1 |
A LOW-POWER AND LOW-JITTER ANALOG FREQUENCY SYNTHESIZER FOR 5G WIRELESS COMMUNICATION AND IoE/IoT APPLICATIONSBagheri, Mohammad January 2023 (has links)
In the early 1980s and 1990s, the first- and second-generation networks in wireless communication, called 1G and 2G, were introduced with only limited data connectivity in the world. The former could only transfer voices while the latter could transfer voices and messages. By the early 2000s, however, the 3G networks began working and let people have real access to the internet. The greater functionality enabled by 4G networks evolved from increased demand for higher data rates in the early 2010s. Nowadays, we are totally engaged in 4G world of LTE (Long Term Evolution) owing to the eruptive increase of mobile internet in smart phones or other mobile devices. The 5G networks are categorized into two branches according to their frequencies: (i) sub-6 GHz (700 MHz to 6 GHz) and (ii) near-millimeter wave (25 to 30 GHz). Commonly used applications are included in the sub-6 GHz, also called the Internet-of-Everything (IoE) and Internet-of-Things (IoT).
To fulfill the date rate required for 5G applications, implementing complex systems is necessary. Consequently, new challenges are imposed to implement these systems such as noise performance and output power. At the heart of these systems lie frequency synthesizers. Frequency synthesizers are used to up or down convert the carrier signal in communication systems. Phase-locked loops (PLLs) are routinely utilized for frequency synthesis in Radio Frequency (RF)/mm-wave transceivers. The main challenges to design a PLL are phase noise (PN) or jitter, as well as power consumption.
The main objective of this thesis is to carry out research on a fully integrated analog PLL fractional-N frequency synthesizer for 5G wireless communication and IoE/IoT applications in sub-6 GHz. To do this, we have studied the trends in the research of LC-VCOs (voltage-controlled oscillators) and identified the methods for going towards a low flicker-noise corner. Then, we have implemented the designed LC-VCO which is the main noise source in PLLs. In the final step we have designed the sub-blocks of the fractional-N analog frequency synthesis. The sub-blocks have been optimized to have less power dissipations. The implementation of a fully integrated analog PLL fractional-N frequency synthesizer is done in 180-nm standard CMOS technology (TSMC). It covers two frequency ranges including 2.4 to 2.48 GHz and 5 to 5.825 GHz. The phase noise at 10KHz varies between -94 dBc/Hz to -115dBc/Hz. / Thesis / Doctor of Philosophy (PhD) / The data rate in wireless, cellular communications, and wireline keeps growing by nearly 10 times per 5 years. To fulfill such date rate, implementing complex systems is necessary. Consequently, new challenges are imposed to implement these systems such as noise performance and output power. At the heart of these systems lie frequency synthesizers. Frequency synthesizers are used to up or down convert the carrier signal in communication systems. Phase-locked loops (PLLs) are routinely utilized for frequency synthesis in Radio Frequency (RF)/mm-wave transceivers. The main challenges to design a PLL are phase noise (PN) or jitter, as well as power consumption.
This dissertation aims to implement an ultra-low power and low jitter frequency synthesizer for 5G wireless communication and IoE/IoT applications in 180-nm standard CMOS technology (TSMC). An analog PLL is used in this frequency synthesizer.
|
2 |
Superharmonic Injection Locked Quadrature LC VCO Using Current Recycling ArchitectureKalusalingam, Shriram 2010 December 1900 (has links)
Quadrature LO signal is a key element in many of the RF transceivers which tend to
dominate today’s wireless communication technology. The design of a quadrature LC
VCO with better phase noise and lower power consumption forms the core of this work.
This thesis investigates a coupling mechanism to implement a quadrature voltage
controlled oscillator using indirect injection method. The coupling network in this
QVCO couples the two LC cores with their super-harmonic and it recycles its bias
current back into the LC tank such that the power consumed by the coupling network is
insignificant. This recycled current enables the oscillator to achieve higher amplitude of
oscillation for the same power consumption compared to conventional design, hence
assuring better phase noise. Mathematical analysis has been done to study the
mechanism of quadrature operation and mismatch effects of devices on the quadrature
phase error of the proposed QVCO.
The proposed quadrature LC VCO is designed in TSMC 0.18 μm technology. It is
tunable from 2.61 GHz - 2.85 GHz with sensitivity of 240 MHz/V. Its worst case phase noise is -120 dBc/Hz at 1 MHz offset. The total layout area is 1.41 mm^2 and the QVCO
core totally draws 3 mA current from 1.8 V supply.
|
3 |
Oscilador controlado por tensão para operação programável de 3.7GHz a 8.8GHz para aplicações em múltiplas bandas de frequência / Analysis and design of a voltage-controlled oscillator for multiple frequency bands applicationsHenes Neto, Egas January 2015 (has links)
Osciladores Controlados por Tensão (VCOs - Voltage-Controlled Oscillators) são circuitos de grande importância em sistemas de comunicação por radiofrequência atuais. Muitos trabalhos de pesquisa recentes têm focado no desenvolvimento de VCOs para aplicações em uma faixa muito grande de frequências (isto é, suportando amplo tunning range). O desenvolvimento de VCOs com uma ampla faixa de sintonia tem motivação na abertura de bandas de frequência, que até pouco tempo estavam licenciadas apenas para usos específicos, porém agora estão também abertas para a utilização de sistemas de rádios cognitivos. A ideia é que o rádio cognitivo tenha recursos para detectar se um canal (ou faixa de frequência) está sendo usado e, em caso de o canal não estar sendo usado, o rádio cognitivo deve se reconfigurar para operar nesse canal. Desse modo, os rádios cognitivos devem possuir um alto grau de reconfigurabilidade, de forma que possam operar em uma faixa muito ampla de frequências. Esse requisito exige o uso de de VCOs com um amplo tunning range. Este trabalho apresenta um projeto completo de um LC-VCO com uma larga faixa de frequência de operação (widedand). Um amplo tunning range foi obtido a partir do chaveamento (ou programação) do valor da capacitância total do tanque-LC do VCO, gerando assim várias sub-bandas de frequência. O ganho do VCO (KVCO) manteve-se com pequenas variações para todas as subbandas de frequência, com um valor médio de 88.6MHz, sendo 112MHz e 80MHz os valores máximo e mínimo, respectivamente. O ruído de fase variou de -118.4dBc/Hz a -107.4dBc/Hz para as portadores em 3.7GHz e 8.1GHz, respectivamente, enquanto que a potência dissipada do circuito LC-VCO variou de 1.8mW a 5.6mW para todo o tunning range. Para a figura de mérito power-frequency-tunning-normalized (FOMPFTN), os valores obtidos foram na faixa 3.1dB e 11.2dB, comparáveis com a maioria dos trabalhos publicados na área. / Voltage-Controlled Oscillators (VCOs) are very important circuits in current radio frequency communication systems. Much research has been focused recently on developing wideband VCOs in CMOS. The motivation on wideband VCOs is based on the opening of frequency bands, which until recently were licensed for specific uses, for use by cognitive radio systems. The idea is that cognitive radio must have the ability to detect whether a channel (or frequency band) is being used and if the channel is not being used, the cognitive radio must reconfigure itself to operate on that channel. Thus, cognitive radios should possess a high degree of reconfigurability, so that they can operate in a very wide frequency range. This requires the use of VCOs with a wide tunning range. This work presents a complete design of a LC-VCO with a wide operating frequency range (widedand). A wide tunning range has been obtained from the switching (or programming) the value of the total capacitance of the LC-tank of the VCO, thereby generating multiple frequency sub-bands. The VCO gain (KVCO) was maintained with small variations for all frequency sub-bands, with an average value of 88.6MHz, with 80MHz and 112MHz for the minimum and maximum values, respectively. The phase noise ranged from -118.4dBc/Hz to -107.4dBc/Hz for carriers at 3.7GHz and 8.1GHz, respectively, while the power dissipated in the LC-VCO circuit ranged from 1.8mW to 5.6mW for all tunning range. For the figure of merit power-frequency-tuning-normalized (FOMPFTN), the results were in the 3.1dB to 11.2dB range, comparable to most recently published works.
|
4 |
Oscilador controlado por tensão para operação programável de 3.7GHz a 8.8GHz para aplicações em múltiplas bandas de frequência / Analysis and design of a voltage-controlled oscillator for multiple frequency bands applicationsHenes Neto, Egas January 2015 (has links)
Osciladores Controlados por Tensão (VCOs - Voltage-Controlled Oscillators) são circuitos de grande importância em sistemas de comunicação por radiofrequência atuais. Muitos trabalhos de pesquisa recentes têm focado no desenvolvimento de VCOs para aplicações em uma faixa muito grande de frequências (isto é, suportando amplo tunning range). O desenvolvimento de VCOs com uma ampla faixa de sintonia tem motivação na abertura de bandas de frequência, que até pouco tempo estavam licenciadas apenas para usos específicos, porém agora estão também abertas para a utilização de sistemas de rádios cognitivos. A ideia é que o rádio cognitivo tenha recursos para detectar se um canal (ou faixa de frequência) está sendo usado e, em caso de o canal não estar sendo usado, o rádio cognitivo deve se reconfigurar para operar nesse canal. Desse modo, os rádios cognitivos devem possuir um alto grau de reconfigurabilidade, de forma que possam operar em uma faixa muito ampla de frequências. Esse requisito exige o uso de de VCOs com um amplo tunning range. Este trabalho apresenta um projeto completo de um LC-VCO com uma larga faixa de frequência de operação (widedand). Um amplo tunning range foi obtido a partir do chaveamento (ou programação) do valor da capacitância total do tanque-LC do VCO, gerando assim várias sub-bandas de frequência. O ganho do VCO (KVCO) manteve-se com pequenas variações para todas as subbandas de frequência, com um valor médio de 88.6MHz, sendo 112MHz e 80MHz os valores máximo e mínimo, respectivamente. O ruído de fase variou de -118.4dBc/Hz a -107.4dBc/Hz para as portadores em 3.7GHz e 8.1GHz, respectivamente, enquanto que a potência dissipada do circuito LC-VCO variou de 1.8mW a 5.6mW para todo o tunning range. Para a figura de mérito power-frequency-tunning-normalized (FOMPFTN), os valores obtidos foram na faixa 3.1dB e 11.2dB, comparáveis com a maioria dos trabalhos publicados na área. / Voltage-Controlled Oscillators (VCOs) are very important circuits in current radio frequency communication systems. Much research has been focused recently on developing wideband VCOs in CMOS. The motivation on wideband VCOs is based on the opening of frequency bands, which until recently were licensed for specific uses, for use by cognitive radio systems. The idea is that cognitive radio must have the ability to detect whether a channel (or frequency band) is being used and if the channel is not being used, the cognitive radio must reconfigure itself to operate on that channel. Thus, cognitive radios should possess a high degree of reconfigurability, so that they can operate in a very wide frequency range. This requires the use of VCOs with a wide tunning range. This work presents a complete design of a LC-VCO with a wide operating frequency range (widedand). A wide tunning range has been obtained from the switching (or programming) the value of the total capacitance of the LC-tank of the VCO, thereby generating multiple frequency sub-bands. The VCO gain (KVCO) was maintained with small variations for all frequency sub-bands, with an average value of 88.6MHz, with 80MHz and 112MHz for the minimum and maximum values, respectively. The phase noise ranged from -118.4dBc/Hz to -107.4dBc/Hz for carriers at 3.7GHz and 8.1GHz, respectively, while the power dissipated in the LC-VCO circuit ranged from 1.8mW to 5.6mW for all tunning range. For the figure of merit power-frequency-tuning-normalized (FOMPFTN), the results were in the 3.1dB to 11.2dB range, comparable to most recently published works.
|
5 |
Oscilador controlado por tensão para operação programável de 3.7GHz a 8.8GHz para aplicações em múltiplas bandas de frequência / Analysis and design of a voltage-controlled oscillator for multiple frequency bands applicationsHenes Neto, Egas January 2015 (has links)
Osciladores Controlados por Tensão (VCOs - Voltage-Controlled Oscillators) são circuitos de grande importância em sistemas de comunicação por radiofrequência atuais. Muitos trabalhos de pesquisa recentes têm focado no desenvolvimento de VCOs para aplicações em uma faixa muito grande de frequências (isto é, suportando amplo tunning range). O desenvolvimento de VCOs com uma ampla faixa de sintonia tem motivação na abertura de bandas de frequência, que até pouco tempo estavam licenciadas apenas para usos específicos, porém agora estão também abertas para a utilização de sistemas de rádios cognitivos. A ideia é que o rádio cognitivo tenha recursos para detectar se um canal (ou faixa de frequência) está sendo usado e, em caso de o canal não estar sendo usado, o rádio cognitivo deve se reconfigurar para operar nesse canal. Desse modo, os rádios cognitivos devem possuir um alto grau de reconfigurabilidade, de forma que possam operar em uma faixa muito ampla de frequências. Esse requisito exige o uso de de VCOs com um amplo tunning range. Este trabalho apresenta um projeto completo de um LC-VCO com uma larga faixa de frequência de operação (widedand). Um amplo tunning range foi obtido a partir do chaveamento (ou programação) do valor da capacitância total do tanque-LC do VCO, gerando assim várias sub-bandas de frequência. O ganho do VCO (KVCO) manteve-se com pequenas variações para todas as subbandas de frequência, com um valor médio de 88.6MHz, sendo 112MHz e 80MHz os valores máximo e mínimo, respectivamente. O ruído de fase variou de -118.4dBc/Hz a -107.4dBc/Hz para as portadores em 3.7GHz e 8.1GHz, respectivamente, enquanto que a potência dissipada do circuito LC-VCO variou de 1.8mW a 5.6mW para todo o tunning range. Para a figura de mérito power-frequency-tunning-normalized (FOMPFTN), os valores obtidos foram na faixa 3.1dB e 11.2dB, comparáveis com a maioria dos trabalhos publicados na área. / Voltage-Controlled Oscillators (VCOs) are very important circuits in current radio frequency communication systems. Much research has been focused recently on developing wideband VCOs in CMOS. The motivation on wideband VCOs is based on the opening of frequency bands, which until recently were licensed for specific uses, for use by cognitive radio systems. The idea is that cognitive radio must have the ability to detect whether a channel (or frequency band) is being used and if the channel is not being used, the cognitive radio must reconfigure itself to operate on that channel. Thus, cognitive radios should possess a high degree of reconfigurability, so that they can operate in a very wide frequency range. This requires the use of VCOs with a wide tunning range. This work presents a complete design of a LC-VCO with a wide operating frequency range (widedand). A wide tunning range has been obtained from the switching (or programming) the value of the total capacitance of the LC-tank of the VCO, thereby generating multiple frequency sub-bands. The VCO gain (KVCO) was maintained with small variations for all frequency sub-bands, with an average value of 88.6MHz, with 80MHz and 112MHz for the minimum and maximum values, respectively. The phase noise ranged from -118.4dBc/Hz to -107.4dBc/Hz for carriers at 3.7GHz and 8.1GHz, respectively, while the power dissipated in the LC-VCO circuit ranged from 1.8mW to 5.6mW for all tunning range. For the figure of merit power-frequency-tuning-normalized (FOMPFTN), the results were in the 3.1dB to 11.2dB range, comparable to most recently published works.
|
6 |
Automatic generation of an LC voltage controlled oscillatorKil, Donghyeok 16 December 2013 (has links)
A Voltage Controlled Oscillator (VCO) is used to generate a signal with a frequency that is a function of an input voltage amplitude, and is an integral part of circuits such as phase locked loops, frequency synthesizers, down conversion receivers, and clock generators. A typical design flow for a VCO involves architecture selection based on specification, calculation of circuit parameters, simulation, and iterations of circuit parameters based on the simulation result. In such a design flow, changes in specification or process can lead to significant redesign. This report focuses on a C++ based LC VCO generation software that seeks to automate the design process and that includes calculation of circuit parameters, creation of Spectre netlist, invocation of simulation, automated checking of the result, and a feedback mechanism to modify circuit parameters until the design can converge to the desired specification. Object Oriented Programming principles such as inheritance, polymorphism, encapsulation, class abstraction are exercised to maximize reusability and portability to other projects which may require different foundry device models and supply voltages. / text
|
7 |
MEMS-based phase-locked-loop clock conditionerPardo Gonzalez, Mauricio 02 April 2012 (has links)
Ultra narrow-band filters and the use of two loops in a cascade configuration dominate current clock conditioners based on phase-locked-loop (PLL) schemes. Since a PLL exhibits a low-pass transfer function with respect to the reference clock, the noise performance at very close-to-carrier offset frequencies is still determined by the input signal. Although better cleaning can be achieved with extremely narrow loops, an ultra low cut-off frequency could not be selected since the stability of the configuration deteriorates as the filter bandwidth is reduced. This fact suggests that a full-spectrum clock conditioning is not possible using traditional PLL architectures, and an alternative scheme is necessary to attenuate the very-close-to-carrier phase noise (PN). In addition, ultra-narrow loop filters can compromise on-chip integration because of the large size capacitors needed when chosen as passive. Input signal attenuation with relaxed bandwidth requirements becomes the main aspect that a comprehensive clock cleaner must address to effectively regenerate a reference signal.
This dissertation describes the Band-Reject Nested-PLL (BRN-PLL) scheme, a modified PLL-based architecture that provides an effective signal cleaning procedure by introducing a notch in the input transfer function through inner and outer loops and a high-pass filter (HPF). This modified response attenuates the reference-signal PN and reduces the size of the loop-filter capacitors substantially. Ultra narrow loops are no longer required because the notch size is related to the system bandwidth. The associated transfer function for the constitutive blocks (phase detectors and local oscillators) show that the output close-to-carrier and far-from-carrier PN sections are mainly dominated by the noise from the inner-PLL phase detector (PD) and local oscillator (LO) located in the outer loop, respectively. The inner-PLL PD transfer function maintains a low-pass characteristic with a passband gain inversely proportional to the PD gain becoming the main contribution around the carrier signal. On the other hand, the PN around the transition frequency is determined mainly by the reference and the inner-PLL LO. Their noise contributions to the output will depend on the associated passband local maxima, which is located at the BRN-PLL transition frequency. Hence, in this region, the inner-PLL LO is selected so that its effect can be held below that of the outer-PLL PD.
The BRN-PLL can use a high-Q MEMS-based VCO to further improve the transition region of the output PN profile and an LC-VCO as outer-PLL LO to reduce the noise floor of the output signal. In particular, two tuning mechanisms are explored for the MEMS-VCO: series tuning using varactors and phase shifting of a resonator operating in nonlinear regime. Both schemes are implemented to generate a tunable oscillator with no PN-performance degradation.
|
8 |
Analysis and Optimization of Graphene FET based Nanoelectronic Integrated CircuitsJoshi, Shital 05 1900 (has links)
Like cell to the human body, transistors are the basic building blocks of any electronics circuits. Silicon has been the industries obvious choice for making transistors. Transistors with large size occupy large chip area, consume lots of power and the number of functionalities will be limited due to area constraints. Thus to make the devices smaller, smarter and faster, the transistors are aggressively scaled down in each generation. Moore's law states that the transistors count in any electronic circuits doubles every 18 months. Following this Moore's law, the transistor has already been scaled down to 14 nm. However there are limitations to how much further these transistors can be scaled down. Particularly below 10 nm, these silicon based transistors hit the fundamental limits like loss of gate control, high leakage and various other short channel effects. Thus it is not possible to favor the silicon transistors for future electronics applications. As a result, the research has shifted to new device concepts and device materials alternative to silicon.
Carbon is the next abundant element found in the Earth and one of such carbon based nanomaterial is graphene. Graphene when extracted from Graphite, the same material used as the lid in pencil, have a tremendous potential to take future electronics devices to new heights in terms of size, cost and efficiency. Thus after its first experimental discovery of graphene in 2004, graphene has been the leading research area for both academics as well as industries. This dissertation is focused on the analysis and optimization of graphene based circuits for future electronics.
The first part of this dissertation considers graphene based transistors for analog/radio frequency (RF) circuits. In this section, a dual gate Graphene Field Effect Transistor (GFET) is considered to build the case study circuits like voltage controlled oscillator (VCO) and low noise amplifier (LNA). The behavioral model of the transistor is modeled in different tools: well accepted EDA (electronic design automation) and a non-EDA based tool i.e. \simscape. This section of the dissertation addresses the application of non-EDA based concepts for the analysis of new device concepts, taking LC-VCO and LNA as a case study circuits. The non-EDA based approach is very handy for a new device material when the concept is not matured and the model files are not readily available from the fab. The results matches very well with that of the EDA tools. The second part of the section considers application of multiswarm optimization (MSO) in an EDA tool to explore the design space for the design of LC-VCO. The VCO provides an oscillation frequency at 2.85 GHz, with phase noise of less than -80 dBc/Hz and power dissipation less than 16 mW. The second part of this dissertation considers graphene nanotube field effect transistors (GNRFET) for the application of digital domain. As a case study, static random access memory (SRAM) hs been design and the results shows a very promising future for GNRFET based SRAM as compared to silicon based transistor SRAM. The power comparison between the two shows that GNRFET based SRAM are 93% more power efficient than the silicon transistor based SRAM at 45 nm.
In summary, the dissertation is to expected to aid the state of the art in following ways:
1) A non-EDA based tool has been used to characterize the device and measure the circuit performance. The results well matches to that obtained from the EDA tools. This tool becomes very handy for new device concepts when the simulation needs to be fast and accuracy can be tradeoff with.
2)Since an analog domain lacks well-design design paradigm, as compared to digital domain, this dissertation considers case study circuits to design the circuits and apply optimization.
3) Performance comparison of GNRFET based SRAM to the conventional silicon based SRAM shows that with maturation of the fabrication technology, graphene can be very useful for digital circuits as well.
|
9 |
Frequency Synthesis for Cognitive Radio Receivers and Other Wideband ApplicationsZahir, Zaira January 2017 (has links) (PDF)
The radio frequency (RF) spectrum as a natural resource is severely under-utilized over time and space due to an inefficient licensing framework. As a result, in-creasing cellular and wireless network usage is placing significant demands on the licensed spectrum. This has led to the development of cognitive radios, software defined radios and mm-wave radios. Cognitive radios (CRs) enable more efficient spectrum usage over a wide range of frequencies and hence have emerged as an effective solution to handle huge network demands. They promise versatility, flex-ability and cognition which can revolutionize communications systems. However, they present greater challenges to the design of radio frequency (RF) front-ends. Instead of a narrow-band front-end optimized and tuned to the carrier frequency of interest, cognitive radios demand front-ends which are versatile, configurable, tun-able and capable of transmitting and receiving signals with different bandwidths and modulation schemes. The primary purpose of this thesis is to design a re-configurable, wide-band and low phase-noise fast settling frequency synthesizer for cognitive radio applications. Along with frequency generation, an area efficient multi-band low noise amplifier (LNA) with integrated built-in-self-test (BIST) and a strong immunity to interferers has also been proposed and implemented for these radios. This designed LNA relaxes the specification of harmonic content in the synthesizer output. Finally some preliminary work has also been done for mm-wave (V-band) frequency synthesis.
The Key Contributions of this thesis are:
A frequency synthesizer, based on a type-2, third-order Phase Locked Loop (PLL), covering a frequency range of 0.1-5.4 GHz, is implemented using a 0.13 µm CMOS technology. The PLL uses three voltage controlled oscillators (VCOs) to cover the whole range. It is capable of switching between any two frequencies in less than 3 µs and has phase noise values, compatible with most communication standards. The settling of the PLL in the desired state is achieved in dynamic multiple steps rather than traditional single step settling. This along with other circuit techniques like a DAC-based discriminator aided charge pump, fast acquisition pulse-clocked based PFD and timing synchro-negation is used to obtain a significantly reduced settling time
A single voltage controlled LC-oscillator (LC-VCO) has been designed to cover a wide range of frequencies (2.0-4.1 GHz) using an area efficient and switch-able multi-tap inductor and a capacitor bank. The switching of the multi-tap inductor is done in the most optimal manner so as to get good phase-noise at the output. The multi-tap inductor provides a significant area advantage, and in spite of a degraded Q, provides an acceptable phase noise of -123 dBc/Hz and -113 dBc/Hz at an offset of 1 MHz at carrier frequencies of 2 and 4 GHz, respectively. Implemented in a 0.13 µm CMOS technology, the oscillator with ≈ 69 % tuning range, occupies an active area of only 0.095 mm2.
An active inductor based noise-filter has been proposed to improve the phase-noise performance of the oscillator without much increase in the area.
A variable gain multi-band low noise amplifier (LNA) is designed to operate over a wide range of frequencies (0.8 GHz to 2.4 GHz) using an area efficient switchable-π network. The LNA can be tuned to different gain and linearity combinations for different band settings. Depending upon the location of the interferers, a specific band can be selected to provide optimum gain and the best signal-to-intermodulation ratio. This is accomplished by the use of an on-chip Built-in-Self-Test (BIST) circuit. The maximum power gain of the amplifier is 19 dB with a return loss better than 10 dB for 7 mW of power consumption. The noise figure is 3.2 dB at 1 GHz and its third-order intercept point (I I P3) ranges from -15 dBm to 0 dBm. Implemented in a 0.13 µm
CMOS technology, the LNA occupies an active area of about 0.29 mm2.
Three different types of VCOs (stand-alone LC VCO, push-push VCO and a ring oscillator based VCO) for generating mm-wave frequencies have been implemented using 65-nm CMOS technology and their measured results have been analyzed
|
Page generated in 0.0773 seconds