• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 3
  • Tagged with
  • 36
  • 36
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

DEFINING TISSUE LEVEL ARCHITECTURE CHANGES IN EXTRACELLULAR MATRIX DURING MURINE KIDNEY AND FORELIMB MYOTENDINOUS JUNCTION DEVELOPMENT

Sarah Noel Lipp (12455799) 25 April 2022 (has links)
<p>  </p> <p>Congenital diseases of the kidney are the leading cause of chronic kidney disease in pediatric patients. Tissue engineering models used to investigate these diseases are limited by an immature phenotype. Models cultured in an extracellular matrix (ECM), a network of proteins and glycosaminoglycans surrounding cells and providing structural support that mimic the matrix found in development will be likely more mature. However, developing kidney ECM composition and structural dynamics are unknown. To address this gap, we studied ECM composition using mass spectrometry and organization by visualizing the ECM in 3D.</p> <p>In this work, we used mass spectrometry to resolve ECM basement membrane and interstitial matrix dynamics between embryonic, perinatal, and adult kidneys. Surprisingly, we observed a transient upregulation of interstitial matrix structures that corresponded to dynamic 3D structures in the cortex (vertical fibers) and at the corticomedullary junction (medullary ray sheath fibers). Notably, in a model of abnormal <em>Foxd1</em>+ stromal cells, the vertical fibers were disorganized, and medullary ray sheath fibers were no longer associated with blood vessels, suggesting the dynamic 3D structures depended on stromal cell modulation.</p> <p>One of the effects of abnormal kidney development is decreased amniotic fluid, which limits embryonic movement and subsequent limb development. In additional studies, we looked at the implications of the lost motility in the muscular dysgenesis (<em>mdg</em>) mouse on the development of the myotendinous junction (MTJ). The MTJ links contractile muscle with tendon. We found the ECM protein COL22A1 was specific to the developing MTJ as early as embryonic day (E)13.5. The development of the MTJ from a linear structure to a cap-like structure with invaginations in adolescent mice depended on muscle contraction. Furthermore, we used a model to decouple the muscle-tendon-bone complex at an ectopic lateral triceps insertion (<em>Prrx1Cretg/+; Tbx3fl/fl</em>). We observed disorganized tendon and MTJ markers at the termination of the ectopic lateral triceps muscle but negligible cartilage markers. Together, this indicated MTJ maturation depended on motility but not on the enthesis.</p> <p>The information gleaned from our studies on how stromal cells affect dynamic 3D interstitial ECM structures and composition change during kidney development can be used as a template for 3D kidney culture systems. Combined with forelimb MTJ development, our results indicate the importance of the interstitial matrix in tissue morphogenesis.</p>
22

High-resolution imaging of kidney tissue samples

Unnersjö-Jess, David January 2017 (has links)
The kidney is one of the most important and complex organs in the human body, filtering hundreds of litres of blood daily. Kidney disease is one of the fastest growing causes of death in the modern world, and this motivates extensive research for better understanding the function of the kidney in health and disease. Some of the most important cellular structures for blood filtration in the kidney are of very small dimensions (on the sub-200 nm scale), and thus electron microscopy has been the only method of choice to visualize these minute structures. In one study, we show for the first time that by combining optical clearing with STED microscopy, protein localizations in the slit diaphragm of the kidney, a structure around 75 nanometers in width, can now be resolved using light microscopy. In a second study, a novel sample preparation method, expansion microscopy, is utilized to physically expand kidney tissue samples. Expansion improves the effective resolution by a factor of 5, making it possible to resolve podocyte foot processes and the slit diaphragm using confocal microscopy. We also show that by combining expansion microscopy and STED microscopy, the effective resolution can be improved further. In a third study, influences on the development of the kidney were studied. There is substantial knowledge regarding what genes (growth factors, receptors etc.) are important for the normal morphogenesis of the kidney. Less is known regarding the physiology behind how paracrine factors are secreted and delivered in the developing kidney. By depleting calcium transients in explanted rat kidneys, we show that calcium is important for the branching morphogenesis of the ureteric tree. Further, the study shows that the calcium-dependent initiator of exocytosis, synaptotagmin, is expressed in the metanephric mesenchyme of the developing kidney, indicating that it could have a role in the secretion of paracrine growth factors, such as GDNF, to drive the branching. / <p>QC 20170523</p>
23

EXPRESSION MICROARRAY ANALYSIS OF RENAL DEVELOPMENT AND HUMAN RENAL DISEASE

SCHWAB, KRISTOPHER R. January 2006 (has links)
No description available.
24

HoxA11 DOWNSTREAM TARGETS IN KIDNEY DEVELOPMENT

FENG, YUXIN 11 October 2001 (has links)
No description available.
25

β-catenin overexpression within the metanephric mesenchyme causes renal dysplasia via upregulation of the Gdnf signalling axis

Sarin, Sanjay 04 1900 (has links)
<p>Renal dysplasia, a developmental disorder characterized by defective nephrogenesis and branching morphogenesis, ranks as one of the major causes of renal failure among the pediatric population. The molecular mechanisms underlying the pathogenesis of renal dysplasia are not well understood; however, changes in gene expression are a major contributing factor. In this study, we demonstrate that the levels of activated β-catenin, a transcriptional co-regulator, are elevated in the nuclei of ureteric, stromal, and mesenchymal cells within dysplastic human kidney tissue. To determine the mechanisms by which mesenchymal β-catenin over-expression leads to renal dysplasia, we generated a conditional mouse model in which β-catenin was stabilized exclusively in the metanephric mesenchyme. Kidneys from these mutant mice are remarkably similar to dysplastic human kidneys. In addition, these mutant mice also demonstrate the formation of 4 to 6 ectopic kidneys. While nephrogenesis appeared normal, investigation of ureteric branch pattern revealed ectopic ureteric budding off the Wolffian duct, ectopic branching off the initial ureteric bud stalk and a disorganization of branch patterning. In-situ hybridization of mutant kidneys revealed increased expression of Gdnf, Cret, and Wnt11, key factors that regulate ureteric branch patterning. We further demonstrate that β-catenin directly binds to TCF consensus binding sites within the Gdnf promoter region located 4.9kb, 2.25kb and 2.1kb upstream of the Gdnf transcriptional start site. Molecular cloning of the 4.9kb fragment upstream of a luciferase gene revealed that ß-catenin regulates gene transcription from the 4.9kb consensus site. Consistent with these findings, genetic deletion of β-catenin from the metanephric mesenchyme cell lineage lead to decreased Gdnf expression and a reduction in ureteric branching morphogenesis resulting in renal hypoplasia. Taken together, our findings establish that β-catenin is an essential regulator of Gdnf expression within the metanephric mesenchyme. Furthermore, we have identified a novel disrupted signalling pathway that contributes to the pathogenesis of renal dysplasia. In this pathway, an over-expression of β-catenin directly leads to an over-expression of Gdnf, causing ectopic and disorganized branching morphogenesis and, consequently, renal dysplasia.</p> / Master of Health Sciences (MSc)
26

Nuclear pore membrane glycoprotein 210 as a new marker for epithelial cells

Olsson, Magnus January 2003 (has links)
<p>Epithelial cell polarisation is a prerequisite for the branching morphogenesis in several organs. Differential screening techniques were used to identify genes, which are upregulated during induction of epithelium in early kidney development. This investigation revealed two separate genes, Nuclear localising protein 1 (Nulp1), a previously undescribed gene with sequence characteristics of the basic helix-loop-helix transcription factor family, and glycoprotein 210 (gp210, POM210), an integral membrane protein constituent of the nuclear pore complex (NPC). Of these, gp210 was found to be upreglated during conversion of mesenchyme to epithelium. </p><p>The nuclear envelope, which demarcates the nuclear region in the eukaryotic cell, consists of an inner and an outer membrane that are fused at the locations for NPCs. These large macromolecular assemblages are tube like structures connecting the cytoplasmic and nuclear compartments of the cell. NPCs serve as the only conduits for exchange of molecular information between these cellular rooms. Electron microscopy techniques have revealed detailed information about the NPC architecture. A number of proteins (nucleoporins) have been characterised and embodied as components of the NPC structure. Active, energy dependent nucleocytoplasmic transport of RNAs and proteins is mediated by a group of soluble receptor proteins, collectively termed karyopherins. </p><p>Gp210 has been suggested to be important for nuclear pore formation. Nevertheless, our analyses showed a limited expression pattern of gp210, with its mRNA and protein largely confined to epithelial cells in the mouse embryo. Furthermore, in several cell lines, gp210 was undetectable. The expression pattern of gp210 was not synchronised with some other nucleoporins, indicating NPC heterogeneity. Characterisation of the structure of the human gp210 gene, including its promoter region, gave insight about possible cell-type specific gene regulatory mechanisms. </p><p>Regulation of molecular traffic between the nucleus and the cytoplasm leads to transcriptional control. Cell specific configuration of the NPC structure, due to diffential expression of gp210, could be involved in this control. Gp210 could be of importance for the development of epithelial cell polarisation.</p>
27

Nuclear pore membrane glycoprotein 210 as a new marker for epithelial cells

Olsson, Magnus January 2003 (has links)
Epithelial cell polarisation is a prerequisite for the branching morphogenesis in several organs. Differential screening techniques were used to identify genes, which are upregulated during induction of epithelium in early kidney development. This investigation revealed two separate genes, Nuclear localising protein 1 (Nulp1), a previously undescribed gene with sequence characteristics of the basic helix-loop-helix transcription factor family, and glycoprotein 210 (gp210, POM210), an integral membrane protein constituent of the nuclear pore complex (NPC). Of these, gp210 was found to be upreglated during conversion of mesenchyme to epithelium. The nuclear envelope, which demarcates the nuclear region in the eukaryotic cell, consists of an inner and an outer membrane that are fused at the locations for NPCs. These large macromolecular assemblages are tube like structures connecting the cytoplasmic and nuclear compartments of the cell. NPCs serve as the only conduits for exchange of molecular information between these cellular rooms. Electron microscopy techniques have revealed detailed information about the NPC architecture. A number of proteins (nucleoporins) have been characterised and embodied as components of the NPC structure. Active, energy dependent nucleocytoplasmic transport of RNAs and proteins is mediated by a group of soluble receptor proteins, collectively termed karyopherins. Gp210 has been suggested to be important for nuclear pore formation. Nevertheless, our analyses showed a limited expression pattern of gp210, with its mRNA and protein largely confined to epithelial cells in the mouse embryo. Furthermore, in several cell lines, gp210 was undetectable. The expression pattern of gp210 was not synchronised with some other nucleoporins, indicating NPC heterogeneity. Characterisation of the structure of the human gp210 gene, including its promoter region, gave insight about possible cell-type specific gene regulatory mechanisms. Regulation of molecular traffic between the nucleus and the cytoplasm leads to transcriptional control. Cell specific configuration of the NPC structure, due to diffential expression of gp210, could be involved in this control. Gp210 could be of importance for the development of epithelial cell polarisation.
28

Novel culture and organoid technologies to study mammalian kidney development

Saarela, U. (Ulla) 19 March 2018 (has links)
Abstract Kidney diseases affect an increasing number of people worldwide, and there is a growing demand to develop new treatments and increase the number of transplantable organs. New treatments can be designed when new knowledge is gained by studying the details of kidney development. The ex vivo culture techniques have been used for over a century to study the development of kidneys, but they are not optimal for long-term imaging and following the nephrogenesis process over time. Kidney organoids, which are cellular aggregates resembling the in vivo kidney, together with intact embryonic kidneys, present a platform for these studies. However, there are limitations when working with primary embryonic kidney cells. Primary embryonic metanephric mesenchymal cells are usually low in number and lose the ability to undergo nephrogenesis rapidly. New ways to culture, biobank, and transfect cells can offer ways for functional testing of the effects of different genes on the nephrogenesis. This study presents new tools for studying nephrogenesis. Time-lapse imaging of organ development may be enhanced by using a Fixed Z-direction (FiZD) culture system where the kidney explant is grown in a restricted 70&#956;m space. The technique enables the segmentation of the individual cells in a two-dimensional image and a dynamic analysis of the time-lapse data. This study also presents a technique of dissociation and reaggregation of the uninduced kidney metanephric mesenchyme (MM). With this novel method of culturing the dissociated MM cells in a growth factor medium for 24 hours, the cells can keep their competence for nephrogenesis. This technique allows the genetic manipulation of the MM cells before the induction to form nephrons, allowing functional testing of genes in the metanephric mesenchyme. This study further presents different techniques for gene editing of MM cells and introduces biobanking of primary kidney cells. It is shown here that the MM and ureteric bud (UB) cells have the capability to remember their fates and build nephron-like structures or continue branching after the cryopreservation in the liquid nitrogen. The methods introduced here provide new ways to create kidney organoids, manipulate their genome, and biobank the primary embryonic kidney cells. The developed FiZD culture system enhances the imaging of kidney development compared to the previously used culture methods. Using this method, the morphogenesis of the developing kidney can be followed more precisely, even in a single cell level. This culture method may also be used to culturing other organs, such as ovary, and may help provide insights into the development of other tissues as well. / Tiivistelmä Munuaissairauksiin sairastuvien määrä on lisääntynyt maailmanlaajuisesti, ja se on aikaansaanut tarpeen uusien hoitokeinojen sekä siirtoelimien kehitykseen. Näiden kehittämiseksi tarvitsemme uutta tietoa munuaisen kehityksestä ja toiminnasta. Munuaisen kehitystä on tutkittu ex vivo -viljelyn avulla jo yli vuosisadan ajan, mutta nykyiset elinviljelytekniikat eivät ole kuitenkaan optimaalisia pitkäkestoiseen time-lapse-kuvaukseen. Tässä työssä käytetään munuaisen kehityksen tutkimiseen hiiren alkion munuaisia sekä munuaisorganoideja, jotka ovat munuaissoluista koostuvia ja aitoa munuaista mallintavia soluaggregaatteja. Primaaristen munuaissolujen käyttöön sisältyy rajoitteita, ja tämä luo tarpeen uusien organoiditekniikoiden kehitykseen ja optimointiin. Primaarisia munuaissoluja on yleensä käytettävissä pieniä määriä, ja ne eivät myöskään sovellu pitkäkestoiseen kasvatukseen, koska ne menettävät nopeasti kykynsä muodostaa nefroneita. Uusien tekniikoiden avulla voidaan parantaa näiden solujen kasvatusta, säilytystä ja transfektointia ja edistää eri geenien vaikutuksia tutkivat funktionaaliset testaukset. Tässä tutkimuksessa esitetään uusia työkaluja nefrogeneesin tutkimiseen. Elinten kehitystä seuraavan time-lapse-kuvauksen laatua voidaan parantaa käyttämällä tässä työssä esitettyä FiZD-kasvatusmenetelmää, jossa munuaiseksplantti kasvaa rajoitetussa 70&#956;m:n tilassa. Kuvat ovat korkealaatuisia, ja se mahdollistaa 2D-kuvan yksittäisten solujen segmentoinnin ja solujen liikkeiden dynaamisen analyysin. Lisäksi tässä tutkimuksessa esitetään ei-indusoidun munuaismesenkyymin käsittelyyn kehitetty dissosiaatio- ja reaggregaatiomenetelmä. Munuaisen kehityksen alkuvaiheessa on mahdollistaerottaa nefroneja muodostava metanefrinen mesenkyymi (MM) sekä munuaisen kokoajaputkiston muodostava ureterin silmu. Metanefrinen mesenkyymi voidaan hajottaa yksisolususpensioksi, säilyttää 24 tuntia kasvutekijämediumissa ja tämän jälkeen reaggregoida ja indusoida muodostamaan nefroneita. Tämä tekniikka mahdollistaa MM-solujen geneettisen muokkauksen, ennen kuin munuaisen kehitys alkaa. Tämä tekniikka mahdollistaa myös dissosioitujen MM solujen geneettiset muokkaukset. Geenien yliekspression tai hiljentämisen avulla voidaan tehdä funktionaalisia kokeita näiden muutosten vaikutuksesta nefrogeneesiin. Lisäksi tässä työssä esitetään munuaisprogenitorisolujen säilömistä syväjäädytyksellä. Munuaisprogenitorisolut voidaan säilöä nestetyppeen, minkä jälkeen ne ovat edelleen kykeneviä muodostamaan nefronirakenteita tai haarautumaan. Tässä väitöskirjatyössä esitettyjen menetelmien avulla on tulevaisuudessa mahdollista saada lisätietoa munuaisten kehitysprosessista. Kehitetty FiZD-kasvatusmenetelmä parantaa munuaisen kehityksen kuvantamista ja mahdollistaa yksittäisten solujen seuraamisen. Tämä kasvatusmenetelmä sopii myös muiden elinten, kuten munarauhasten, ja kudosten kasvatukseen, ja sen avulla voidaan saada tietoa myös niiden kehityksestä.
29

The role of Dkk1 and Wnt5a in mammalian kidney development and disease

Pietilä, I. (Ilkka) 13 January 2015 (has links)
Abstract This thesis focuses on mammalian kidney development and in particular on the question of how two Wnt signalling pathway genes, an antagonistic Dkk1 and an agonistic ligand Wnt5a, regulate the process. Wnts are secreted ligands that are involved in many developmental processes, including gonadal differentiation and kidney development, but also in various diseases and malformations. Wnts form a large signalling family containing 19 different glycoprotein ligands in mammals. Wnt signalling occurs via two different intracellular pathways. A canonical pathway proceeds via beta-catenin, and a non-canonical pathway utilizes other signalling molecules. Dkk1 is an antagonist of the canonical pathway and Wnt5a is considered a ligand that activates the non-canonical signalling pathway. As part of the thesis, I have studied the role of Dkk1 in kidney morphogenesis using a conditional mouse model, in which the gene is deleted in a cell specific manner from the collecting ducts. Dkk1 deficiency increased renal papilla growth and the risk of hydronephrosis. Research pointed out that the lack of Dkk1 in the collecting ducts increased cell proliferation and disturbed the balance of canonical Wnt signalling, which led to an overgrowth of renal papilla. This led to functional phenotypes including increased water reabsorption and changes in ion secretion/absorption. These changes are most likely due to altered Wnt7b signalling. The second part of the thesis examines the role of the non-canonical Wnt5a gene in kidney development with a conventional knock out mouse model. At the time work began on the thesis, no corresponding kidney phenotype had been published. The primary finding in kidneys lacking Wnt5a was an altered basement membrane organization of the collecting ducts and glomeruli. The phenotype is most likely the reason behind morphological phenotypes which vary from bilateral kidney agenesis to duplex collecting system. Notably, during the course of this study we found a mutation in the human WNT5A gene of a CAKUT patient. This is the first time Wnts have been shown to organize kidney development via basement membrane formation. / Tiivistelmä Tämän väitöskirjan tarkoituksena on ollut tutkia munuaisen kehitystä ja kuinka kaksi Wnt-signalointireitin geeniä, signalointia estävä Dkk1 ja signalointia edistävä Wnt5a säätelevät sitä. Wnt ligandit ovat eritettäviä signaalimolekyylejä, jotka ovat osallisina monissa kehitysbiologissa prosesseissa kuten sukupuolen määräytymisessä ja munuaisen kehityksessä. Myös monissa taudeissa on havaittu muuntuneita Wnt geenien tuottotasoja. Wnt-geenit muodostava suuren signalointimolekyyliperheen, johon lukeutuu 19 jäsentä nisäkkäillä ja Wnt-signointi on jaettu perinteisesti kahteen signalointiryhmään. Dkk1 on kanonisen Wnt-signaloinnin estäjä ja Wnt5a:ta pidetään pääsaantiöisesti ei-kanonisena Wnt-ligandina. Väitöskirjassani olen tutkinut Dkk1 geenin toimintaa kohdennetussa Dkk1-poistogeenisessä hiiressä, jossa geenin toiminta on poistettu spesifisesti munuaisen kokoojaputkista. Dkk1:n puutos johtaa munuaisen papillan kasvuun ja lisää riskiä hydronefroksen muodostumiseen. Tutkimukset osoittivat että Dkk1:n puutos aiheuttaa lisääntynyttä solujakautumista kokoojaputkissa, jolloin Wnt-signaloinnin muutos aiheuttaa papillan ylikasvua. Ylikasvusta seuraa lisääntynyttä veden takaisin imeytymistä ja muutoksia ionien erittämisessä ja takaisin imeytymisessä. Todennäköisimmin muutokset johtuvat muuntuneesta Wnt7b signaloinnista, jota Dkk1 normaalisti säätelee. Väitöskirjan toisessa osassa tutkittiin ei-kanonisen reitin Wnt5a ligandin roolia munuaisen kehityksessä käyttäen poistogeenistä hiirimallia, jossa Wnt5a:n roolia munuaisenkehityksessä ei ollut julkaistu työn aloituksen aikaan. Wnt5a:n puutoksen havaittiin vaikuttavan tyvikalvon järjestymiseen kokoojaputkissa ja munuaiskeräsessä. Tyvikalvon häiriö on todennäköisin syy morfologisiin muutoksiin, jotka vaihtelevat molempien munuaisen puuttumisesta kaksois-kokoojatiehyen muodostumiseen. Työssä osoitetaan ensimmäistä kertaa kuinka Wnt-signalointireitin proteiinit säätelevät munuaisen kehitystä tyvikalvon muodostuksen kautta.
30

Exogenous modulation of embryonic tissue and stem cells to form nephronal structures

Sebinger, David Daniel Raphael 04 July 2013 (has links) (PDF)
Renal tissue engineering and regenerative medicine represent a significant clinical objective because of the very limited prospect of cure after classical kidney treatment. Thus, approaches to isolate, manipulate and reintegrate structures or stimulating the selfregenerative potential of renal tissue are of special interest. Such new strategies go back to knowledge and further outcome of developmental biological research. An understanding of extracellular matrix (ECM) structure and composition forms thereby a particularly significant aspect in comprehending the complex dynamics of tissue regeneration. Consequently the reconstruction of these structures offers beneficial options for advanced cell and tissue culture technology and tissue engineering. In an effort to investigate the influence of natural extracellular structures and components on embryonic stem cell and renal embryonic tissue, methodologies which allow the easy application of exogenous signals on tissue in vitro on the one hand and the straight forward evaluation of decellularization methods on the other hand, were developed. Both systems can be used to investigate and modulate behaviour of biological systems and represent novel interesting tools for tissue engineering. The novel technique for culturing tissue in vitro allows the growing of embryonic renal explants in very low volumes of medium and optimized observability, which makes it predestined for testing additives. In particular, this novel culture set up provides an ideal opportunity to investigate renal development and structure formation. Further studies indicated that the set is universally applicable on all kinds of (embryonic) tissue. Following hereon, more than 20 different ECM components were tested for their impact on kidney development under 116 different culture conditions, including different concentrations and being either bound to the substrate or dissolved in the culture medium. This allowed to study the role of ECM constituents on renal structure formation. In ongoing projects, kidney rudiments are exposed to aligned matrix fibrils and hydrogels with first promising results. The insights gained thereof gave rise to a basis for the rational application of exogenous signals in regenerative kidney therapies. Additionally new strategies for decellularization of whole murine adult kidneys were explored by applying different chemical agents. The obtained whole matrices were analysed for their degree of decellularization and their residual content and composition. In a new straight forward approach, a dependency of ECM decellularization efficiency to the different agents used for decellularization could be shown. Moreover the capability of the ECM isolated from whole adult kidneys to direct stem cell differentiation towards renal cell linage phenotypes was proved. The data obtained within this thesis give an innovative impetus to the design of biomaterial scaffolds with defined and distinct properties, offering exciting options for tissue engineering and regenerative kidney therapies by exogenous cues.

Page generated in 0.0755 seconds