Spelling suggestions: "subject:"curve"" "subject:"kurve""
11 |
Nichtlineare Optimierung von Kurven und Flächen mit Hilfe von SplinesRöseler, Alexander. January 1996 (has links)
Stuttgart, Univ., Diplomarbeit, 1996.
|
12 |
Combinatorial curve reconstruction and the efficient exact implementation of geometric algorithmsFunke, Stefan. Unknown Date (has links) (PDF)
University, Diss., 2001--Saarbrücken.
|
13 |
Curve reconstruction and the traveling salesman problemAlthaus, Ernst. Unknown Date (has links) (PDF)
University, Diss., 2001--Saarbrücken.
|
14 |
Construction of algebraic correspondences between hyperelliptic function fields using Deuring's theoryKux, Georg. Unknown Date (has links) (PDF)
Techn. University, Diss., 2004--Kaiserslautern.
|
15 |
On representations attached to semistable vector bundles on Mumford curvesHerz, Gabriel. Unknown Date (has links) (PDF)
University, Diss., 2005--Münster (Westfalen).
|
16 |
Crossings, Curves, and Constraints in Graph Drawing / Kreuzungen, Kurven und Constraints beim Zeichnen von GraphenFink, Martin January 2014 (has links) (PDF)
In many cases, problems, data, or information can be modeled as graphs. Graphs can be used as a tool for modeling in any case where connections between distinguishable objects occur. Any graph consists of a set of objects, called vertices, and a set of connections, called edges, such that any edge connects a pair of vertices. For example, a social network can be modeled by a graph by
transforming the users of the network into vertices and friendship relations between users into edges. Also physical networks like computer networks or transportation networks, for example, the metro network of a city, can be seen as graphs.
For making graphs and, thereby, the data that is modeled, well-understandable for users, we need a visualization. Graph drawing deals with algorithms for visualizing graphs. In this thesis, especially the use of crossings and curves is investigated for graph drawing problems under additional constraints. The constraints that occur in the problems investigated in this thesis especially restrict the positions of (a part of) the vertices; this is done either as a hard constraint or as an optimization criterion. / Viele Probleme, Informationen oder Daten lassen sich mit Hilfe von Graphen modellieren. Graphen können überall dort eingesetzt werden, wo Verbindungen zwischen unterscheidbaren Objekten auftreten. Ein Graph besteht aus einer Menge von Objekten, genannt Knoten, und einer Menge von Verbindungen, genannt Kanten, zwischen je einem Paar von Knoten. Ein soziales Netzwerk lässt sich etwa als Graph modellieren, indem die teilnehmenden Personen als Knoten und Freundschaftsbeziehungen als Kanten dargestellt werden. Physikalische Netzwerke wie etwa Computernetze oder Transportnetze - wie beispielsweise das U-Bahnliniennetz einer Stadt - lassen sich ebenfalls als Graph auffassen.
Um Graphen und die damit modellierten Daten gut erfassen zu können benötigen wir eine Visualisierung. Das Graphenzeichnen befasst sich mit dem Entwickeln von Algorithmen zur Visualisierung von Graphen. Diese Dissertation beschäftigt sich insbesondere mit dem Einsatz von Kreuzungen und Kurven beim Zeichnen von Graphen unter Nebenbedingungen (Constraints).
Die in den untersuchten Problemen auftretenden Nebenbedingungen sorgen unter anderem dafür, dass die Lage eines Teils der Knoten - als feste Anforderung oder als Optimierungskriterium - vorgegeben ist.
|
17 |
The inverse Galois problem and explicit computation of families of covers of \(\mathbb{P}^1\mathbb{C}\) with prescribed ramification / Das Umkehrproblem der Galoistheorie und explizite Berechnung von Familien von Überlagerungen des \(\mathbb{P}^1\mathbb{C}\) mit vorgegebener VerzweigungKönig, Joachim January 2014 (has links) (PDF)
In attempting to solve the regular inverse Galois problem for arbitrary subfields K of C (particularly for K=Q), a very important result by Fried and Völklein reduces the existence of regular Galois extensions F|K(t) with Galois group G to the existence of K-rational points on components of certain moduli spaces for families of covers of the projective line, known as Hurwitz spaces.
In some cases, the existence of rational points on Hurwitz spaces has been proven by theoretical criteria. In general, however, the question whether a given Hurwitz space has any rational point remains a very difficult problem. In concrete cases, it may be tackled by an explicit computation of a Hurwitz space and the corresponding family of covers.
The aim of this work is to collect and expand on the various techniques that may be used to solve such computational problems and apply them to tackle several families of Galois theoretic interest. In particular, in Chapter 5, we compute explicit curve equations for Hurwitz spaces for certain families of \(M_{24}\) and \(M_{23}\).
These are (to my knowledge) the first examples of explicitly computed Hurwitz spaces of such high genus. They might be used to realize \(M_{23}\) as a regular Galois group over Q if one manages to find suitable points on them.
Apart from the calculation of explicit algebraic equations, we produce complex approximations for polynomials with genus zero ramification of several different ramification types in \(M_{24}\) and \(M_{23}\). These may be used as starting points for similar computations.
The main motivation for these computations is the fact that \(M_{23}\) is currently the only remaining sporadic group that is not known to occur as a Galois group over Q.
We also compute the first explicit polynomials with Galois groups \(G=P\Gamma L_3(4), PGL_3(4), PSL_3(4)\) and \(PSL_5(2)\) over Q(t).
Special attention will be given to reality questions. As an application we compute the first examples of totally real polynomials with Galois groups \(PGL_2(11)\) and \(PSL_3(3)\) over Q.
As a suggestion for further research, we describe an explicit algorithmic version of "Algebraic Patching", following the theory described e.g. by M. Jarden. This could be used to conquer some problems regarding families of covers of genus g>0.
Finally, we present explicit Magma implementations for several of the most important algorithms involved in our computations. / Das Umkehrproblem der Galoistheorie und explizite Berechnung von Familien von Überlagerungen des \(\mathbb{P}^1\mathbb{C}\) mit vorgegebener Verzweigung
|
18 |
Iwasawa theory of p-adic Lie extensionsVenjakob, Otmar. January 2001 (has links)
Heidelberg, Univ., Diss., 2001.
|
19 |
Adaptive Verfahren höherer Ordnung auf cache-optimalen Datenstrukturen für dreidimensionale ProblemeKrahnke, Andreas. January 2005 (has links) (PDF)
München, Techn. Univ., Diss., 2005.
|
20 |
Ovale und ebene algebraische Kurven mit unendlicher KollineationsgruppeWagner, Doris. January 2005 (has links) (PDF)
Erlangen, Nürnberg, Univ., Diss., 2005.
|
Page generated in 0.0332 seconds