• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Τεχνικές για προσαρμοστική και προσωποποιημένη πρόσβαση σε ιστοσελίδες

Τσάκου, Αναστασία 10 June 2014 (has links)
Ο μεγάλος όγκος σελίδων και υπηρεσιών στο Διαδίκτυο αρκετές φορές δημιουργεί προβλήματα πλοήγησης με αποτέλεσμα η αναζήτηση εγγράφων και πληροφοριών να είναι μια εξαιρετικά χρονοβόρα και δύσκολη διαδικασία. Για το λόγο αυτό είναι απαραίτητη η πρόβλεψη των αναγκών των χρηστών με στόχο τη βελτίωση της χρηστικότητας του Διαδικτύου αλλά και της παραμονής του χρήστη σε έναν δικτυακό τόπο. Ο στόχος αυτής της διπλωματικής εργασίας είναι αρχικά να παρουσιάσει μεθόδους και τεχνικές που χρησιμοποιούνται για την εξατομίκευση και προσαρμογή στα ενδιαφέροντα του χρήστη, δικτυακών τόπων. Η εξατομίκευση περιλαμβάνει τη χρήση πληροφοριών που προέρχονται από τα ενδιαφέρονται και τη συμπεριφορά πλοήγησης του χρήστη σε συνδυασμό με το περιεχόμενο και τη δομή του δικτυακού τόπου. Στη συνέχεια παρουσιάζεται ένα σύστημα αναδιοργάνωσης της δομής ενός δικτυακού τόπου, του οποίου η υλοποίηση βασίστηκε στη δημοτικότητα των σελίδων για κάθε χρήστη όπως αυτή προκύπτει από τα log αρχεία που διατηρεί ο server του δικτυακού τόπου. Τέλος, το σύστημα αυτό εφαρμόζεται σε έναν πειραματικό δικτυακό τόπο και γίνεται αξιολόγηση των αποτελεσμάτων εφαρμογής του. / The large number of web pages on many Web sites has raised navigation problems. As a result, users often miss the goal of their inquiry, or receive ambiguous results when they try to navigate through them. Therefore, the requirement for predicting user needs in order to improve the usability and user retention of a Web Site is more than ever, indispensable. The primary purpose of this thesis is to explore methods and techniques for improving or “personalizing” Web Sites. Web personalization includes any action that adapts the information or services provided by a Web site to the needs of a particular user or a set of users, taking advantage of the knowledge gained from the users’ navigation behavior and interests in combination with the content and structure of the Web Site. Secondly, this thesis describes the implementation of a tool (reorganization software) which parses log files and uses specific metrics related to web page accesses, in order to reorganize the structure of a web site according to its users’ preferences. Finally, the tool is applied in an experimental Web Site and the results of this reorganization process are evaluated.
2

An Auto-ethnographic Study of Teaching Methods that Support Meaning Making in Middle School Art

Major, Brenda 10 May 2014 (has links)
This thesis is an auto-ethnographic study of teaching methods proposed to be effective in developing thinking skills that advance meaning making in my middle school art classes. The study explored the use of Visible Thinking Routines Ritchart et all, 2001) and Art Investigations (Herz, 2010) in middle school art classes.Reflections and other field texts reveal the extent to which I found these methods effective in guiding students to develop higher order thinking skills that support more meaningful outcomes in art and could be beneficial in other areas of their lives.
3

Προηγμένες τεχνικές και αλγόριθμοι εξόρυξης γνώσης για την προσωποποίηση της πρόσβασης σε δικτυακούς τόπους / Advanced techniques and algorithms of knowledge mining from Web Sites

Γιαννακούδη, Θεοδούλα 16 May 2007 (has links)
Η προσωποποίηση του ιστού είναι ένα πεδίο που έχει κερδίσει μεγάλη προσοχή όχι μόνο στην ερευνητική περιοχή, όπου πολλές ερευνητικές μονάδες έχουν ασχοληθεί με το πρόβλημα από διαφορετικές μεριές, αλλά και στην επιχειρησιακή περιοχή, όπου υπάρχει μία ποικιλία εργαλείων και εφαρμογών που διαθέτουν ένα ή περισσότερα modules στη διαδικασία της εξατομίκευσης. Ο στόχος όλων αυτών είναι, εξερευνώντας τις πληροφορίες που κρύβονται στα logs του εξυπηρετητή δικτύου να ανακαλύψουν τις αλληλεπιδράσεις μεταξύ των επισκεπτών των ιστότοπων και των ιστοσελίδων που περιέχονται σε αυτούς. Οι πληροφορίες αυτές μπορούν να αξιοποιηθούν για τη βελτιστοποίηση των δικτυακών τόπων, εξασφαλίζοντας έτσι αποτελεσματικότερη πλοήγηση για τον επισκέπτη και διατήρηση του πελάτη στην περίπτωση του επιχειρηματικού τομέα. Ένα βασικό βήμα πριν την εξατομίκευση αποτελεί η εξόρυξη χρησιμοποίησης από τον ιστό, ώστε να αποκαλυφθεί τη γνώση που κρύβεται στα log αρχεία ενός web εξυπηρετητή. Εφαρμόζοντας στατιστικές μεθόδους και μεθόδους εξόρυξης δεδομένων στα web log δεδομένα, μπορούν να προσδιοριστούν ενδιαφέροντα πρότυπα που αφορούν τη συμπεριφορά πλοήγησης των χρηστών, όπως συστάδες χρηστών και σελίδων και πιθανές συσχετίσεις μεταξύ web σελίδων και ομάδων χρηστών. Τα τελευταία χρόνια, γίνεται μια προσπάθεια συγχώνευσης του περιεχομένου του ιστού στη διαδικασία εξόρυξης χρησιμοποίησης, για να επαυξηθεί η αποτελεσματικότητα της εξατομίκευσης. Το ενδιαφέρον σε αυτή τη διπλωματική εργασία εστιάζεται στο πεδίο της εξόρυξης γνώσης για τη χρησιμοποίηση δικτυακών τόπων και πώς η διαδικασία αυτή μπορεί να επωφεληθεί από τα χαρακτηριστικά του σημασιολογικού ιστού. Αρχικά, παρουσιάζονται τεχνικές και αλγόριθμοι που έχουν προταθεί τα τελευταία χρόνια για εξόρυξη χρησιμοποίησης από τα log αρχεία των web εξυπηρετητών. Έπειτα εισάγεται και ο ρόλος του περιεχομένου στη διαδικασία αυτή και παρουσιάζονται δύο εργασίες που λαμβάνουν υπόψη και το περιεχόμενο των δικτυακών τόπων: μία τεχνική εξόρυξης χρησιμοποίησης με βάση το PLSA, η οποία δίνει στο τέλος και τη δυνατότητα ενοποίησης του περιεχομένου του ιστού και ένα σύστημα προσωποποίησης το οποίο χρησιμοποιεί το περιεχόμενο του ιστοτόπου για να βελτιώσει την αποτελεσματικότητα της μηχανής παραγωγής προτάσεων. Αφού αναλυθεί θεωρητικά το πεδίο εξόρυξης γνώσης από τα logs μέσα από την περιγραφή των σύγχρονων τεχνικών, προτείνεται το σύστημα ORGAN-Ontology-oRiented usaGe ANalysis- το οποίο αφορά στη φάση της ανάλυσης των log αρχείων και την εξόρυξη γνώσης για τη χρησιμοποίηση των δικτυακών τόπων με άξονα τη σημασιολογία του ιστοτόπου. Τα σημασιολογικά χαρακτηριστικά του δικτυακού τόπου έχουν προκύψει με τεχνικές εξόρυξης δεδομένων από το σύνολο των ιστοσελίδων και έχουν σχολιαστεί από μία OWL οντολογία. Το ORGAN παρέχει διεπαφή για την υποβολή ερωτήσεων σχετικών με την επισκεψιμότητα και τη σημασιολογία των σελίδων, αξιοποιώντας τη γνώση για το site, όπως αναπαρίσταται πάνω στην οντολογία. Περιγράφεται διεξοδικά ο σχεδιασμός, η ανάπτυξη και η πειραματική αξιολόγηση του συστήματος και σχολιάζονται τα αποτελέσματα του. / Web personalization is a domain which has gained great momentum not only in the research area, where many research units have addressed the problem form different perspectives, but also in the industrial area, where a variety of modules for the personalization process is available. The objective is, researching the information hidden in the web server log files to discover the interactions between web sites visitors and web sites pages. This information can be further exploited for web sites optimization, ensuring more effective navigation for the user and client retention in the industrial case. A primary step before the personalization is the web usage mining, where the knowledge hidden in the log files is revealed. Web usage mining is the procedure where the information stored in the Web server logs is processed by applying statistical and data mining techniques such as clustering, association rules discovery, classification, and sequential pattern discovery, in order to reveal useful patterns that can be further analyzed. Recently, there has been an effort to incorporate Web content in the web usage mining process, in order to enhance the effectiveness of personalization. The interest in this thesis is focused on the domain of the knowledge mining for usage of web sites and how this procedure can get the better of attributes of the semantic web. Initially, techniques and algorithms that have been proposed lately in the field of web usage mining are presented. After, the role of the context in the usage mining process is introduced and two relevant works are presented: a usage mining technique based on the PLSA model, which may integrate attributes of the site content, and a personalization system which uses the site content in order to enhance a recommendation engine. After analyzing theoretically the usage mining domain, a new system is proposed, the ORGAN, which is named after Ontology-oRiented usaGe ANalysis. ORGAN concerns the stage of log files analysis and the domain of knowledge mining for the web site usage based on the semantic attributes of the web site. The web site semantic attributes have resulted from the web site pages applying data mining techniques and have been annotated by an OWL ontology. ORGAN provides an interface for queries submission concerning the average level of visitation and the semantics of the web site pages, exploiting the knowledge for the site, as it is derived from the ontology. There is an extensive description of the design, the development and the experimental evaluation of the system.
4

Low Power Based Cognitive Domain Ontology Solving Approaches

Rahman, Md Nayim January 2021 (has links)
No description available.
5

Επισήμανση και ανάκτηση περιεχομένου με τεχνικές ενεργούς μάθησης

Φουρφουρής, Γεώργιος 15 December 2014 (has links)
Η ανάκτηση περιεχομένου από τις επιμέρους βάσεις είναι ιδιαίτερης σημασίας για την σωστή επεξεργασία δεδομένων και την εξαγωγή συμπερασμάτων. Παράλληλα, η σωστή επισήμανση των επιμέρους δεδομένων (κείμενο, εικόνα, βίντεο) βοηθά ιδιαίτερα στη σωστή ανάκτηση των περιεχομένων και επακόλουθα στην εξαγωγή των απαραίτητων συμπερασμάτων. Στα πλαίσια αυτής της διπλωματικής, αρχικά, δίδεται μια πλήρης περιγραφή και ανάλυση των παραπάνω ενώ στη συνέχεια υλοποιείται το αντίστοιχο σύστημα επισήμανσης και ανάκτησης περιεχομένου. Πιο αναλυτικά, το σύστημα είναι σε θέση να ανεβάζει και να επισημαίνει κατάλληλα τα περιεχόμενά του στις βάσεις περιεχομένων και δεδομένων. Παράλληλα, μπορεί να ανακτά τα συγκεκριμένα περιεχόμενα από αυτές τις βάσεις ώστε να είναι σε θέση να εξάγει τα κατάλληλα συμπεράσματα. Όλα αυτά υλοποιούνται και ενσωματώνονται με τις μεθόδους ενεργής μάθησης ενώ παρουσιάζονται σε μια web based εφαρμογή. / The content retrieval of individual data bases are of particular importance for both correct processing of data and draw conclusions. Furthermore, proper labeling of individual data (among text, image or video), particularly helps in recovering the correct contents and subsequent export of the necessary conclusions. Within this thesis is firstly given a complete description and analysis of the above references and then is implemented the corresponding labeling and content retrieval system. More specifically, the system is able to fetch and appropriate note the contents of data bases and data contents. Furthermore, it can recover the specific contents of those databases being able to draw of the appropriate conclusions. All of these are implemented and integrated with the methods of active learning represented on a web based application.
6

Porovnání metod získávání znalostí z dat / Comparing methods of knowledge discovery from data

Jungmannová, Iva January 2019 (has links)
(in English): The thesis is devoted to the comparison of a few methods of mining knowledge from data. Methods decision tree, classification rules, cluster analysis, and Naive Bayes classifier were applied to the data sample. Data about clients of a non-profit organization Association of Civil Counseling were used. It has been worked according to the technological process of knowledge mining. In the thesis was applied data description, data preparation, modeling and testing and results from interpretation. Because of using the same sample of data and similar data preparation, overlapping results are also expected. The research is focused not only on results similarity, but also differences in results. The correlation between the amount of debt of clients and other attributes was found. In the results, there really were some patterns repeating through most of all methods. It turned out the amount of debt is related to a number of creditors. The more creditors, the higher amount of debt. Clients with a higher amount of liabilities had also higher debt. The results might not be surprising, but it proves the functionality of models and comparability of results.
7

Acceleration of Cognitive Domain Ontologies

Atahary, Tanvir 17 May 2016 (has links)
No description available.
8

Παραμετροποίηση στοχαστικών μεθόδων εξόρυξης γνώσης από δεδομένα, μετασχηματισμού συμβολοσειρών και τεχνικών συμπερασματικού λογικού προγραμματισμού / Parameterization of stochastic data mining methods, string conversion algorithms and deductive logic programming techniques

Λύρας, Δημήτριος 02 February 2011 (has links)
Η παρούσα διατριβή πραγματεύεται το αντικείμενο της μάθησης από δύο διαφορετικές οπτικές γωνίες: την επαγωγική και την παραγωγική μάθηση. Αρχικά, παρουσιάζονται παραμετροποιήσεις στοχαστικών μεθόδων εξόρυξης γνώσης από δεδομένα υπό τη μορφή τεσσάρων καινοτόμων εξατομικευμένων μοντέλων στήριξης ασθενών που πάσχουν από διαταραχές άγχους. Τα τρία μοντέλα προσανατολίζονται στην ανεύρεση πιθανών συσχετίσεων μεταξύ των περιβαλλοντικών παραμέτρων των ασθενών και του επιπέδου άγχους που αυτοί παρουσιάζουν, ενώ παράλληλα προτείνεται και η χρήση ενός Μπεϋζιανού μοντέλου πρόβλεψης του επιπέδου άγχους που είναι πιθανό να εμφανίσει κάποιος ασθενής δεδομένων ορισμένων τιμών του περιβαλλοντικού του πλαισίου εφαρμογής. Αναφορικά με το χώρο της εξόρυξης γνώσης από κείμενο και του μετασχηματισμού συμβολοσειρών, προτείνεται η εκπαίδευση μοντέλων δέντρων αποφάσεων για την αυτόματη μεταγραφή Ελληνικού κειμένου στην αντίστοιχη φωνητική του αναπαράσταση, πραγματοποιείται η στοχαστική μοντελοποίηση όλων των πιθανών μεταγραφικών νορμών από ορθογραφημένα Ελληνικά σε Greeklish και τέλος παρουσιάζεται ένας καινοτόμος αλγόριθμος που συνδυάζει δύο γνωστά για την ικανοποιητική τους απόδοση μέτρα σύγκρισης ομοιότητας αλφαριθμητικών προκειμένου να επιτευχθεί η αυτόματη λημματοποίηση του κειμένου εισόδου. Επιπρόσθετα, στα πλαίσια της ανάπτυξης συστημάτων που θα διευκολύνουν την ανάκτηση εγγράφων ή πληροφοριών προτείνεται η συνδυαστική χρήση του προαναφερθέντος αλγορίθμου λημματοποίησης παράλληλα με τη χρήση ενός πιθανοτικού δικτύου Bayes στοχεύοντας στην ανάπτυξη ενός εύρωστου και ανταγωνιστικού ως προς τις επιδόσεις συστήματος ανάκτησης πληροφοριών. Τέλος, παρουσιάζονται οι προτάσεις μας που αφορούν στο χώρο της παραγωγικής μάθησης και του ελέγχου ικανοποιησιμότητας λογικών εκφράσεων. Συγκεκριμένα περιλαμβάνουν: i) την ανάλυση και εκτενή παρουσίαση μιας καινοτόμας μαθηματικής μοντελοποίησης με την ονομασία AnaLog (Analytic Tableaux Logic) η οποία δύναται να εκφράσει τη λογική που διέπει τους αναλυτικούς πίνακες για προτασιακούς τύπους σε κανονική διαζευκτική μορφή. Mέσω του λογισμού Analog επιτυγχάνεται η εύρεση των κλειστών κλάδων του πλήρως ανεπτυγμένου δέντρου Smullyan, χωρίς να είναι απαραίτητος ο αναλυτικός σχεδιασμός του δέντρου, και ii) την παράθεση ενός αναλυτικού αλγορίθμου που μπορεί να αξιοποιήσει τον φορμαλισμό AnaLog σε ένα πλαίσιο αριθμητικής διαστημάτων μέσω του οποίου μπορούμε να αποφανθούμε για την ικανοποιησιμότητα συμβατικών διαζευκτικών προτασιακών εκφράσεων. / The present dissertation deals with the problem of learning from two different perspectives, meaning the inferential and the deductive learning. Initially, we present our suggestions regarding the parameterization of stochastic data mining methods in the form of four treatment supportive services for patients suffering from anxiety disorders. Three of these services focus on the discovery of possible associations between the patients’ contextual data whereas the last one aims at predicting the stress level a patient might suffer from, in a given environmental context. Our proposals with regards to the wider area of text mining and string conversion include: i) the employment of decision-tree based models for the automatic conversion of Greek texts into their equivalent CPA format, ii) the stochastic modeling of all the existing transliteration norms for the Greek to Greeklish conversion in the form of a robust transcriber and iii) a novel algorithm that is able to combine two well-known for their satisfactory performance string distance metric models in order to address the problem of automatic word lemmatization. With regards to the development of systems that would facilitate the automatic information retrieval, we propose the employment of the aforementioned lemmatization algorithm in order to reduce the ambiguity posed by the plethora of morphological variations of the processed language along with the parallel use of probabilistic Bayesian Networks aiming at the development of a robust and competitive modern information retrieval system. Finally, our proposals regarding logical deduction and satisfiability checking include: i) a novel mathematical formalism of the analytic tableaux methodology named AnaLog (after the terms Analytic Tableaux Logic) which allows us to efficiently simulate the structure and the properties of a complete clausal tableau given an input CNF formula. Via the AnaLog calculus it is made possible to calculate all the closed branches of the equivalent complete Smullyan tree without imposing the need to fully construct it, and ii) a practical application of the AnaLog calculus within an interval arithmetic framework which is able to decide upon the satisfiability of propositional formulas in CNF format. This framework, apart from constituting an illustrative demonstration of the application of the AnaLog calculus, it may also be employed as an alternative conventional SAT system.
9

Fouille de connaissances en diagnostic mammographique par ontologie et règles d'association / Ontologies and association rules knowledge mining, case study : Mammographic domain

Idoudi, Rihab 24 January 2017 (has links)
Face à la complexité significative du domaine mammographique ainsi que l'évolution massive de ses données, le besoin de contextualiser les connaissances au sein d'une modélisation formelle et exhaustive devient de plus en plus impératif pour les experts. C'est dans ce cadre que s'inscrivent nos travaux de recherche qui s'intéressent à unifier différentes sources de connaissances liées au domaine au sein d'une modélisation ontologique cible. D'une part, plusieurs modélisations ontologiques mammographiques ont été proposées dans la littérature, où chaque ressource présente une perspective distincte du domaine d'intérêt. D'autre part, l'implémentation des systèmes d'acquisition des mammographies rend disponible un grand volume d'informations issues des faits passés, dont la réutilisation devient un enjeu majeur. Toutefois, ces fragments de connaissances, présentant de différentes évidences utiles à la compréhension de domaine, ne sont pas interopérables et nécessitent des méthodologies de gestion de connaissances afin de les unifier. C'est dans ce cadre que se situe notre travail de thèse qui s'intéresse à l'enrichissement d'une ontologie de domaine existante à travers l'extraction et la gestion de nouvelles connaissances (concepts et relations) provenant de deux courants scientifiques à savoir: des ressources ontologiques et des bases de données comportant des expériences passées. Notre approche présente un processus de couplage entre l'enrichissement conceptuel et l'enrichissement relationnel d'une ontologie mammographique existante. Le premier volet comporte trois étapes. La première étape dite de pré-alignement d'ontologies consiste à construire pour chaque ontologie en entrée une hiérarchie des clusters conceptuels flous. Le but étant de réduire l'étape d'alignement de deux ontologies entières en un alignement de deux groupements de concepts de tailles réduits. La deuxième étape consiste à aligner les deux structures des clusters relatives aux ontologies cible et source. Les alignements validés permettent d'enrichir l'ontologie de référence par de nouveaux concepts permettant d'augmenter le niveau de granularité de la base de connaissances. Le deuxième processus s'intéresse à l'enrichissement relationnel de l'ontologie mammographique cible par des relations déduites de la base de données de domaine. Cette dernière comporte des données textuelles des mammographies recueillies dans les services de radiologies. Ce volet comporte ces étapes : i) Le prétraitement des données textuelles ii) l'application de techniques relatives à la fouille de données (ou extraction de connaissances) afin d'extraire des expériences de nouvelles associations sous la forme de règles, iii) Le post-traitement des règles générées. Cette dernière consiste à filtrer et classer les règles afin de faciliter leur interprétation et validation par l'expert vi) L'enrichissement de l'ontologie par de nouvelles associations entre les concepts. Cette approche a été mise en 'uvre et validée sur des ontologies mammographiques réelles et des données des patients fournies par les hôpitaux Taher Sfar et Ben Arous. / Facing the significant complexity of the mammography area and the massive changes in its data, the need to contextualize knowledge in a formal and comprehensive modeling is becoming increasingly urgent for experts. It is within this framework that our thesis work focuses on unifying different sources of knowledge related to the domain within a target ontological modeling. On the one hand, there is, nowadays, several mammographic ontological modeling, where each resource has a distinct perspective area of interest. On the other hand, the implementation of mammography acquisition systems makes available a large volume of information providing a decisive competitive knowledge. However, these fragments of knowledge are not interoperable and they require knowledge management methodologies for being comprehensive. In this context, we are interested on the enrichment of an existing domain ontology through the extraction and the management of new knowledge (concepts and relations) derived from two scientific currents: ontological resources and databases holding with past experiences. Our approach integrates two knowledge mining levels: The first module is the conceptual target mammographic ontology enrichment with new concepts extracting from source ontologies. This step includes three main stages: First, the stage of pre-alignment. The latter consists on building for each input ontology a hierarchy of fuzzy conceptual clusters. The goal is to reduce the alignment task from two full ontologies to two reduced conceptual clusters. The second stage consists on aligning the two hierarchical structures of both source and target ontologies. Thirdly, the validated alignments are used to enrich the reference ontology with new concepts in order to increase the granularity of the knowledge base. The second level of management is interested in the target mammographic ontology relational enrichment by novel relations deducted from domain database. The latter includes medical records of mammograms collected from radiology services. This section includes four main steps: i) the preprocessing of textual data ii) the application of techniques for data mining (or knowledge extraction) to extract new associations from past experience in the form of rules, iii) the post-processing of the generated rules. The latter is to filter and classify the rules in order to facilitate their interpretation and validation by expert, vi) The enrichment of the ontology by new associations between concepts. This approach has been implemented and validated on real mammographic ontologies and patient data provided by Taher Sfar and Ben Arous hospitals. The research work presented in this manuscript relates to knowledge using and merging from heterogeneous sources in order to improve the knowledge management process.
10

Agent pro kurzové sázení / The Betting Agent

Bělohlávek, Jiří January 2008 (has links)
This master thesis deals with design and implementation of betting agent. It covers issues such as theoretical background of an online betting, probability and statistics. In its first part it is focused on data mining and explains the principle of knowledge mining form data warehouses and certain methods suitable for different types of tasks. Second, it is concerned with neural networks and algorithm of back-propagation. All the findings are demonstrated on and supported by graphs and histograms of data analysis, made via SAS Enterprise Miner program. In conclusion, the thesis summarizes all the results and offers specific methods of extension of the agent.

Page generated in 0.0559 seconds