• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2005
  • 450
  • 314
  • 289
  • 254
  • 91
  • 73
  • 67
  • 31
  • 22
  • 21
  • 21
  • 21
  • 21
  • 21
  • Tagged with
  • 4352
  • 1308
  • 481
  • 346
  • 328
  • 302
  • 287
  • 282
  • 260
  • 257
  • 243
  • 233
  • 227
  • 219
  • 218
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
831

Investigation of IEEE standard 802.16 Medium Access

Robles Rico, Pedro Francisco January 2006 (has links)
This paper is a study of IEEE Standard 802.16 Medium Access Control (MAC) Layer in Distributed Mesh Networks. IEEE Standard 802.16 is a Wireless Metropolitan Area Network (WMAN) technology that can connect different IEEE 802.11 (Wifi) host post with each other and to other parts of internet. It can provide network for a wireless router and at the same time this router can be installed in the office, house or university. WiMAX (Worldwide Interoperability for Microwave Access) is a certification mark for products that pass conformity and interoperability tests for the IEEE 802.16 standards. Products that pass the conformity tests for WiMAX are capable of forming wireless connections between them to permit the carrying of internet packet data. The idea of WiMAX is similar than Wi-Fi but it is not the same. It is a step much higher than Wi-Fi because it is focused to offer internet for a whole city. It has much higher capacity and longer distances. IEEE 802.16 defines a MAC Layer that supports multiple physical layer (PHY) Specifications and different topologies; Point to Multipoint (PMP) and Mesh Networks. In this first topology there exist a Base Station (BS) that have direct links with all the Subscriber Stations (SS). If any Subscriber Station requires transmitting to another SS, the message must convey the Base Station.
832

Physical-Layer Security in Wireless Communication Systems

Bagheri-Karam, Ghadamali January 2010 (has links)
The use of wireless networks has grown significantly in contemporary times, and continues to develop further. The broadcast nature of wireless communications, however, makes them particularly vulnerable to eavesdropping. Unlike traditional solutions, which usually handle security at the application layer, the primary concern of this dissertation is to analyze and develop solutions based on coding techniques at the physical-layer. First, in chapter $2$, we consider a scenario where a source node wishes to broadcast two confidential messages to two receivers, while a wire-tapper also receives the transmitted signal. This model is motivated by wireless communications, where individual secure messages are broadcast over open media and can be received by any illegitimate receiver. The secrecy level is measured by the equivocation rate at the eavesdropper. We first study the general (non-degraded) broadcast channel with an eavesdropper, and present an inner bound on the secrecy capacity region for this model. This inner bound is based on a combination of random binning, and the Gelfand-Pinsker binning. We further study the situation in which the channels are degraded. For the degraded broadcast channel with an eavesdropper, we present the secrecy capacity region. Our achievable coding scheme is based on Cover's superposition scheme and random binning. We refer to this scheme as the Secret Superposition Scheme. Our converse proof is based on a combination of the converse proof of the conventional degraded broadcast channel and Csiszar Lemma. We then assume that the channels are Additive White Gaussian Noise and show that the Secret Superposition Scheme with Gaussian codebook is optimal. The converse proof is based on Costa's entropy power inequality. Finally, we use a broadcast strategy for the slowly fading wire-tap channel when only the eavesdropper's channel is fixed and known at the transmitter. We derive the optimum power allocation for the coding layers, which maximizes the total average rate. Second, in chapter $3$ , we consider the Multiple-Input-Multiple-Output (MIMO) scenario of a broadcast channel where a wiretapper also receives the transmitted signal via another MIMO channel. First, we assume that the channels are degraded and the wiretapper has the worst channel. We establish the capacity region of this scenario. Our achievability scheme is the Secret Superposition Coding. For the outerbound, we use notion of the enhanced channels to show that the secret superposition of Gaussian codes is optimal. We show that we only need to enhance the channels of the legitimate receivers, and the channel of the eavesdropper remains unchanged. We then extend the result of the degraded case to a non-degraded case. We show that the secret superposition of Gaussian codes, along with successive decoding, cannot work when the channels are not degraded. We develop a Secret Dirty Paper Coding scheme and show that it is optimal for this channel. We then present a corollary generalizing the capacity region of the two receivers case to the case of multiple receivers. Finally, we investigate a scenario which frequently occurs in the practice of wireless networks. In this scenario, the transmitter and the eavesdropper have multiple antennae, while both intended receivers have a single antenna (representing resource limited mobile units). We characterize the secrecy capacity region in terms of generalized eigenvalues of the receivers' channels and the eavesdropper's channel. We refer to this configuration as the MISOME case. We then present a corollary generalizing the results of the two receivers case to multiple receivers. In the high SNR regime, we show that the capacity region is a convex closure of rectangular regions. Finally, in chapter $4$, we consider a $K$-user secure Gaussian Multiple-Access-Channel with an external eavesdropper. We establish an achievable rate region for the secure discrete memoryless MAC. Thereafter, we prove the secrecy sum capacity of the degraded Gaussian MIMO MAC using Gaussian codebooks. For the non-degraded Gaussian MIMO MAC, we propose an algorithm inspired by the interference alignment technique to achieve the largest possible total Secure-Degrees-of-Freedom . When all the terminals are equipped with a single antenna, Gaussian codebooks have shown to be inefficient in providing a positive S-DoF. Instead, we propose a novel secure coding scheme to achieve a positive S-DoF in the single antenna MAC. This scheme converts the single-antenna system into a multiple-dimension system with fractional dimensions. The achievability scheme is based on the alignment of signals into a small sub-space at the eavesdropper, and the simultaneous separation of the signals at the intended receiver. We use tools from the field of Diophantine Approximation in number theory to analyze the probability of error in the coding scheme. We prove that the total S-DoF of $\frac{K-1}{K}$ can be achieved for almost all channel gains. For the other channel gains, we propose a multi-layer coding scheme to achieve a positive S-DoF. As a function of channel gains, therefore, the achievable S-DoF is discontinued.
833

Quality-Driven Cross-Layer Protocols for Video Streaming over Vehicular Ad-Hoc Networks

Asefi, Mahdi 30 August 2011 (has links)
The emerging vehicular ad-hoc networks (VANETs) offer a variety of applications and new potential markets related to safety, convenience and entertainment, however, they suffer from a number of challenges not shared so deeply by other types of existing networks, particularly, in terms of mobility of nodes, and end-to-end quality of service (QoS) provision. Although several existing works in the literature have attempted to provide efficient protocols at different layers targeted mostly for safety applications, there remain many barriers to be overcome in order to constrain the widespread use of such networks for non-safety applications, specifically, for video streaming: 1) impact of high speed mobility of nodes on end-to-end QoS provision; 2) cross-layer protocol design while keeping low computational complexity; 3) considering customer-oriented QoS metrics in the design of protocols; and 4) maintaining seamless single-hop and multi-hop connection between the destination vehicle and the road side unit (RSU) while network is moving. This thesis addresses each of the above limitations in design of cross-layer protocols for video streaming application. 1) An adaptive MAC retransmission limit selection scheme is proposed to improve the performance of IEEE 802.11p standard MAC protocol for video streaming applications over VANETs. A multi-objective optimization framework, which jointly minimizes the probability of playback freezes and start-up delay of the streamed video at the destination vehicle by tuning the MAC retransmission limit with respect to channel statistics as well as packet transmission rate, is applied at road side unit (RSU). Two-hop transmission is applied in zones in which the destination vehicle is not within the transmission range of any RSU. In the multi-hop scenario, we discuss the computation of access probability used in the MAC adaptation scheme and propose a cross-layer path selection scheme; 2) We take advantage of similarity between multi-hop urban VANETs in dense traffic conditions and mesh connected networks. First, we investigate an application-centric routing scheme for video streaming over mesh connected overlays. Next, we introduce the challenges of urban VANETs compared to mesh networks and extend the proposed scheme in mesh network into a protocol for urban VANETs. A classification-based method is proposed to select an optimal path for video streaming over multi-hop mesh networks. The novelty is to translate the path selection over multi-hop networks to a standard classification problem. The classification is based on minimizing average video packet distortion at the receiving nodes. The classifiers are trained offline using a vast collection of video sequences and wireless channel conditions in order to yield optimal performance during real time path selection. Our method substantially reduces the complexity of conventional exhaustive optimization methods and results in high quality (low distortion). Next, we propose an application-centric routing scheme for real-time video transmission over urban multi-hop vehicular ad-hoc network (VANET) scenarios. Queuing based mobility model, spatial traffic distribution and prob- ability of connectivity for sparse and dense VANET scenarios are taken into consideration in designing the routing protocol. Numerical results demonstrate the gain achieved by the proposed routing scheme versus geographic greedy forwarding in terms of video frame distortion and streaming start-up delay in several urban communication scenarios for various vehicle entrance rate and traffic densities; and 3) finally, the proposed quality-driven routing scheme for delivering video streams is combined with a novel IP management scheme. The routing scheme aims to optimize the visual quality of the transmitted video frames by minimizing the distortion, the start-up delay, and the frequency of the streaming freezes. As the destination vehicle is in motion, it is unrealistic to assume that the vehicle will remain connected to the same access router (AR) for the whole trip. Mobile IP management schemes can benefit from the proposed multi-hop routing protocol in order to adapt proxy mobile IPv6 (PMIPv6) for multi-hop VANET for video streaming applications. The proposed cross-layer protocols can significantly improve the video streaming quality in terms of the number of streaming freezes and start-up delay over VANETs while achieving low computational complexity by using pattern classification methods for optimization.
834

Design and Analysis of Security Schemes for Low-cost RFID Systems

Chai, Qi 01 1900 (has links)
With the remarkable progress in microelectronics and low-power semiconductor technologies, Radio Frequency IDentification technology (RFID) has moved from obscurity into mainstream applications, which essentially provides an indispensable foundation to realize ubiquitous computing and machine perception. However, the catching and exclusive characteristics of RFID systems introduce growing security and privacy concerns. To address these issues are particularly challenging for low-cost RFID systems, where tags are extremely constrained in resources, power and cost. The primary reasons are: (1) the security requirements of low-cost RFID systems are even more rigorous due to large operation range and mass deployment; and (2) the passive tags' modest capabilities and the necessity to keep their prices low present a novel problem that goes beyond the well-studied problems of traditional cryptography. This thesis presents our research results on the design and the analysis of security schemes for low-cost RFID systems. Motivated by the recent attention on exploiting physical layer resources in the design of security schemes, we investigate how to solve the eavesdropping, modification and one particular type of relay attacks toward the tag-to-reader communication in passive RFID systems without requiring lightweight ciphers. To this end, we propose a novel physical layer scheme, called Backscatter modulation- and Uncoordinated frequency hopping-assisted Physical Layer Enhancement (BUPLE). The idea behind it is to use the amplitude of the carrier to transmit messages as normal, while to utilize its periodically varied frequency to hide the transmission from the eavesdropper/relayer and to exploit a random sequence modulated to the carrier's phase to defeat malicious modifications. We further improve its eavesdropping resistance through the coding in the physical layer, since BUPLE ensures that the tag-to-eavesdropper channel is strictly noisier than the tag-to-reader channel. Three practical Wiretap Channel Codes (WCCs) for passive tags are then proposed: two of them are constructed from linear error correcting codes, and the other one is constructed from a resilient vector Boolean function. The security and usability of BUPLE in conjunction with WCCs are further confirmed by our proof-of-concept implementation and testing. Eavesdropping the communication between a legitimate reader and a victim tag to obtain raw data is a basic tool for the adversary. However, given the fundamentality of eavesdropping attacks, there are limited prior work investigating its intension and extension for passive RFID systems. To this end, we firstly identified a brand-new attack, working at physical layer, against backscattered RFID communications, called unidirectional active eavesdropping, which defeats the customary impression that eavesdropping is a ``passive" attack. To launch this attack, the adversary transmits an un-modulated carrier (called blank carrier) at a certain frequency while a valid reader and a tag interacts at another frequency channel. Once the tag modulates the amplitude of reader's signal, it causes fluctuations on the blank carrier as well. By carefully examining the amplitude of the backscattered versions of the blank carrier and the reader's carrier, the adversary could intercept the ongoing reader-tag communication with either significantly lower bit error rate or from a significantly greater distance away. Our concept is demonstrated and empirically analyzed towards a popular low-cost RFID system, i.e., EPC Gen2. Although active eavesdropping in general is not trivial to be prohibited, for a particular type of active eavesdropper, namely a greedy proactive eavesdropper, we propose a simple countermeasure without introducing extra cost to current RFID systems. The needs of cryptographic primitives on constraint devices keep increasing with the growing pervasiveness of these devices. One recent design of the lightweight block cipher is Hummingbird-2. We study its cryptographic strength under a novel technique we developed, called Differential Sequence Attack (DSA), and present the first cryptanalytic result on this cipher. In particular, our full attack can be divided into two phases: preparation phase and key recovery phase. During the key recovery phase, we exploit the fact that the differential sequence for the last round of Hummingbird-2 can be retrieved by querying the full cipher, due to which, the search space of the secret key can be significantly reduced. Thus, by attacking the encryption (decryption resp.) of Hummingbird-2, our algorithm recovers 36-bit (another 28-bit resp.) out of 128-bit key with $2^{68}$ ($2^{60}$ resp.) time complexity if particular differential conditions of the internal states and of the keys at one round can be imposed. Additionally, the rest 64-bit of the key can be exhaustively searched and the overall time complexity is dominated by $2^{68}$. During the preparation phase, by investing $2^{81}$ effort in time, the adversary is able to create the differential conditions required in the key recovery phase with at least 0.5 probability. As an additional effort, we examine the cryptanalytic strength of another lightweight candidate known as A2U2, which is the most lightweight cryptographic primitive proposed so far for low-cost tags. Our chosen-plaintext-attack fully breaks this cipher by recovering its secret key with only querying the encryption twice on the victim tag and solving 32 sparse systems of linear equations (where each system has 56 unknowns and around 28 unknowns can be directly obtained without computation) in the worst case, which takes around 0.16 second on a Thinkpad T410 laptop.
835

Combined microwave - convection drying and textural characteristics of beef jerky

Thiagarajan, Ignaci Victoria 21 October 2008 (has links)
Beef jerky is a dried meat snack which is rich in protein but of low calorific value. This ready-to- eat meat snack is in high demand among hikers, bikers and travelers due to its compact nature and nutritional value. The current processing methods such as smoke house and home dehydrators take 6-10 h. Increasing market for this shelf-stable meat product increases the need for alternate efficient processing method. Also, this meat snack market depends on its textural characteristics which denote the consumer acceptability. In this research, three different methods of drying beef jerky were examined. Influences of pH and salt on different characteristics of beef jerky were investigated using combined microwave-convection drying. Also, the effects of relative humidity and airflow rates in forced air thin layer drying on jerky processing were studied. Samples of beef jerky dried using a combined microwave-convection drier and thin layer drying unit were compared with samples dried in a smoke house. The results obtained showed that pH and salt content had a significant influence on drying, physical and textural characteristics of jerky. It was found that samples with low pH (5.15) and high salt content (3.28% (w/w)) dried faster than samples with high pH and low salt content due to their high drying rates. These samples had shown high shrinkage and weight loss compared to samples with pH 5.65 and 1.28% (w/w) salt content. Analysis of the textural characteristics such as tensile force, puncture force and texture profile showed that the samples with high pH and low salt content were comparably softer than the rest of the samples. Results of the effect of relative humidity and airflow rate in forced air thin layer drying on jerky processing showed that relative humidity and airflow rate influenced the drying, physical, chemical and textural characteristics of beef jerky. Combination of low relative humidity and high airflow rate showed desirable drying characteristics. However, samples dried at this combination showed high shrinkage and weight loss. The hardness of the beef jerky increased with increase in airflow rate and reduction in relative humidity. A comparison of the drying methods revealed that different drying methods produced different desirable properties. Combined microwave-convection drying was found to be efficient and very rapid (8.25 min). The low shrinkage and weight losses along with high drying rate obtained using this method would pave a way to fast and efficient processing. The color and textural characteristics were different from those of samples dried in a smoke house. Surprisingly, combined microwave-convection drying method produced softer beef jerky than thin layer and smokehouse methods. However, the commercially available jerky is tougher than the one dried using combined microwave-convection drying. The samples dried in a thin layer drier had comparable color and textural characteristics with samples dried in a smoke-house. Also, forced-air thin layer drying method reduced drying time of beef jerky from 7 to 3 h. The forced air thin layer drier has the potential to produce beef jerky with similar color and textural characteristics to commercially available smoke house dried samples.
836

Characteristics of a New Trench Oxide Layer Polysilicon Thin-Film Transistor and its 1T-DRAM Applications

Chiu, Hsien-Nan 29 July 2010 (has links)
In this thesis, we propose a simple trench oxide layer polysilicon thin-film Transistor (TO TFT) process and the self-heating effects can be significantly reduced because of its structural advantages. According to the ISE-TCAD simulation results, our proposed TO TFT structure has novel features as follows: 1. The buried oxide and the isolation oxide are carried out simultaneously in order to achieve a goal of simple process. 2. The trench design is used to improve both the sensing current windows (~ 84%) and the retention time (~ 57%). 3. The thermal stability is drastically improved by its naturally formed source/drain tie. The above mentioned features help our proposed device structure to demonstrate the desired characteristics that are better than that of a conventional TFT. Additionally, the thermal instability is drastically improved which is good for long-term device operation.
837

Design and Implementation of Physical Layer for FlexRay-based Automotive Communication Systems

Sung, Gang-Neng 05 October 2010 (has links)
In this dissertation, we propose a circuit design and implementation of physical layer for FlexRay-based automotive communication systems which are expected to be widely used in car electronics for the years to come. To reduce the volume of electrical lines in a car and ensure safe connections, the automotive communication systems are more important than ever. FlexRay systems have been deemed as better than other existing solutions for the complicated in-vehicle networks. A low-voltage differential-signaling-like transmitter is proposed to drive the twisted pair of the FlexRay bus. Furthermore, a three-comparator scheme is used to carry out bit slicing and state recognition at the receiver end. A prototype system as well as a chip implemented by using a typical 0.18 £gm single-poly six-metal CMOS process is reported in this dissertation. Furthermore, an accurate clock signal is required in any control system, especially in the vehicle applications, where the ¡§safety¡¨ is the top priority. Because of the TDMA strategy (Time Division Multiple Access) was chosen for the FlexRay communication protocol, the system clock should not be drifting too much. A robust 20 MHz clock generator with process, supply voltage, and temperature compensation and a low-jitter 80 MHz phase-lock loop are proposed in this dissertation to reduce hostile environment effects. Finally, because the ¡§safety¡¨ and ¡§reliability¡¨ are top design requirements in the automobile electronics, we should also focus on the power supply design in the in-car communication networks. Therefore, a high tolerant and high efficiency voltage converter is proposed in this dissertation. By utilizing stacked power MOSFETs, a voltage level converter, a detector and a controller, this design is realized by a typical CMOS process without any thick-oxide device to tolerate input voltage range up to 3 times of the VDD voltage.
838

Study of high performance organic light emitting device

Chen, Peng-Yu 22 May 2011 (has links)
The high performance organic light-emitting diodes (OLEDs) have been studied. First, we have fabricated a WOLED with AlF3 and m-MTDATA as a hybrid buffer layer. Results indicate that the turn-on voltage can be reduced to 3.1V, and the luminous efficiency can be improved to 14.7 cd/A when a hybrid buffer layer was used. Since the turn-on voltage decreases and the efficiency increases, the power consumption as well as lifespan are then improved. Moreover, the luminous efficiency of the hybrid buffer layer devices also immunes to drive voltage variations. Second, we studied the properties of transportation in OLEDs. The study presented the device of a WOLED with a combination of a graded hole transport layer (GH) structure and a gradually doped emissive layer (GE) structure as a double graded (DG) structure. The DG structure: ITO/MTDATA(15 nm/NPB(15 nm)/NPB:25% BAlq (15 nm)/NPB : 50% BAlq (15 nm)/BAlq:0.5% Rubrene (10 nm)/ BAlq : 1% Rubrene (10nm) /BAlq:1.5%Rubrene (10 nm) / Alq3 (20 nm)/ LiF (0.5 nm)/Al (200 nm) is beneficial for improving both electrical and optical performances. The luminous efficiency of the DG device is 11.8cd/A, which is larger than that of 7.9cd/A with the HJ device. This improvement is attributed to the discrete interface between hole transport layer and emissive layer can be eliminated, surplus holes can be suppressed, electron-hole pairs can obtain optimal transportation and recombination in the emissive layer, and quenching effects can be significantly suppressed. Moreover, the spectra were almost not changed with an increasing drive current. As the efficiency was improved, it is expected that the power consumption can be reduced as well. Third, high efficiency and brightness p-i-n OLEDs with a CsI-doped Alq3 layer as a n-ETL has been studied. The p-i-n WOLED with a 15 % CsI-doped Alq3 layer exhibits a luminous efficiency of 5.75 cd/A at a driving current of 20mA/cm2 as well as a maximum power efficiency of 4.67lm/W. This improved performance is attributed to the increased electron carriers of the n-ETL and the balance of electrons and holes in the recombination zone. The X-ray photoelectron spectroscopy (XPS) have shown that doping of CsI caused chemical reaction, attributing to the increase of carriers. Finally, we focus on the improvement of contrast ration (CR) of OLEDs. We successfully fabricated a conductive organic-metal light-absorbing layer with a high CR and low reflectance for use as a black cathode in an OLED. The black cathode that was fabricated using vacuum deposition has the advantages of low cost and simple fabrication. Moreover, the J-V characteristic of the black cathode device is almost identical to that of a conventional device. Additionally, the reflectance can be reduced from 66.2% to 11.3% and a small reflectance variation around 3.3% over the visible spectrum is appealed. At an ambient illumination of 250 lx, the CR can be increased from 4.2 to 10.8 at a brightness of 250 cd/m2.
839

1.3£gm quantum dot-in-a-well laser

Lin, Ting-Yu 14 July 2011 (has links)
The purpose of this thesis is to fabricate 12-layer In0.75Ga0.25As quantum dot-in-a-well (In0.1Ga0.9As) structures grown by molecular-beam epitaxy (MBE) on GaAs substrate, and analyze the optical properties of laser devices for optical fiber communication systems. For the laser structures, larger Al content AlGaAs cladding layer enhance the optical confinement, but encounter much challenges to improve the quality. After we simulate and fabricate different Al content laser structures, we find the best cladding layer composition - Al0.2Ga0.8As which performs a best material gain. In the active layer, 12 layers In0.75Ga0.25As quantum dots (QDs) and QDs in a well (DWell) structure, and DWell with Be-doping in the well structure are included in this study. The well structure slows down the hot carriers speed and Be-doping decrease the carrier life time and increases the electron-hole pair recombination rate. We increase the QDs deposition coverage to move the emission wavelength to 1.3£gm, but the high temperature cladding layer growth process indirectly anneal the QDs and result in the emission wavelength blue shift to 1.24£gm. In the laser fabrication, to transport the light wave in smaller dispersion loss single mode waveguide, wet etching photolithography processes are adapted in this study to fabricate 2£gm width ridge waveguide. The as-cleaved facets are used as Fabry-Perot laser mirrors in ridge waveguide lasers. Finally, the current density of QD Laser(C528) lasing in CW mode is 581A/cm2, slope efficiency of 510mW/A and maximum power/facet of 65mW are obtained.Then the current density of DWELL+PD Laser(C540) lasing in CW mode is 880A/cm2, slope efficiency of 430mW/A and maximum power/facet of 34mW are obtained.
840

Integrated Delay and Bandwidth Monitoring for SVC Layer Scheduling in P2P Networks

Chien, Chia-Wei 08 August 2011 (has links)
¡@¡@In this Thesis, we proposed a new SVC Layer Scheduling Algorithm (CSDB, Chunk Scheduling with Delay-trend and Bandwidth-monitoring) in SVC-P2P Video Streaming by using RTT Probing and Bandwidth Monitoring mechanisms to measure RTT/2 and historic bandwidth between peers simultaneously. When transmission delay (TD) dominates in the end-to-end delay and when instantaneous bandwidth increases, peer will quickly increase the downloading layers of video segment (VS). On the other hand, when instantaneous bandwidth decreases, peer will decrease the number of layer chunks (LCs) not in time according to RTT/2 and historic bandwidth. When queuing delay (QD) and propagation delay (PD) dominate in the end-to-end delay, peer will assume RTT/2 is accurate because every LC is in time. In this case, peer will quickly increase the downloading layers; otherwise, peer assumes there is a big difference between RTT/2 and one-way delay (OWD) such that it will decrease the downloading layers to half. When peer cannot grab VS in time according to measured RTT/2 but every LC grabbed is in time, peer will assume there is a big difference between measured RTT/2 and OWD. In this case, peer will keep no change in downloading layers; otherwise, peer will assume measured RTT/2 is close to OWD, and it will decrease the downloading layers to half. ¡@¡@In order to demonstrate the advantages of CSDB, we designed a simulator written in C++. In the simulation, we consider two scenarios: 1) When TD dominates. 2) When QD and PD dominate. Simulation results show that peer can achieve high quality SVC video by balancing the number of received layers and the number of LCs not it time.

Page generated in 0.2893 seconds