Spelling suggestions: "subject:"kondensierte materie"" "subject:"kondensierte baterie""
11 |
Manipulation of Monodisperse Emulsions in Microchannels / Manipulation von monodispersen Emulsionen in MikrokanälenSurenjav, Enkhtuul 15 December 2008 (has links)
No description available.
|
12 |
Hard-core bosons in phase diagrams of 2D Lattice Gauge Theories and Bosonization of Dirac FermionsMantilla Serrano, Sebastian Felipe 27 February 2023 (has links)
Hard-core bosons are versatile and useful in describing several physical systems due to their one-to-one mapping with spin-1/2 operators. We propose two frameworks where hard-core boson mapping not only reduces the complexity of the original problem, but also captures important features of the physics of the original system that would have implied high-computational procedures with not much profound insight in the mechanisms behind its behavior.
The first case study comprising part i is an approach to the description of the phases 2D Lattice Gauge Theories, the Quantum 6-Vertex Model and the Quantum Dimer Model using one fluctuating electric string as an 1D precursor of the whole 2D systems[HAMS19]. Both models and consequently the string are described by the Rokhsar-Kivelson Hamiltonian with parameter v measuring the competition of potential versus kinetic terms. The string can be mapped one-to-one onto a 1D system of hard-core bosons that can be solved exactly for the Quantum 6-Vertex Model, and offers footprints of the phase diagram of the Quantum Dimer Model in the region close to the Rokhsar-Kivelson point v = 1, especially when |v| ≤ 1.
The second case study we have discussed in part ii is an extension of higher-dimensional bosonization techniques in Landau Fermi liquids to the case of nodal semimetals where the Fermi surface shrinks to a point, so the description of particle-hole interactions as fluctuations of the Fermi surface is not available [MS20]. Additionaly, we focus our analysis on the Q = 0 sector where the electron and the hole have opposite momenta ±k, so they are mapped into a hard-core boson located at a site k in the reciprocal lattice. To test our extension we calculate nonperturbative corrections to the optical conductivity of 2D Dirac fermions with electron-electron interactins described as a Coulomb potential, obtaining results consistent to the literature and the experimental reports where corrections are small even in strong coupling regimes.
Part iii discusses further ideas derived from parts i and ii, including a brief discussion on addressing the weak coupling instability in bilayer graphene using the bosonization extension that offers a picture of hard-core bosons describing Q = 0 excitons that undergo a Bose-Einstein condensation resulting in a ground state adiabatically disconnected from the noninteracting case.:1 Introduction 1
1.1 Quantum link models and fluctuating electric strings 2
1.2 Bosonization of Particle-hole excitations in 2D Dirac fermions 7
1.3 Structure of the document 11
i. Quantum link models and fluctuating electric strings
2. A Brief Introduction to Lattice Gauge Theories 15
2.1 Continuous formulation of U(1) gauge theories 15
2.1.1 Gauge field equations 16
2.1.2 Gauss’ law as generator of the gauge transformations 18
2.2 U(1) gauge theories on a lattice 19
2.2.1 Gauge field Hamiltonian 20
2.2.2 Cylindrical algebra from LGT 20
2.2.3 Generator of gauge transformations 21
2.3 Abelian Quantum Link Model 22
2.3.1 Quantum Link Models (QLMs) with S = 1 / 2 23
2.3.2 ’t Hooft operators and winding number sectors 24
2.3.3 Construction of the QLM Hamiltonian 26
2.4 Conclusions 28
3. Electric string in Q6VM as a XXZ chain 29
3.1 Realization of the Q6VM in the S = 1 / 2 QLM 31
3.2 Mapping the electric string to the XXZ chain 32
3.3 Phases of the electric string from the XXZ chain 33
3.3.1 v > 1: FM insulator 34
3.3.2 v = 1: RK point 36
3.3.3 −1 < v < 1: Gapless phase 36
3.3.4 v ≤ −1: KT transition and AFM insulator 37
3.4 Numerical approach: Drude Weight and system size effects 38
3.5 Summary and Discussion 40
4. Electric line in the QDM as a hard-core boson two-leg ladder 41
4.1 Realization of the QDM in the S = 1/ 2 QLM 42
4.2 Construction of an electric string in the QDM 43
4.3 Mapping the electric string in QDM to a two-leg ladder 45
4.3.1 QLM in a triangular lattice 45
4.3.2 From the triangular lattice to the two-leg ladder 45
4.3.3 Construction of the 1D bosonic Hamiltonian 46
4.4 Phases of the electric string from the bosonic two-leg ladder 48
4.4.1 Left Hand Side (LHS) of the Rokhsar-Kivelson (RK) point: Charge Density Wave (CDW) states 48
4.4.2 Right Hand Side (RHS) of the RK point: phase-separated states 50
4.5 Numerical approach: Drude Weight and system size effects 51
4.6 Summary and Discussion 52
ii Bosonization of particle-hole excitations in 2D Dirac fermions
5 Graphene in a nutshell 57
5.1 Origin of the hexagonal structure 57
5.1.1 Hybrid orbitals in C 58
5.1.2 Honeycomb lattice 60
5.2 Tight-binding approach 61
5.2.1 Hopping and overlapping matrices in Nearest Neighbor (NN) approximation 62
5.2.2 Dispersion relation for π electrons 62
5.3 Effective 2D Dirac Fermion Hamiltonian 64
5.4 Electron-electron interactions 65
6 Bosonization of the Q = 0 continuum of Dirac Fermions 67
6.1 Effective Hamiltonian and Hilbert space 69
6.2 Effective Heisenberg Hamiltonian 70
6.3 Quadratic Bosonic Hamiltonian 71
6.4 Connection to diagramatic perturbation theory 73
6.5 Parametrization of the reciprocal space 74
6.5.1 Coordinate transformation 74
6.5.2 Polar parametrization 75
6.5.3 Angular momentum channels 75
6.6 Discussion and Summary 76
7 Non-perturbative corrections to the Optical Conductivity of 2D Dirac Fermions 77
7.1 Optical Conductivity 79
7.1.1 Bosonized current operator and susceptibility 79
7.1.2 Susceptibility in terms of the eigenstates 80
7.1.3 Regularization of the Lehman representation 81
7.2 Numerical approach: IR regularization and system size effects 82
7.2.1 Discretization size dependence 82
7.2.2 Dependence on the IR cutoff 83
7.2.3 Comparison of numerical results with corrections from first order perturbation theory 84
7.2.4 Optical conductivity for several coupling constants 85
7.3 Discussion and Summary 86
iii Weak coupling instability, New Perspectives & Conclusions
8 Weak coupling instability in bilayer graphene from a bosonization picture 91
8.1 Band structure of Bernal-stacked bilayer graphene 92
8.2 Generalization of the effective Hamiltonian of graphene 93
8.2.1 Density of states in monolayer and bilayer graphene 94
8.2.2 Projection onto Q = 0 sector and effective Heisenberg pseudospin Hamiltonian 95
8.2.3 Zeeman vortex coordinates and HCB operators 95
8.2.4 Bogoliubov-Valatin basis 97
8.3 Interaction potentials 97
8.4 BCS instability in pseudospin picture 99
8.5 Numerical procedure 101
8.5.1 Numerical BCS instability 101
8.5.2 Functional form of the instability 101
8.5.3 Comparison to the instability from BCS theory 105
8.6 Conclusions 105
9 Conclusions 107
iv Appendices
A. Yang & Yang’s expressions of ground state energy of XXZ Chain using Bethe Ansatz 115
A.1 Bethe Ansatz 115
A.2 Explicit formulas for f ( ∆, 0 ) 116
B. Kadanoff-Baym (KB) self-consistent Hartree-Fock (SCHF) approximation 119
B.1 Details of connection to perturbation theory 119
B.1.1 Bare and dressed fermion propagators 119
B.1.2 Bethe-Salpeter ladder 120
B.1.3 Particle-hole propagator and comparison to HP boson propagator 121
C, Optical Conductivity from Pseudospin precession 123
C.1 Minimal coupling and band (electron-hole) basis 123
C.2 Equations of motion of charge and pseudospin densities 124
C.3 Optical Conductivity from Fermi-Dirac distributions at finite temperature 124
D. Momentum space reparametrization 127
D.1 General coordinate transformations on the continuum limit 127
D.2 Polar re-discretization 129
D.3 Angular momentum channels 130
D.4 Selection of the radial parametrization 130
Bibliography 133
|
13 |
Robust recognition and exploratory analysis of crystal structures using machine learningLeitherer, Andreas 04 July 2022 (has links)
In den Materialwissenschaften läuten Künstliche-Intelligenz Methoden einen Paradigmenwechsel in Richtung Big-data zentrierter Forschung ein. Datenbanken mit Millionen von Einträgen, sowie hochauflösende Experimente, z.B. Elektronenmikroskopie, enthalten eine Fülle wachsender Information. Um diese ungenützten, wertvollen Daten für die Entdeckung verborgener Muster und Physik zu nutzen, müssen automatische analytische Methoden entwickelt werden. Die Kristallstruktur-Klassifizierung ist essentiell für die Charakterisierung eines Materials. Vorhandene Daten bieten vielfältige atomare Strukturen, enthalten jedoch oft Defekte und sind unvollständig. Eine geeignete Methode sollte diesbezüglich robust sein und gleichzeitig viele Systeme klassifizieren können, was für verfügbare Methoden nicht zutrifft. In dieser Arbeit entwickeln wir ARISE, eine Methode, die auf Bayesian deep learning basiert und mehr als 100 Strukturklassen robust und ohne festzulegende Schwellwerte klassifiziert. Die einfach erweiterbare Strukturauswahl ist breit gefächert und umfasst nicht nur Bulk-, sondern auch zwei- und ein-dimensionale Systeme. Für die lokale Untersuchung von großen, polykristallinen Systemen, führen wir die strided pattern matching Methode ein. Obwohl nur auf perfekte Strukturen trainiert, kann ARISE stark gestörte mono- und polykristalline Systeme synthetischen als auch experimentellen Ursprungs charakterisieren. Das Model basiert auf Bayesian deep learning und ist somit probabilistisch, was die systematische Berechnung von Unsicherheiten erlaubt, welche mit der Kristallordnung von metallischen Nanopartikeln in Elektronentomographie-Experimenten korrelieren. Die Anwendung von unüberwachtem Lernen auf interne Darstellungen des neuronalen Netzes enthüllt Korngrenzen und nicht ersichtliche Regionen, die über interpretierbare geometrische Eigenschaften verknüpft sind. Diese Arbeit ermöglicht die Analyse atomarer Strukturen mit starken Rauschquellen auf bisher nicht mögliche Weise. / In materials science, artificial-intelligence tools are driving a paradigm shift towards big data-centric research. Large computational databases with millions of entries and high-resolution experiments such as electron microscopy contain large and growing amount of information. To leverage this under-utilized - yet very valuable - data, automatic analytical methods need to be developed. The classification of the crystal structure of a material is essential for its characterization. The available data is structurally diverse but often defective and incomplete. A suitable method should therefore be robust with respect to sources of inaccuracy, while being able to treat multiple systems. Available methods do not fulfill both criteria at the same time. In this work, we introduce ARISE, a Bayesian-deep-learning based framework that can treat more than 100 structural classes in robust fashion, without any predefined threshold. The selection of structural classes, which can be easily extended on demand, encompasses a wide range of materials, in particular, not only bulk but also two- and one-dimensional systems. For the local study of large, polycrystalline samples, we extend ARISE by introducing so-called strided pattern matching. While being trained on ideal structures only, ARISE correctly characterizes strongly perturbed single- and polycrystalline systems, from both synthetic and experimental resources. The probabilistic nature of the Bayesian-deep-learning model allows to obtain principled uncertainty estimates which are found to be correlated with crystalline order of metallic nanoparticles in electron-tomography experiments. Applying unsupervised learning to the internal neural-network representations reveals grain boundaries and (unapparent) structural regions sharing easily interpretable geometrical properties. This work enables the hitherto hindered analysis of noisy atomic structural data.
|
14 |
Analyse der Glättung rauer Oberflächen durch Dünnschichtdeposition / Analysis of smoothing of rough surfaces by thin film depositionRöder, Johanna 23 June 2009 (has links)
No description available.
|
15 |
Single Particle Dynamics of Anderson-like Impurity Models: A Functional Renormalization Group Study / Die Einteilchendynamik von Anderson-artigen Störstellenmodellen: Untersuchung mit Hilfe der funktionalen RenormierungsgruppeHedden, Ralf 15 March 2007 (has links)
No description available.
|
16 |
Kinetic Studies of Methane-Hydrate Formation from Ice Ih / Kinetic Studies of Methane-Hydrate Formation from Ice IhStaykova, Doroteya Kancheva 20 April 2004 (has links)
No description available.
|
17 |
Künstliche und selbstorganisierte Nanokomposite basierend auf oxidischen Verbindungen / Artificial and self-organized nano composites based on oxidic compoundsSchnittger, Sven 18 August 2011 (has links)
No description available.
|
18 |
Funktionale Renormierungsgruppe für Nichtgleichgewichtsphänomene in Vielteilchensysteme / Functional Renormalization Group for Non-Equilibrium Quantum Many-Body ProblemsGezzi Riccardo 13 November 2007 (has links)
No description available.
|
19 |
Hydrodynamics in solid state transport, from microscopic to mesoscopic scalesWitkowski, Piotr 28 August 2020 (has links)
The thesis is devoted to some aspects of the solid-state electronic transport in the so-called viscous or hydrodynamic regime.
Hydrodynamic regime in this context means that due to the large carrier density and non-negligible carrier-carrier interactions, the transport properties follow from collective, rather than single-particle phenomena.
To capture the dynamics of such a system one may use description based on the conserved quantities, i.e. momentum, energy or charge.
If the interactions between the constituents of the system are strong enough, such a description is provided by the hydrodynamic equations which for conserved momentum and energy are the Navier-Stokes equations or their relativistic counterparts.
This thesis focuses on such a situation: when the equations governing transport properties follow from conservation of the momentum or, at most, can be treated as a modification of such equations due to weak momentum relaxation.
Presented here are two lines of investigation. The first one focuses on the mesoscopic effects, i.e. on the dependence of the outcome of the transport measurements on the physical parameters of the sample such as size and shape. Here also the effects of the weak momentum relaxation are studied.
In the second one, the issue of parity and time reversal symmetry breaking, occurring in a 2 dimensional system due to the presence of an external magnetic field, is investigated.
An effective model of a strongly coupled quantum system is introduced and used to compute the odd (Hall) viscosity -- a transport coefficient allowed once the discrete symmetries are broken -- as a function of magnetic field, temperature and chemical potential.
The first part of results concerns the behaviour of the electronic fluid in a typical AC measurement -- modeled by an elongated channel in which the fluid is subject to a periodically time dependent electric potential. Assuming standard, no-slip boundary conditions, the spatial distribution of the current density is found to be much different to the one known for Ohmic conduction. For small frequency the current distribution has a parabolic profile across the channel, while for high frequency the current in the bulk of the channel becomes flat (position-independent), while two maxima terminating a so-called boundary layer develop.
In these boundary layers large gradients of current can be found, contributing to high local entropy production due to the viscous force.
Despite this differences in the local current density profile, when the global conductance is measured as a function of the frequency, the result much resembles the well known Drude curve, with a distinct maximum visible in the imaginary part of the AC conductance.
There is, however, a global signature of the boundary layer formation -- the scaling of the conductance with the channel width, that changes from quadratic (for parabolic flow) to asymptotically constant (for a flow with boundary layers).
Moreover, in the hydrodynamic regime, the position of the Drude peak is not only determined by microscopic parameter but again by a combination of microscopic (viscosity) and mesoscopic (width) parameters.
Since the Drude peak occurs for experimentally feasible values of parameters, the mentioned mesoscopic dependence may be used to measure the value of viscosity coefficient.
The results discussed above are obtained assuming, as is traditional for hydrodynamics on everyday length-scales, a no-slip boundary condition which forces the fluid to be immobile at the boundary. This boundary condition was also assumed in most of the previous works on the electronic hydrodynamics.
However, this is not the only possibility. There exists a one-parameter family of consistent boundary conditions involving velocity and its derivative on the boundary, parametrized by a coefficient called the slip length. Recent theoretical and experimental publications suggest that it may be dependent on the state parameters of the system (i.e temperature, chemical potential) and its value may be relatively large for some experimental situations. One of the consequences of the slip length being large is that hydrodynamic effects are obscured in the simple AC set-up discussed before.
In this work it is shown that by an appropriate micro-structuring of the boundary, the effects of slip can be suppressed.
Once the array of defects is introduced on the edges of the sample, the no-slip behavior is restored for all the values of the microscopic slip length.
Furthermore, the interplay between the microscopic slip length and the sample geometry is investigated
and used to propose a simple device for measuring the dependence of the microscopic slip length on the state parameters such as the temperature or the chemical potential.
The final part of this thesis is devoted to a different aspect of the hydrodynamic transport -- a computation of the value of hydrodynamic transport coefficients using a microscopic theory.
The physical situation of interest is one in which time reversal and parity invariance of a 2-dimensional system are broken, due to the presence of an external magnetic field.
In such a situation an unusual class of transport coefficients is allowed in the hydrodynamic description, so-called odd coefficients. The term comes from the fact that they encode response that is transverse to the applied perturbation.
These odd coefficients for 2 dimensions were previously studied mostly at weak coupling, i.e. using descriptions based on quasi-particles.
This work, however, presents the way of calculating them for strongly coupled model system.
To achieve this a high-energy-physics-inspired framework of holographic duality (AdS/CFT) is used.
In that approach, an effective model involving magnetically-sourced parity-breaking interactions is constructed for the system at finite temperature and chemical potential.
Performing a linear response analysis around the thermal states in that model allows one to read off the transport coefficients, especially the odd (Hall) viscosity coefficient that is of central interest in this study.
The mentioned Hall viscosity is found to be non-zero whenever the magnetic field is present, even for zero chemical potential.
This is unusual, as odd viscosity is expected to only be non-zero for non-zero charge density states.
The mechanism responsible for the presence of Hall viscosity in the discussed case turns out to be the following: charge density in the model is induced by either the chemical potential or the magnetic field, i.e. for non-zero magnetic field even at zero chemical potential some density of charge is present.
This charge contributes to the Hall viscosity in the usual way.
The odd viscosity coefficient is found to have different scaling behaviors for weak and strong magnetic field.
Interestingly, it turns out that the computations of the Hall (and shear) viscosities are relatively straightforward and analytically tractable in the proposed model.
This means that the results could be generalized to the zero-temperature case, which however is yet to be done.
It also suggests that the model may capture some universal mechanisms of generating the odd viscosity due to the presence of the magnetic field.
That intuition is backed by the fact that some of the effective models of quantum Hall states also predict similar mechanism in which charge density is induced by the presence of the magnetic field. Despite these similarities, further studies are needed to establish a solid connection between these systems.
In particular, in the model under consideration no mechanism of quantization of the Hall viscosity is found, while the mentioned models of quantum Hall states predict quantization of that transport coefficient.
|
20 |
Herstellung und Charakterisierung metallorganisch deponierter Pufferschichten für YBa2Cu3O7 / Preparation and Characterisation of Buffer Layers for YBa2Cu3O7 by Metal-Organic DepositionJarzina, Harald 18 December 2003 (has links)
Gegenstand dieser Arbeit ist die Herstellung und Charakterisierung von metall-organisch deponierten (MOD) Pufferschichten für den Hochtemperatursupraleiter YBa2Cu3O7 . Dazu wurde die Texturbildung in CeO2, Gd-dotiertem CeO2 (CGO) und Yttrium-stabilisiertem Zirkondioxid (YSZ) durch epitaktisches Wachstum auf YSZ-Substraten verschiedener Rauhigkeit und Textur untersucht. Nach Deposition der Precursorlösung (Ce-Acetylacetonat in einem Essigsäure/iso-Propanolgemisch) mittels Spin-coating wurden die Proben in einer Ar/H2-Athmosphäre bzw. an Luft bei 700-1300°C ausgelagert, wobei zunächst ein nanokristallines Gefüge entsteht.Nach Bildung einer epitaktischen Keimschicht an der Substratoberfläche konkurrieren während des weiteren Wachstums Kornvergröberung in der polykristallinen Deckschicht und epitaktisches Schichtwachstum miteinander. Die treibende Kraft für beide Prozesse resultiert dabei aus der hohen Korngrenzenergiedichte des nanokristallinen Precursorgefüges. Das Schichtwachstum wurde u.a. mit Röntgenverfahren und RHEED (Reflection High Energy Electron Diffraction) verfolgt. Eine biaxiale Textur wurde mit Röntgenverfahren im Falle des CGO auf YSZ-(001)-Einkristallen schon bei Auslagerungstemperaturen von ca. 790°C beobachtet, während eine epitaxiefähige Oberfläche erst bei Temperaturen von 1200-1300°C auftrat. Bei Auslagerungstemperaturen von 790°C verhindert eine untexturierte Deckschicht in der MOD-Schicht ein epitaktisches Anwachsen des YBa2Cu3O7.Die Untersuchung des Wachstumsverhaltens auf technischen IBAD(Ion-Beam-Assisted-Deposition)-YSZ Substraten ergab, daß die Oberflächenrauhigkeit die maßgebliche Einflussgröße ist, die die Erhöhung der mit Röntgenmethoden gemessenen optimalen Auslagerungsbedingungen bestimmt.Die Eignung der mit MOD hergestellten Pufferschichten als Substrat für ein biaxiales Aufwachsen der supraleitenden Schicht wurde durch die hohen Stromtragfähigkeiten nachgewiesen, die in den supraleitenden Filmen erreicht wurden.
|
Page generated in 0.1 seconds