• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 3
  • Tagged with
  • 36
  • 36
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Exogenous modulation of embryonic tissue and stem cells to form nephronal structures

Sebinger, David Daniel Raphael 26 April 2013 (has links)
Renal tissue engineering and regenerative medicine represent a significant clinical objective because of the very limited prospect of cure after classical kidney treatment. Thus, approaches to isolate, manipulate and reintegrate structures or stimulating the selfregenerative potential of renal tissue are of special interest. Such new strategies go back to knowledge and further outcome of developmental biological research. An understanding of extracellular matrix (ECM) structure and composition forms thereby a particularly significant aspect in comprehending the complex dynamics of tissue regeneration. Consequently the reconstruction of these structures offers beneficial options for advanced cell and tissue culture technology and tissue engineering. In an effort to investigate the influence of natural extracellular structures and components on embryonic stem cell and renal embryonic tissue, methodologies which allow the easy application of exogenous signals on tissue in vitro on the one hand and the straight forward evaluation of decellularization methods on the other hand, were developed. Both systems can be used to investigate and modulate behaviour of biological systems and represent novel interesting tools for tissue engineering. The novel technique for culturing tissue in vitro allows the growing of embryonic renal explants in very low volumes of medium and optimized observability, which makes it predestined for testing additives. In particular, this novel culture set up provides an ideal opportunity to investigate renal development and structure formation. Further studies indicated that the set is universally applicable on all kinds of (embryonic) tissue. Following hereon, more than 20 different ECM components were tested for their impact on kidney development under 116 different culture conditions, including different concentrations and being either bound to the substrate or dissolved in the culture medium. This allowed to study the role of ECM constituents on renal structure formation. In ongoing projects, kidney rudiments are exposed to aligned matrix fibrils and hydrogels with first promising results. The insights gained thereof gave rise to a basis for the rational application of exogenous signals in regenerative kidney therapies. Additionally new strategies for decellularization of whole murine adult kidneys were explored by applying different chemical agents. The obtained whole matrices were analysed for their degree of decellularization and their residual content and composition. In a new straight forward approach, a dependency of ECM decellularization efficiency to the different agents used for decellularization could be shown. Moreover the capability of the ECM isolated from whole adult kidneys to direct stem cell differentiation towards renal cell linage phenotypes was proved. The data obtained within this thesis give an innovative impetus to the design of biomaterial scaffolds with defined and distinct properties, offering exciting options for tissue engineering and regenerative kidney therapies by exogenous cues.:Table of Contents LISTS OF FIGURES AND TABLES VI ACKNOWLEDGEMENTS..................................................................................VII ABSTRACT ............................................................................................................IX NOMENCLATURE ................................................................................................X 1 INTRODUCTION...................................................................................................1 2 FUNDAMENTALS..................................................................................................2 2.1 KIDNEY DEVELOPMENT AND REGENERATION ...............................................................................2 2.1.1 Function of the kidney............................................................................................2 2.1.2 Development of the metanephric kidney ................................................................2 2.1.3 Selfregenerative potential of the kidney.................................................................5 2.2 THE EXTRACELLULAR MATRIX AS BIOLOGICAL SCAFFOLD ...............................................................6 2.2.1 Molecular composition of the ECM........................................................................7 2.2.1.1 An overview of the main ECM components..................................................................................8 2.2.2 Cell/tissue-matrix interactions.............................................................................12 2.2.2.1 Biochemical signals....................................................................................................................13 2.2.2.2 Mechanical signals......................................................................................................................14 2.2.2.3 Structural signals........................................................................................................................15 2.3 TISSUE ENGINEERING FOR THERAPEUTIC PURPOSES .....................................................................15 2.3.1 An overview of tissue engineering and regenerative medicine.............................15 2.3.2 Biomaterials for tissue engineering and regenerative medicine...........................18 2.3.2.1 Decellularization approach as tool to extract natural matrices....................................................19 2.3.3 Tissue engineering and regenerative medicine in kidney treatment.....................19 2.4 ORGAN AND TISSUE CULTURE AS TOOL FOR TISSUE ENGINEERING...................................................22 2.4.1 Common organ culture systems............................................................................24 3 OBJECTIVES AND MOTIVATION...................................................................25 4 RESULTS AND DISCUSSION............................................................................27 4.1 A NOVEL, LOW-VOLUME METHOD FOR ORGAN CULTURE OF EMBRYONIC KIDNEYS THAT ALLOWS DEVELOPMENT OF CORTICO-MEDULLARY ANATOMICAL ORGANIZATION..............................................27 4.1.1 Additional evidences (to Appendix A) for stress reduction of kidney rudiments cultured in the novel system than those grown in conventional organ culture.....28 4.1.2 Additional evidences (to Appendix A) for corticomedullary zonation and improved development of kidney rudiments cultured in the novel system for a period of 12 days......................................................................................................................30 4.1.3 Additional evidences (to Appendix A) for the application of the glass based low volume culture system for other organs................................................................32 4.2 ECM MODULATED EARLY KIDNEY DEVELOPMENT IN ORGAN CULTURE ...........................................34 4.3 ESTABLISHING AND EVALUATING DECELLULARIZATION TECHNIQUES TO ISOLATE WHOLE KIDNEY ECMS FROM ADULT MURINE KIDNEYS................................................................................................37 4.4 THE ABILITY OF WHOLE DECELLULARIZED ECM CONSTRUCTS TO INFLUENCE MURINE EMBRYONIC STEM CELL DIFFERENTIATION AND RENAL TISSUE BEHAVIOUR IN A NEW STRAIGHT FORWARD APPROACH..........38 iv 5 SUMMARY AND OUTLOOK.............................................................................39 5.1 SUMMARY..........................................................................................................................39 5.2 OUTLOOK...........................................................................................................................42 6 BIBLIOGRAPHY.................................................................................................49 7 APPENDICES..........................................................................................................I 7.1 APPENDIX A: A NOVEL, LOW-VOLUME METHOD FOR ORGAN CULTURE OF EMBRYONIC KIDNEYS THAT ALLOWS DEVELOPMENT OF CORTICO-MEDULLARY ANATOMICAL ORGANIZATION......................I 7.2 APPENDIX B: ECM MODULATED EARLY KIDNEY DEVELOPMENT IN EMBRYONIC ORGAN CULTURE ....XIX 7.3 APPENDIX C: THE DEWAXED ECM: AN EASY METHOD TO ANALYZE CELL BEHAVIOUR ON DECELLULARIZED EXTRACELLULAR MATRICES.......................................................................XLIV 7.4 PUBLICATIONS AND SCIENTIFIC CONTRIBUTIONS......................................................................LXV 7.5 SELBSTSTÄNDIGKEITSERKLÄRUNG......................................................................................LXIX
32

Niveaux de vitamine a (retinol et acide retinoïque) mesurés dans le sang de cordon ombilical et dévéloppement rénal des nouveau-nés

Manolescu, Daniel-Constantin 08 1900 (has links)
Introduction : La Vitamine A (rétinol, ROL) et son métabolite l’acide rétinoïque (AR) sont essentielles pour l’embryogénèse. L’excès comme l’insuffisance d’AR sont nocives. L’AR est régularisé dans l’embryon par des gènes spécifiques (ALDH, CRABP, CYP). Hypothèse : Les grandes variations d’AR dans le plasma des adultes normaux, nous ont orienté à mesurer les rétinoïdes (ROL et RA) dans le sang de cordon ombilical, pour évaluer des corrélations avec des polymorphismes des gènes impliquées dans le métabolisme de l’AR et le développement rénal-(RALDH2, CRABP2, CYP26A1; B1). Vérifier pour des corrélations entre ces rétinoïdes et/ou avec la taille de reins à la naissance. Méthodes : Extraction du ROL et RA du sang de cordon ombilical de 145 enfants et analyse par HPLC. Le volume des reins a été mesuré par ultrasonographie et l’ADN génomique leucocytaire extrait (FlexiGene DNA-Kit). 10 échantillons d’ADN ont été exclus (qualité). Les htSNP : ALDH1A2, CRABP2, CYP26A1;B1 du génome humain (HapMap) ont été séquencés et génotypés (Sequenom iPlex PCR).Des testes bio-statistiques des fréquences génotypiques et alléliques ont été effectués (Single-Locus, χ2, Kruskal-Wallis, Allelic-Exact).Des corrélations (ROL, RA, SNPs, V-reins) ont été analysés (Kendall-tau /Oakes). Résultats : La Δ RA (0.07-550.27 nmol/l) non corrélé avec la Δ ROL (51.39-3892.70 nmol/l). Il n’y a pas d’association ROL ou RA avec les volumes des reins ou avec les SNPs/ CYP21A1;B1. Corrélations trouvées : 1. (p=0.035), polymorphisme génétique ALDH1A2-SNP (rs12591551:A/C) hétérozygote/CA, (25enfants, 19%) avec moyennes d’AR (62.21nmol/l). 2. (p=0.013), polymorphisme CRABP2-SNP (rs12724719:A/G) homozygote/AA (4 enfants, 3%) avec hautes valeurs moyennes d’AR (141,3 nmol/l). Discussion-Conclusion : Les grandes ΔRA suggèrent une variabilité génique individuelle du métabolisme de ROL. Les génotypes (CA)-ALDH1A2/ SNP (rs12591551:A/C) et (AA) -CRABP2/SNP (rs12724719:A/G) sont associés à des valeurs moyennes hautes d’AR, pouvant protéger l’embryogénèse lors d’une hypovitaminose A maternelle. / Introduction: Vitamin A (retinol, ROL) modulate the embryogenesis thorough RA, its metabolite. Excess or deficiency being pathologic, the RA is tight regulated in the embryo thorough specific genes (ALDH, CRABP, CYP, etc.) important for Vitamin A metabolism. Hypothesis: High RA variations in healthy adults plasma, oriented to ROL, RA evaluation in human cord blood, in regard of possible correlations with polymorphisms of genes involved in RA metabolism and kidney development (RALDH2, CRABP2, CYP26A1,B1). Correlations between ROL and RA and/or with birth kidney size might also occur. Methods: Cord blood ROL and RA were extracted and HPLC analysed, from 145 Montreal healthy newborns. Kidney volumes already measured by ultrasonography. Genomic leucocytary DNA extraction was performed with FlexiGene DNA-Kit. 10 samples excluded (DNA quality). htSNP choices: ALDH1A2, CRABP2, CYP26A1;B1 were made on HapMap human genome. Sequencing, genotyping (Sequenom iPlex PCR) was made for these genes eventual SNPs. Biostatistics tests for genotype and allelic frequencies (Single-Locus, χ2, Kruskal-Wallis, Allelic-Exact) and Kendall-tau /Oakes analysis for eventual ROL, RA, SNPs, V-reins correlations, were performed. Results: No correlation found between Δ RA (0.07-550.27 nmol/L) and Δ ROL (51.39-3892.70 nmol/L). No association ROL or RA with kidney volumes nor with SNPs/ CYP21A1;B1. Found correlations: 1. (p=0.035), polymorphism ALDH1A2-SNP (rs12591551:A/C) heterozygous/CA, (25babies, 19%) with RA (mean ~62.21nmol/L). 2. (p=0.013), polymorphism CRABP2-SNP (rs12724719: A/G) homozygous/AA (4babies, 3%) with RA (mean~141, 3 nmol/L). Discussion/Conclusion: Big Δ RA not correlated with Δ ROL suggests individual genetic variance on RA metabolism. Genotypes (CA)-ALDH1A2/SNP (rs12591551:A/C) and (AA)-CRABP2/SNP (rs12724719: A/G) are associated with high cord blood RA mean and may be embryogenesis protective in a maternal hypovitaminosis-A, environment.
33

Niveaux de vitamine a (retinol et acide retinoïque) mesurés dans le sang de cordon ombilical et dévéloppement rénal des nouveau-nés

Manolescu, Daniel-Constantin 08 1900 (has links)
RÉSUMÉ: Introduction : La Vitamine A (rétinol, ROL) et son métabolite l’acide rétinoïque (AR) sont essentielles pour l’embryogénèse. L’excès comme l’insuffisance d’AR sont nocives. L’AR est régularisé dans l’embryon par des gènes spécifiques (ALDH, CRABP, CYP). Hypothèse : Les grandes variations d’AR dans le plasma des adultes normaux, nous ont orienté à mesurer les rétinoïdes (ROL et RA) dans le sang de cordon ombilical, pour évaluer des corrélations avec des polymorphismes des gènes impliquées dans le métabolisme de l’AR et le développement rénal-(RALDH2, CRABP2, CYP26A1; B1). Vérifier pour des corrélations entre ces rétinoïdes et/ou avec la taille de reins à la naissance. Méthodes : Extraction du ROL et RA du sang de cordon ombilical de 145 enfants et analyse par HPLC. Le volume des reins a été mesuré par ultrasonographie et l’ADN génomique leucocytaire extrait (FlexiGene DNA-Kit). 10 échantillons d’ADN ont été exclus (qualité). Les htSNP : ALDH1A2, CRABP2, CYP26A1;B1 du génome humain (HapMap) ont été séquencés et génotypés (Sequenom iPlex PCR).Des testes bio-statistiques des fréquences génotypiques et alléliques ont été effectués (Single-Locus, χ2, Kruskal-Wallis, Allelic-Exact).Des corrélations (ROL, RA, SNPs, V-reins) ont été analysés (Kendall-tau /Oakes). Résultats : La Δ RA (0.07-550.27 nmol/l) non corrélé avec la Δ ROL (51.39-3892.70 nmol/l). Il n’y a pas d’association ROL ou RA avec les volumes des reins ou avec les SNPs/ CYP21A1;B1. Corrélations trouvées : 1. (p=0.035), polymorphisme génétique ALDH1A2-SNP (rs12591551:A/C) hétérozygote/CA, (25enfants, 19%) avec moyennes d’AR (62.21nmol/l). 2. (p=0.013), polymorphisme CRABP2-SNP (rs12724719:A/G) homozygote/AA (4 enfants, 3%) avec hautes valeurs moyennes d’AR (141,3 nmol/l). Discussion-Conclusion : Les grandes ΔRA suggèrent une variabilité génique individuelle du métabolisme de ROL. Les génotypes (CA)-ALDH1A2/ SNP (rs12591551:A/C) et (AA) -CRABP2/SNP (rs12724719:A/G) sont associés à des valeurs moyennes hautes d’AR, pouvant protéger l’embryogénèse lors d’une hypovitaminose A maternelle. Mots clé: sang de cordon ombilical, ROL-rétinol, AR-acide rétinoïque, HPLC, SNP- polymorphisme, ALDH1A2, CRABP2, CYP26A1,développement rénal,embryogénèse. / ABSTRACT Introduction: Vitamin A (retinol, ROL) modulate the embryogenesis thorough RA, its metabolite. Excess or deficiency being pathologic, the RA is tight regulated in the embryo thorough specific genes (ALDH, CRABP, CYP, etc.) important for Vitamin A metabolism. Hypothesis: High RA variations in healthy adults plasma, oriented to ROL, RA evaluation in human cord blood, in regard of possible correlations with polymorphisms of genes involved in RA metabolism and kidney development (RALDH2, CRABP2, CYP26A1,B1). Correlations between ROL and RA and/or with birth kidney size might also occur. Methods: Cord blood ROL and RA were extracted and HPLC analysed, from 145 Montreal healthy newborns. Kidney volumes already measured by ultrasonography. Genomic leucocytary DNA extraction was performed with FlexiGene DNA-Kit. 10 samples excluded (DNA quality). htSNP choices: ALDH1A2, CRABP2, CYP26A1;B1 were made on HapMap human genome. Sequencing, genotyping (Sequenom iPlex PCR) was made for these genes eventual SNPs. Biostatistics tests for genotype and allelic frequencies (Single-Locus, χ2, Kruskal-Wallis, Allelic-Exact) and Kendall-tau /Oakes analysis for eventual ROL, RA, SNPs, V-reins correlations, were performed. Results: No correlation found between Δ RA (0.07-550.27 nmol/L) and Δ ROL (51.39-3892.70 nmol/L). No association ROL or RA with kidney volumes nor with SNPs/ CYP21A1;B1. Found correlations: 1. (p=0.035), polymorphism ALDH1A2-SNP (rs12591551:A/C) heterozygous/CA, (25babies, 19%) with RA (mean ~62.21nmol/L). 2. (p=0.013), polymorphism CRABP2-SNP (rs12724719: A/G) homozygous/AA (4babies, 3%) with RA (mean~141, 3 nmol/L). Discussion/Conclusion: Big Δ RA not correlated with Δ ROL suggests individual genetic variance on RA metabolism. Genotypes (CA)-ALDH1A2/SNP (rs12591551:A/C) and (AA)-CRABP2/SNP (rs12724719: A/G) are associated with high cord blood RA mean and may be embryogenesis protective in a maternal hypovitaminosis-A, environment. Key words: umbilical cord blood, ROL-retinol, AR-retinoic acid, HPLC, SNP- polymorphism, ALDH1A2, CRABP2, CYP26A1,kidney development,embryogenesis. / Note d'excellence 10%: « Le Jury, à l'unanimité, juge ce mémoire excellent et le classe parmi les 10% des mémoires de la discipline » - selon le Rapport définitif du jury d'éxamen d'un mémoire de maîtrise.
34

BIRTHWEIGHT AND SUSCEPTIBILITY TO CHRONIC DISEASE

Issa Al Salmi Unknown Date (has links)
The thesis examines the relationship of birthweight to risk factors and markers, such as proteinuria and glomerular filtration rate, for chronic disease in postnatal life. It made use of the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). The AusDiab study is a cross sectional study where baseline data on 11,247 participants were collected in 1999-2000. Participants were recruited from a stratified sample of Australians aged ≥ 25 years, residing in 42 randomly selected urban and non-urban areas (Census Collector Districts) of the six states of Australia and the Northern Territory. The AusDiab study collected an enormous amount of clinical and laboratory data. During the 2004-05 follow-up AusDiab survey, questions about birthweight were included. Participants were asked to state their birthweight, the likely accuracy of the stated birthweight and the source of their stated birthweight. Four hundred and twelve chronic kidney disease (CKD) patients were approached, and 339 agreed to participate in the study. The patients completed the same questionnaire. Medical records were reviewed to check the diagnoses, causes of kidney trouble and SCr levels. Two control subjects, matched for gender and age, were selected for each CKD patient from participants in the AusDiab study who reported their birthweight. Among 7,157 AusDiab participants who responded to the questionnaire, 4,502 reported their birthweights, with a mean (standard deviation) of 3.4 (0.7) kg. The benefit and disadvantages of these data are discussed in chapter three. The data were analysed for the relationship between birthweight and adult body size and composition, disorders of glucose regulation, blood pressure, lipid abnormalities, cardiovascular diseases and glomerular filtration rate. Low birthweight was associated with smaller body build and lower lean mass and total body water in both females and males. In addition low birthweight was associated with central obesity and higher body fat percentage in females, even after taking into account current physical activity and socioeconomic status. Fasting plasma glucose, post load glucose and glycosylated haemoglobin were strongly and inversely correlated with birthweight. In those with low birthweight (< 2.5 kg), the risks for having impaired fasting glucose, impaired glucose tolerance, diabetes and all abnormalities combined were increased by 1.75, 2.22, 2.76 and 2.28 for females and by 1.40, 1.32, 1.98 and 1.49 for males compared to those with normal birthweight (≥ 2.5 kg), respectively. Low birthweight individuals were at higher risk for having high blood pressure ≥ 140/90 mmHg and ≥ 130/85 mmHg compared to those with normal birthweight. People with low birthweight showed a trend towards increased risk for high cholesterol (≥ 5.5 mmol/l) compared to those of normal birthweight. Females with low birthweight had increased risk for high low density lipoprotein cholesterol (≥ 3.5 mmol/l) and triglyceride levels (≥ 1.7 mmol/l) when compared to those with normal birthweight. Males with low birthweight exhibited increased risk for low levels of high density lipoprotein cholesterol (<0.9 mmol/l) than those with normal birthweight. Females with low birthweight were at least 1.39, 1.40, 2.30 and 1.47 times more likely to have angina, coronary artery disease, stroke and overall cardiovascular diseases respectively, compared to those ≥ 2.5 kg. Similarly, males with low birthweight were 1.76, 1.48, 3.34 and 1.70 times more likely to have angina, coronary artery disease, stroke and overall cardiovascular diseases compared to those ≥ 2.5 kg, respectively. The estimated glomerular filtration rate was strongly and positively associated with birthweight, with a predicted increase of 2.6 ml/min (CI 2.1, 3.2) and 3.8 (3.0, 4.5) for each kg of birthweight for females and males, respectively. The odd ratio (95% confidence interval) for low glomerular filtration rate (<61.0 ml/min for female and < 87.4 male) in people of low birthweight compared with those of normal birthweight was 2.04 (1.45, 2.88) for female and 3.4 (2.11, 5.36) for male. One hundred and eighty-nineCKD patients reported their birthweight; 106 were male. Their age was 60.3(15) years. Their birthweight was 3.27 (0.62) kg, vs 3.46 (0.6) kg for their AusDiab controls, p<0.001 and the proportions with birthweight<2.5 kg were 12.17% and 4.44%, p<0.001. Among CKD patients, 22.8%, 21.7%, 18% and 37.6% were in CKD stages 2, 3, 4 and 5 respectively. Birthweights by CKD stage and their AusDiab controls were as follows: 3.38 (0.52) vs 3.49 (0.52), p=0.251 for CKD2; 3.28 (0.54) vs 3.44 (0.54), p=0.121 for CKD3; 3.19 (0.72) vs 3.43 (0.56), p= 0.112 for CKD4 and 3.09 (0.65) vs 3.47 (0.67), p<0.001 for CKD5. The results demonstrate that in an affluent Western country with a good adult health profile, low birthweight people were predisposed to higher rates of glycaemic dysregulation, high blood pressure, dyslipidaemia, cardiovascular diseases and lower glomerular filtration rate in adult life. In all instances it would be prudent to adopt policies of intensified whole of life surveillance of lower birthweight people, anticipating this risk. The general public awareness of the effect of low birthweight on development of chronic diseases in later life is of vital importance. The general public, in addition to the awareness of people in medical practice of the role of low birthweight, will lead to a better management of this group of our population that is increasingly surviving into adulthood.
35

BIRTHWEIGHT AND SUSCEPTIBILITY TO CHRONIC DISEASE

Issa Al Salmi Unknown Date (has links)
The thesis examines the relationship of birthweight to risk factors and markers, such as proteinuria and glomerular filtration rate, for chronic disease in postnatal life. It made use of the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). The AusDiab study is a cross sectional study where baseline data on 11,247 participants were collected in 1999-2000. Participants were recruited from a stratified sample of Australians aged ≥ 25 years, residing in 42 randomly selected urban and non-urban areas (Census Collector Districts) of the six states of Australia and the Northern Territory. The AusDiab study collected an enormous amount of clinical and laboratory data. During the 2004-05 follow-up AusDiab survey, questions about birthweight were included. Participants were asked to state their birthweight, the likely accuracy of the stated birthweight and the source of their stated birthweight. Four hundred and twelve chronic kidney disease (CKD) patients were approached, and 339 agreed to participate in the study. The patients completed the same questionnaire. Medical records were reviewed to check the diagnoses, causes of kidney trouble and SCr levels. Two control subjects, matched for gender and age, were selected for each CKD patient from participants in the AusDiab study who reported their birthweight. Among 7,157 AusDiab participants who responded to the questionnaire, 4,502 reported their birthweights, with a mean (standard deviation) of 3.4 (0.7) kg. The benefit and disadvantages of these data are discussed in chapter three. The data were analysed for the relationship between birthweight and adult body size and composition, disorders of glucose regulation, blood pressure, lipid abnormalities, cardiovascular diseases and glomerular filtration rate. Low birthweight was associated with smaller body build and lower lean mass and total body water in both females and males. In addition low birthweight was associated with central obesity and higher body fat percentage in females, even after taking into account current physical activity and socioeconomic status. Fasting plasma glucose, post load glucose and glycosylated haemoglobin were strongly and inversely correlated with birthweight. In those with low birthweight (< 2.5 kg), the risks for having impaired fasting glucose, impaired glucose tolerance, diabetes and all abnormalities combined were increased by 1.75, 2.22, 2.76 and 2.28 for females and by 1.40, 1.32, 1.98 and 1.49 for males compared to those with normal birthweight (≥ 2.5 kg), respectively. Low birthweight individuals were at higher risk for having high blood pressure ≥ 140/90 mmHg and ≥ 130/85 mmHg compared to those with normal birthweight. People with low birthweight showed a trend towards increased risk for high cholesterol (≥ 5.5 mmol/l) compared to those of normal birthweight. Females with low birthweight had increased risk for high low density lipoprotein cholesterol (≥ 3.5 mmol/l) and triglyceride levels (≥ 1.7 mmol/l) when compared to those with normal birthweight. Males with low birthweight exhibited increased risk for low levels of high density lipoprotein cholesterol (<0.9 mmol/l) than those with normal birthweight. Females with low birthweight were at least 1.39, 1.40, 2.30 and 1.47 times more likely to have angina, coronary artery disease, stroke and overall cardiovascular diseases respectively, compared to those ≥ 2.5 kg. Similarly, males with low birthweight were 1.76, 1.48, 3.34 and 1.70 times more likely to have angina, coronary artery disease, stroke and overall cardiovascular diseases compared to those ≥ 2.5 kg, respectively. The estimated glomerular filtration rate was strongly and positively associated with birthweight, with a predicted increase of 2.6 ml/min (CI 2.1, 3.2) and 3.8 (3.0, 4.5) for each kg of birthweight for females and males, respectively. The odd ratio (95% confidence interval) for low glomerular filtration rate (<61.0 ml/min for female and < 87.4 male) in people of low birthweight compared with those of normal birthweight was 2.04 (1.45, 2.88) for female and 3.4 (2.11, 5.36) for male. One hundred and eighty-nineCKD patients reported their birthweight; 106 were male. Their age was 60.3(15) years. Their birthweight was 3.27 (0.62) kg, vs 3.46 (0.6) kg for their AusDiab controls, p<0.001 and the proportions with birthweight<2.5 kg were 12.17% and 4.44%, p<0.001. Among CKD patients, 22.8%, 21.7%, 18% and 37.6% were in CKD stages 2, 3, 4 and 5 respectively. Birthweights by CKD stage and their AusDiab controls were as follows: 3.38 (0.52) vs 3.49 (0.52), p=0.251 for CKD2; 3.28 (0.54) vs 3.44 (0.54), p=0.121 for CKD3; 3.19 (0.72) vs 3.43 (0.56), p= 0.112 for CKD4 and 3.09 (0.65) vs 3.47 (0.67), p<0.001 for CKD5. The results demonstrate that in an affluent Western country with a good adult health profile, low birthweight people were predisposed to higher rates of glycaemic dysregulation, high blood pressure, dyslipidaemia, cardiovascular diseases and lower glomerular filtration rate in adult life. In all instances it would be prudent to adopt policies of intensified whole of life surveillance of lower birthweight people, anticipating this risk. The general public awareness of the effect of low birthweight on development of chronic diseases in later life is of vital importance. The general public, in addition to the awareness of people in medical practice of the role of low birthweight, will lead to a better management of this group of our population that is increasingly surviving into adulthood.
36

BIRTHWEIGHT AND SUSCEPTIBILITY TO CHRONIC DISEASE

Issa Al Salmi Unknown Date (has links)
The thesis examines the relationship of birthweight to risk factors and markers, such as proteinuria and glomerular filtration rate, for chronic disease in postnatal life. It made use of the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). The AusDiab study is a cross sectional study where baseline data on 11,247 participants were collected in 1999-2000. Participants were recruited from a stratified sample of Australians aged ≥ 25 years, residing in 42 randomly selected urban and non-urban areas (Census Collector Districts) of the six states of Australia and the Northern Territory. The AusDiab study collected an enormous amount of clinical and laboratory data. During the 2004-05 follow-up AusDiab survey, questions about birthweight were included. Participants were asked to state their birthweight, the likely accuracy of the stated birthweight and the source of their stated birthweight. Four hundred and twelve chronic kidney disease (CKD) patients were approached, and 339 agreed to participate in the study. The patients completed the same questionnaire. Medical records were reviewed to check the diagnoses, causes of kidney trouble and SCr levels. Two control subjects, matched for gender and age, were selected for each CKD patient from participants in the AusDiab study who reported their birthweight. Among 7,157 AusDiab participants who responded to the questionnaire, 4,502 reported their birthweights, with a mean (standard deviation) of 3.4 (0.7) kg. The benefit and disadvantages of these data are discussed in chapter three. The data were analysed for the relationship between birthweight and adult body size and composition, disorders of glucose regulation, blood pressure, lipid abnormalities, cardiovascular diseases and glomerular filtration rate. Low birthweight was associated with smaller body build and lower lean mass and total body water in both females and males. In addition low birthweight was associated with central obesity and higher body fat percentage in females, even after taking into account current physical activity and socioeconomic status. Fasting plasma glucose, post load glucose and glycosylated haemoglobin were strongly and inversely correlated with birthweight. In those with low birthweight (< 2.5 kg), the risks for having impaired fasting glucose, impaired glucose tolerance, diabetes and all abnormalities combined were increased by 1.75, 2.22, 2.76 and 2.28 for females and by 1.40, 1.32, 1.98 and 1.49 for males compared to those with normal birthweight (≥ 2.5 kg), respectively. Low birthweight individuals were at higher risk for having high blood pressure ≥ 140/90 mmHg and ≥ 130/85 mmHg compared to those with normal birthweight. People with low birthweight showed a trend towards increased risk for high cholesterol (≥ 5.5 mmol/l) compared to those of normal birthweight. Females with low birthweight had increased risk for high low density lipoprotein cholesterol (≥ 3.5 mmol/l) and triglyceride levels (≥ 1.7 mmol/l) when compared to those with normal birthweight. Males with low birthweight exhibited increased risk for low levels of high density lipoprotein cholesterol (<0.9 mmol/l) than those with normal birthweight. Females with low birthweight were at least 1.39, 1.40, 2.30 and 1.47 times more likely to have angina, coronary artery disease, stroke and overall cardiovascular diseases respectively, compared to those ≥ 2.5 kg. Similarly, males with low birthweight were 1.76, 1.48, 3.34 and 1.70 times more likely to have angina, coronary artery disease, stroke and overall cardiovascular diseases compared to those ≥ 2.5 kg, respectively. The estimated glomerular filtration rate was strongly and positively associated with birthweight, with a predicted increase of 2.6 ml/min (CI 2.1, 3.2) and 3.8 (3.0, 4.5) for each kg of birthweight for females and males, respectively. The odd ratio (95% confidence interval) for low glomerular filtration rate (<61.0 ml/min for female and < 87.4 male) in people of low birthweight compared with those of normal birthweight was 2.04 (1.45, 2.88) for female and 3.4 (2.11, 5.36) for male. One hundred and eighty-nineCKD patients reported their birthweight; 106 were male. Their age was 60.3(15) years. Their birthweight was 3.27 (0.62) kg, vs 3.46 (0.6) kg for their AusDiab controls, p<0.001 and the proportions with birthweight<2.5 kg were 12.17% and 4.44%, p<0.001. Among CKD patients, 22.8%, 21.7%, 18% and 37.6% were in CKD stages 2, 3, 4 and 5 respectively. Birthweights by CKD stage and their AusDiab controls were as follows: 3.38 (0.52) vs 3.49 (0.52), p=0.251 for CKD2; 3.28 (0.54) vs 3.44 (0.54), p=0.121 for CKD3; 3.19 (0.72) vs 3.43 (0.56), p= 0.112 for CKD4 and 3.09 (0.65) vs 3.47 (0.67), p<0.001 for CKD5. The results demonstrate that in an affluent Western country with a good adult health profile, low birthweight people were predisposed to higher rates of glycaemic dysregulation, high blood pressure, dyslipidaemia, cardiovascular diseases and lower glomerular filtration rate in adult life. In all instances it would be prudent to adopt policies of intensified whole of life surveillance of lower birthweight people, anticipating this risk. The general public awareness of the effect of low birthweight on development of chronic diseases in later life is of vital importance. The general public, in addition to the awareness of people in medical practice of the role of low birthweight, will lead to a better management of this group of our population that is increasingly surviving into adulthood.

Page generated in 0.0507 seconds