließen, dass ein Unterschied zwischen früh und spät im Train rekrutierten Vesikeln hinsichtlich deren Kopplung an Cav2.1 oder Cav2.2 besteht. Im Anschluss an die Trains mit 50 Stimuli wurde eine Erholungsphase aufgezeichnet. Hierbei wurde mit konsekutiv steigenden Interstimulus-Intervallen die Regeneration der EPSC-Amplituden bis etwa auf das Ausgangsniveau aufgezeichnet. Der Zeitverlauf der Erholung wurde mittels biexponentieller Funktionen gefittet. Bei der Applikation von Ω Agatoxin-IVA zeigte sich der Gleichgewichtszustand ohne Depression, während er unter Ω Conotoxin GVIA und SNX-482 eine deutliche Depression aufwies. Ω-Agatoxin-IVA führte zu einer signifikant beschleunigten Erholung. Dieser Effekt resultiert aber am ehesten aus der starken Reduktion von pv und der fehlenden Depression. Sowohl der Zeitverlauf der Erholung als auch die EPSC-Amplituden während der kurzen Aktivierung mit 5 Stimuli waren unbeeinflusst von Cav2.2- und Cav2.3-Block. Gemeinsam spricht dies für das Vorhandensein eines basalen Nachfüllens, welches zusätzlich zum Ca2+-abhängigen Nachfüllen mit Einstrom durch Cav2.1 und Cav2.2 stattfindet. Das Ziel der Studie bestand darin, die Funktion der Cav2.2- und Cav2.3-Kanäle im präsynaptischen Bouton der reifen Parallelfaser zu erforschen. Obwohl spontane Vesikelfreisetzung zumindest teilweise Ca2+-abhängig zu sein scheint, war keiner der untersuchten Cav2-Kanäle bedeutsam beteiligt. Bei Cav2.3 konnte des Weiteren keine Relevanz für das Nachfüllen festgestellt werden. Für Cav2.2-Kanäle konnte jedoch die Funktion als Ca2+-Bereitsteller für das Nachfüllen bei anhaltender synaptischer Transmission identifiziert werden. Zusammenfassend bestätigen unsere Daten den maßgeblichen Einfluss von Cav2.1 auf pv und zeigen eine wichtige Funktion von Cav2.2: die Erhaltung der synaptischen Effektivität unter anhaltender, hochfrequenter Aktivität an der Parallelfaser. Es bleibt die Frage offen, inwiefern diese Befunde auch für andere kleine glutamaterge Synapsen, beispielsweise im Neocortex, zutreffen. Auch dort konnte der entwicklungsbedingte Wechsel von gemeinsamer Steuerung der Vesikelfreisetzung durch Cav2.1 und Cav2.2 zu alleiniger Steuerung durch Cav2.1 beobachtet werden. Gleichzeitig bleibt auch hier die Ca2+-Signalgebung durch Cav2.2 erhalten.:Einleitung 1 Aufbau und Funktion chemischer Synapsen 1 Kurzzeitbahnung und Vesikel-Nachfüllen 2 Parallelfaser-Purkinjezelle-Synapse als Modellsystem 4 Experimenteller Aufbau und Auswertungsmethoden 7 Publikation 9 Zusammenfassung 24 Literaturverzeichnis 28 Darstellung des eigenen Beitrags 31 Erklärung über die eigenständige Abfassung der Arbeit 32 Lebenslauf 33 Danksagung 34
12

Capacity of Communications Channels with 1-Bit Quantization and Oversampling at the Receiver

Krone, Stefan, Fettweis, Gerhard 25 January 2013 (has links) (PDF)
Communications receivers that rely on 1-bit analogto-digital conversion are advantageous in terms of hardware complexity and power dissipation. Performance limitations due to the 1-bit quantization can be tackled with oversampling. This paper considers the oversampling gain from an information-theoretic perspective by analyzing the channel capacity with 1-bit quantization and oversampling at the receiver for the particular case of AWGN channels. This includes a numerical computation of the capacity and optimal transmit symbol constellations, as well as the derivation of closed-form expressions for large oversampling ratios and for high signal-to-noise ratios of the channel.
13

The role of α-neurexins in Ca<sup>2+</sup>-dependent synaptic transmission and plasticity / Die Rolle von α-Neurexinen bei Ca<sup>2+</sup>-abhängiger synaptischer Transmission und Plastizität

Ahmad, Mohiuddin 24 April 2006 (has links)
No description available.
14

Temperature-Sensitive Transient Receptor Potential Channels in Corneal Tissue Layers and Cells

Mergler, Stefan, Valtink, Monika, Takayoshi, Sumioka, Okada, Yuka, Miyajima, Masayasu, Saika, Shizuya, Reinach, Peter S. 05 August 2020 (has links)
We here provide a brief summary of the characteristics of transient receptor potential channels (TRPs) identified in corneal tissue layers and cells. In general, TRPs are nonselective cation channels which are Ca ²⁺ permeable. Most TRPs serve as thermosensitive molecular sensors (thermo-TRPs). Based on their functional importance, the possibilities are described for drug-targeting TRP activity in a clinical setting. TRPs are expressed in various tissues of the eye including both human corneal epithelial and endothelial layers as well as stromal fibroblasts and stromal nerve fibers. TRP vanilloid type 1 (TRPV1) heat receptor, also known as capsaicin receptor, along with TRP melastatin type 8 (TRPM8) cold receptor, which is also known as menthol receptor, are prototypes of the thermo-TRP family. The TRPV1 functional channel is the most investigated TRP channel in these tissues, owing to its contribution to maintaining tissue homeostasis as well as eliciting wound healing responses to injury. Other thermo-TRP family members identified in these tissues are TRPV2, 3 and 4. Finally, there is the TRP ankyrin type 1 (TRPA1) cold receptor. All of these thermo-TRPs can be activated within specific temperature ranges and transduce such inputs into chemical and electrical signals. Although several recent studies have begun to unravel complex roles for thermo-TRPs such as TRPV1 in corneal layers and resident cells, additional studies are needed to further elucidate their roles in health and disease.
15

Canonical Correlation and the Calculation of Information Measures for Infinite-Dimensional Distributions: Kanonische Korrelationen und die Berechnung von Informationsmaßen für unendlichdimensionale Verteilungen

Huffmann, Jonathan 26 March 2021 (has links)
This thesis investigates the extension of the well-known canonical correlation analysis for random elements on abstract real measurable Hilbert spaces. One focus is on the application of this extension to the calculation of information-theoretical quantities on finite time intervals. Analytical approaches for the calculation of the mutual information and the information density between Gaussian distributed random elements on arbitrary real measurable Hilbert spaces are derived. With respect to mutual information, the results obtained are comparable to [4] and [1] (Baker, 1970, 1978). They can also be seen as a generalization of earlier findings in [20] (Gelfand and Yaglom, 1958). In addition, some of the derived equations for calculating the information density, its characteristic function and its n-th central moments extend results from [45] and [44] (Pinsker, 1963, 1964). Furthermore, explicit examples for the calculation of the mutual information, the characteristic function of the information density as well as the n-th central moments of the information density for the important special case of an additive Gaussian channel with Gaussian distributed input signal with rational spectral density are elaborated, on the one hand for white Gaussian noise and on the other hand for Gaussian noise with rational spectral density. These results extend the corresponding concrete examples for the calculation of the mutual information from [20] (Gelfand and Yaglom, 1958) as well as [28] and [29] (Huang and Johnson, 1963, 1962).:Kurzfassung Abstract Notations Abbreviations 1 Introduction 1.1 Software Used 2 Mathematical Background 2.1 Basic Notions of Measure and Probability Theory 2.1.1 Characteristic Functions 2.2 Stochastic Processes 2.2.1 The Consistency Theorem of Daniell and Kolmogorov 2.2.2 Second Order Random Processes 2.3 Some Properties of Fourier Transforms 2.4 Some Basic Inequalities 2.5 Some Fundamentals in Functional Analysis 2.5.1 Hilbert Spaces 2.5.2 Linear Operators on Hilbert Spaces 2.5.3 The Fréchet-Riesz Representation Theorem 2.5.4 Adjoint and Compact Operators 2.5.5 The Spectral Theorem for Compact Operators 3 Mutual Information and Information Density 3.1 Mutual Information 3.2 Information Density 4 Probability Measures on Hilbert Spaces 4.1 Measurable Hilbert Spaces 4.2 The Characteristic Functional 4.3 Mean Value and Covariance Operator 4.4 Gaussian Probability Measures on Hilbert Spaces 4.5 The Product of Two Measurable Hilbert Spaces 4.5.1 The Product Measure 4.5.2 Cross-Covariance Operator 5 Canonical Correlation Analysis on Hilbert Spaces 5.1 The Hellinger Distance and the Theorem of Kakutani 5.2 Canonical Correlation Analysis on Hilbert Spaces 5.3 The Theorem of Hájek and Feldman 6 Mutual Information and Information Density Between Gaussian Measures 6.1 A General Formula for Mutual Information and Information Density for Gaussian Random Elements 6.2 Hadamard’s Factorization Theorem 6.3 Closed Form Expressions for Mutual Information and Related Quantities 6.4 The Discrete-Time Case 6.5 The Continuous-Time Case 6.6 Approximation Error 7 Additive Gaussian Channels 7.1 Abstract Channel Model and General Definitions 7.2 Explicit Expressions for Mutual Information and Related Quantities 7.2.1 Gaussian Random Elements as Input to an Additive Gaussian Channel 8 Continuous-Time Gaussian Channels 8.1 White Gaussian Channels 8.1.1 Two Simple Examples 8.1.2 Gaussian Input with Rational Spectral Density 8.1.3 A Method of Youla, Kadota and Slepian 8.2 Noise and Input Signal with Rational Spectral Density 8.2.1 Again a Method by Slepian and Kadota Bibliography / Diese Arbeit untersucht die Erweiterung der bekannten kanonischen Korrelationsanalyse (canonical correlation analysis) für Zufallselemente auf abstrakten reellen messbaren Hilberträumen. Ein Schwerpunkt liegt dabei auf der Anwendung dieser Erweiterung zur Berechnung informationstheoretischer Größen auf endlichen Zeitintervallen. Analytische Ansätze für die Berechnung der Transinformation und der Informationsdichte zwischen gaußverteilten Zufallselementen auf beliebigen reelen messbaren Hilberträumen werden hergeleitet. Bezüglich der Transinformation sind die gewonnenen Resultate vergleichbar zu [4] und [1] (Baker, 1970, 1978). Sie können auch als Verallgemeinerung früherer Erkenntnisse aus [20] (Gelfand und Yaglom, 1958) aufgefasst werden. Zusätzlich erweitern einige der hergeleiteten Formeln zur Berechnung der Informationsdichte, ihrer charakteristischen Funktion und ihrer n-ten zentralen Momente Ergebnisse aus [45] und [44] (Pinsker, 1963, 1964). Weiterhin werden explizite Beispiele für die Berechnung der Transinformation, der charakteristischen Funktion der Informationsdichte sowie der n-ten zentralen Momente der Informationsdichte für den wichtigen Spezialfall eines additiven Gaußkanals mit gaußverteiltem Eingangssignal mit rationaler Spektraldichte erarbeitet, einerseits für gaußsches weißes Rauschen und andererseits für gaußsches Rauschen mit einer rationalen Spektraldichte. Diese Ergebnisse erweitern die entsprechenden konkreten Beispiele zur Berechnung der Transinformation aus [20] (Gelfand und Yaglom, 1958) sowie [28] und [29] (Huang und Johnson, 1963, 1962).:Kurzfassung Abstract Notations Abbreviations 1 Introduction 1.1 Software Used 2 Mathematical Background 2.1 Basic Notions of Measure and Probability Theory 2.1.1 Characteristic Functions 2.2 Stochastic Processes 2.2.1 The Consistency Theorem of Daniell and Kolmogorov 2.2.2 Second Order Random Processes 2.3 Some Properties of Fourier Transforms 2.4 Some Basic Inequalities 2.5 Some Fundamentals in Functional Analysis 2.5.1 Hilbert Spaces 2.5.2 Linear Operators on Hilbert Spaces 2.5.3 The Fréchet-Riesz Representation Theorem 2.5.4 Adjoint and Compact Operators 2.5.5 The Spectral Theorem for Compact Operators 3 Mutual Information and Information Density 3.1 Mutual Information 3.2 Information Density 4 Probability Measures on Hilbert Spaces 4.1 Measurable Hilbert Spaces 4.2 The Characteristic Functional 4.3 Mean Value and Covariance Operator 4.4 Gaussian Probability Measures on Hilbert Spaces 4.5 The Product of Two Measurable Hilbert Spaces 4.5.1 The Product Measure 4.5.2 Cross-Covariance Operator 5 Canonical Correlation Analysis on Hilbert Spaces 5.1 The Hellinger Distance and the Theorem of Kakutani 5.2 Canonical Correlation Analysis on Hilbert Spaces 5.3 The Theorem of Hájek and Feldman 6 Mutual Information and Information Density Between Gaussian Measures 6.1 A General Formula for Mutual Information and Information Density for Gaussian Random Elements 6.2 Hadamard’s Factorization Theorem 6.3 Closed Form Expressions for Mutual Information and Related Quantities 6.4 The Discrete-Time Case 6.5 The Continuous-Time Case 6.6 Approximation Error 7 Additive Gaussian Channels 7.1 Abstract Channel Model and General Definitions 7.2 Explicit Expressions for Mutual Information and Related Quantities 7.2.1 Gaussian Random Elements as Input to an Additive Gaussian Channel 8 Continuous-Time Gaussian Channels 8.1 White Gaussian Channels 8.1.1 Two Simple Examples 8.1.2 Gaussian Input with Rational Spectral Density 8.1.3 A Method of Youla, Kadota and Slepian 8.2 Noise and Input Signal with Rational Spectral Density 8.2.1 Again a Method by Slepian and Kadota Bibliography
16

Surface water quality in canals in An Giang province, Viet Nam, from 2009 to 2016

Nguyen, Hong Thao Ly, Nguyen, Thanh Giao 27 February 2019 (has links)
The present study evaluates the surface water quality in the canals of An Giang province in the period from 2009 to 2016. The results showed that surface water of the canals was contaminated by organic matter and microorganisms which makes it not suitable for water supply and conservation of aquatic life. The water quality parameters such as dissolved oxygen (DO), biological oxygen demand (BOD), total suspended solids (TSS), orthophosphate (P-PO43-) and coliforms levels in the wet season were found to be higher than those in the dry season. The problem of organic and microorganic pollution over a long period of time without solutions leads to declines in water quality and then quantity as well. Agriculture is the main activity contributing to pollution of surface water in interior canals along with the activities of daily life, industry and services. This causes pollution of the surface water on Hau River due to its exchange of water with the connected canals. Good agricultural practices should be implemented to limit the pollution of surface water resources of the Mekong Delta. / Nghiên cứu này nhằm đánh giá diễn biến chất lượng nước mặt trong các kênh rạch nội đồng của tỉnh An Giang trong giai đoạn 2009 – 2016. Kết quả cho thấy nước mặt tại các kênh rạch nội đồng đã ô nhiễm hữu cơ và vi sinh vật. Nguồn nước không phù hợp cho mục đích cấp nước sinh hoạt và bảo tồn thực vật thủy sinh. Các chỉ tiêu như hàm lượng oxy hòa tan (DO), nhu cầu oxy sinh hóa (BOD), tổng chất rắn lơ lửng (TSS), orthophosphate (P-PO43-) và coliforms trong mùa mưa cao hơn mùa khô. Vấn đề ô nhiễm hữu cơ và vi sinh vật diễn ra trong thời gian dài và chưa có giải pháp xử lý làm cho chất lượng nước suy giảm dẫn đến suy giảm về trữ lượng. Nông nghiệp là hoạt động chính góp phần làm ô nhiễm nguồn nước mặt trong các kênh rạch nội đồng bên cạnh các hoạt động sinh hoạt, công nghiệp và dịch vụ. Điều này dẫn đến nước mặt trên sông Hậu cũng có đặt tính ô nhiễm tương tự do trao đổi nước với các kênh rạch nội đồng. Thực hành sản xuất nông nghiệp thân thiện môi trường cần sớm được triển khai để hạn chế ô nhiễm nguồn nước mặt quan trọng của khu vực đồng bằng sông Cửu Long.
17

Communications with 1-Bit Quantization and Oversampling at the Receiver: Benefiting from Inter-Symbol-Interference

Krone, Stefan, Fettweis, Gerhard 25 January 2013 (has links) (PDF)
1-bit analog-to-digital conversion is very attractive for low-complexity communications receivers. A major drawback is, however, the small spectral efficiency when sampling at symbol rate. This can be improved through oversampling by exploiting the signal distortion caused by the transmission channel. This paper analyzes the achievable data rate of band-limited communications channels that are subject to additive noise and inter-symbol-interference with 1-bit quantization and oversampling at the receiver. It is shown that not only the channel noise but also the inter-symbol-interference can be exploited to benefit from oversampling.
18

Functional properties and Ca2+-dependent feedback modulation of voltage-gated Ca2+ channels in glutamatergic nerve terminals of the mammalian auditory brainstem / Funktionelle Eigenschaften und Ca2+-abhängige 'feedback'-Regulation spannungsaktivierter Ca2+-Kanäle in glutamatergen Nervterminalien des auditorischen Stammhirns der Säugetiere

Lin, Kun-Han 08 April 2011 (has links)
No description available.
19

Capacity of Communications Channels with 1-Bit Quantization and Oversampling at the Receiver

Krone, Stefan, Fettweis, Gerhard January 2012 (has links)
Communications receivers that rely on 1-bit analogto-digital conversion are advantageous in terms of hardware complexity and power dissipation. Performance limitations due to the 1-bit quantization can be tackled with oversampling. This paper considers the oversampling gain from an information-theoretic perspective by analyzing the channel capacity with 1-bit quantization and oversampling at the receiver for the particular case of AWGN channels. This includes a numerical computation of the capacity and optimal transmit symbol constellations, as well as the derivation of closed-form expressions for large oversampling ratios and for high signal-to-noise ratios of the channel.
20

Communications with 1-Bit Quantization and Oversampling at the Receiver: Benefiting from Inter-Symbol-Interference

Krone, Stefan, Fettweis, Gerhard January 2012 (has links)
1-bit analog-to-digital conversion is very attractive for low-complexity communications receivers. A major drawback is, however, the small spectral efficiency when sampling at symbol rate. This can be improved through oversampling by exploiting the signal distortion caused by the transmission channel. This paper analyzes the achievable data rate of band-limited communications channels that are subject to additive noise and inter-symbol-interference with 1-bit quantization and oversampling at the receiver. It is shown that not only the channel noise but also the inter-symbol-interference can be exploited to benefit from oversampling.

Page generated in 0.0304 seconds