• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 23
  • 12
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The electronic structure of perfect and defective perovskite crystals ab initio hybrid functional calculations /

Piskunovs, Sergejs. Unknown Date (has links) (PDF)
University, Diss., 2003--Osnabrück.
2

Der halbunendliche Kristall elektronische und optische Eigenschaften ab initio /

Brodersen, Sven. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Kiel.
3

Theoretical methods and results for electronic-structure investigations of amorphous carbon

Stephan, Uwe. January 1996 (has links)
Chemnitz-Zwickau, Techn. Univ., Diss., 1995.
4

Spin Splitting in Bulk Wurtzite Materials and Their Quantum Wells

Wu, Chieh-lung 01 August 2011 (has links)
The spin-splitting energies in strained bulk wurtzite aluminum nitride (AlN) are studied using the linear combination of atomic orbital method. It is found that strain and crystal field induce not only a linear-k (£\wz ) but also two cubic-k terms (£^¡¦and £f¡¦ ) in the two-band k¡Dp Hamiltonian Hso=(£\wz-£^¡¦k2//+£f¡¦k2z)(£mxky-£mykx)+H0so, where H0so=(-£^0k2//+£f0k2z)(£mxky-£mykx) is for ideal wurtzite and generates a cone-shaped minimum-spin-splitting (MSS) surface. As biaxial strain increases, the shape of the MSS surface changes from a hexagonal hyperboloid of two sheets in unstrained AlN to a hexagonal cone, and eventually becomes a hyperboloid of one sheet. The spin-splitting energies of first conduction band for A-plane and M-plane wurtzite are calculated by the sp3 linear combination of atomic orbital (LCAO). The results show the spin-splitting energies are dominated by linear-k term but contribution of cubic-k terms can not be neglected for larger k//. The parameter of linear-k and cubic-k terms are evaluated from the LCAO calculated spin-splitting energies fitting to two band k¡Ep model as increasing well width. The coefficients of linear-k and cubic-k terms decrease.
5

Propriedades Estruturais e Óticas de Nanopartículas de Silício / Structural and Optical Properties of Silicon Nanoparticles

Baierle, Rogério José 17 June 1997 (has links)
Neste trabalho nós estudamos as propriedades de nanopartículas de Si hidrogenadas, limpas e com oxidação da superfície, como simulação do material Silício poroso. Para tal, desenvolvemos um procedimento para o cálculo da geometria, propriedades vibracionais e espectro ótico de sistemas semicondutores complexos, usando as técnicas semiempíricas de Química Quântica. As técnicas escolhidas foram completamente reparametrizadas para os átomos de Si e O, e assim apresentamos as novas parametrizações que chamamos AM1/Cristal e Zindo/Cristal. Contrariamente ao silício cristalino, o material poroso emite eficientemente luz no visível, com duas bandas, no vermelho-laranja e no verde. Esse comportamento tem sido atribuído ao confinamento quântico em estruturas nanocristalinas criadas pela porosidade, confinamente esse que deve ser responsável tanto pela eficiência da emissão, quanto pelo deslocamento do limiar ótico para energias mais altas. Nossos resultados para nanopartículas de diferentes diâmetros confirmam a cristalinidade das estruturas, e mostram um deslocamento para o azul do primeiro pico de absorção para partículas de diâmetro ~15 Å está em torno de 3 eV, muito mais altas do que a emissão vermelho-laranja. O estudo da relaxação estrutural no primeiro estado excitado mostra uma distorção forte e localizada, criando um defeito de superfície em que um átomo de hidrogênio coloca-se numa configuração de ponte Si-H-Si. Nessa configuração as partículas emitem numa região de energia mais baixa (vermelho-laranja), independentemente do diâmetro. A oxidação da superfície influencia muito pouco as propriedades óticas, e em particular não afeta a energia da linha de emissão. À luz destes resultados, associamos a atividade ótica do silício poroso a regiões nanocristalinas quase esféricas. A absorção (que varia consideravelmente em energia) e emissão no verde ocorreu no core cristalino, e a emissão vermelho-laranja na região de superfície, através desses defeitos fotocriados, sendo portanto fixa em energia. O deslocamento para o azul da absorção com a oxidação interpretamos como sendo devido à diminuição do diâmetro efetivo dos cristalinos presentes no material, e o decréscimo da intensidade de luminescência como devida a um enrijecimento da superfície oxidada, que reduz o número de sítios favoráveis à fotocriação de defeitos. / We study the properties of hydrogenated Si nanoparticles, also under surface oxidation, as a model-material to understand porous Silicon. To do that we developed a procedure designed to calculate geometries, vibrational properties and optical spectra for complex semiconductor systems, using semiempirical Quantum Chemistry techniques. The adopted techniques were thoroughly reparametrized for the Si and O atoms, and we thus present here the new parametrizations that we call AM1/Crystal and ZINDO/Crystal. Contrary to the bulk crystal, porous Si is known to emit visible light, efficiently, with bands in the red-orange and green regions. This behavior has been ascribed to quantum confinement in crystalline nanostructures created by the porosity, which should account both for the blue shift of the optical thereshold and for the emission efficiency. Our results for different nanoparticles confirm the crystallinity of the structures, and show a blue shift of the first absorption peak with decreasing diameter. However the absorption peak energy for nanoparticles with effective diameter around 15 Å lies around 3eV, much higher than the red-orange emission. A study of structural relaxation in the first excited state reveals a strong local distortion that creates a surface defect, in which an hydrogen atom \"bridges a pair of surface silicon atoms. In this Si-H-Si configuration the nanoparticles emit light of much lower energy (red-orange), which is virtually independent of diameter. Surface oxidation also has very little influence on the energy of the emitted light.Based on our results, we associate the optical activity of porous silicon to quasi- spherical nanocrystalline regions in the material. Both the absorption and green emission occur in the core of the crystallites, and shows blue-shift, with decreasing size; the red-orange luminescence occurs at the surface, through photo- generated defects, being thus pinned in energy. The blue shift of absorption with oxidation we interpret as being due to decrease in crystallite size, and the decrease in luminescence intensity as being due to \"hardening\" of the oxidized surface, which decreases the total number of sites for photogeneration of defects.
6

Propriedades Estruturais e Óticas de Nanopartículas de Silício / Structural and Optical Properties of Silicon Nanoparticles

Rogério José Baierle 17 June 1997 (has links)
Neste trabalho nós estudamos as propriedades de nanopartículas de Si hidrogenadas, limpas e com oxidação da superfície, como simulação do material Silício poroso. Para tal, desenvolvemos um procedimento para o cálculo da geometria, propriedades vibracionais e espectro ótico de sistemas semicondutores complexos, usando as técnicas semiempíricas de Química Quântica. As técnicas escolhidas foram completamente reparametrizadas para os átomos de Si e O, e assim apresentamos as novas parametrizações que chamamos AM1/Cristal e Zindo/Cristal. Contrariamente ao silício cristalino, o material poroso emite eficientemente luz no visível, com duas bandas, no vermelho-laranja e no verde. Esse comportamento tem sido atribuído ao confinamento quântico em estruturas nanocristalinas criadas pela porosidade, confinamente esse que deve ser responsável tanto pela eficiência da emissão, quanto pelo deslocamento do limiar ótico para energias mais altas. Nossos resultados para nanopartículas de diferentes diâmetros confirmam a cristalinidade das estruturas, e mostram um deslocamento para o azul do primeiro pico de absorção para partículas de diâmetro ~15 Å está em torno de 3 eV, muito mais altas do que a emissão vermelho-laranja. O estudo da relaxação estrutural no primeiro estado excitado mostra uma distorção forte e localizada, criando um defeito de superfície em que um átomo de hidrogênio coloca-se numa configuração de ponte Si-H-Si. Nessa configuração as partículas emitem numa região de energia mais baixa (vermelho-laranja), independentemente do diâmetro. A oxidação da superfície influencia muito pouco as propriedades óticas, e em particular não afeta a energia da linha de emissão. À luz destes resultados, associamos a atividade ótica do silício poroso a regiões nanocristalinas quase esféricas. A absorção (que varia consideravelmente em energia) e emissão no verde ocorreu no core cristalino, e a emissão vermelho-laranja na região de superfície, através desses defeitos fotocriados, sendo portanto fixa em energia. O deslocamento para o azul da absorção com a oxidação interpretamos como sendo devido à diminuição do diâmetro efetivo dos cristalinos presentes no material, e o decréscimo da intensidade de luminescência como devida a um enrijecimento da superfície oxidada, que reduz o número de sítios favoráveis à fotocriação de defeitos. / We study the properties of hydrogenated Si nanoparticles, also under surface oxidation, as a model-material to understand porous Silicon. To do that we developed a procedure designed to calculate geometries, vibrational properties and optical spectra for complex semiconductor systems, using semiempirical Quantum Chemistry techniques. The adopted techniques were thoroughly reparametrized for the Si and O atoms, and we thus present here the new parametrizations that we call AM1/Crystal and ZINDO/Crystal. Contrary to the bulk crystal, porous Si is known to emit visible light, efficiently, with bands in the red-orange and green regions. This behavior has been ascribed to quantum confinement in crystalline nanostructures created by the porosity, which should account both for the blue shift of the optical thereshold and for the emission efficiency. Our results for different nanoparticles confirm the crystallinity of the structures, and show a blue shift of the first absorption peak with decreasing diameter. However the absorption peak energy for nanoparticles with effective diameter around 15 Å lies around 3eV, much higher than the red-orange emission. A study of structural relaxation in the first excited state reveals a strong local distortion that creates a surface defect, in which an hydrogen atom \"bridges a pair of surface silicon atoms. In this Si-H-Si configuration the nanoparticles emit light of much lower energy (red-orange), which is virtually independent of diameter. Surface oxidation also has very little influence on the energy of the emitted light.Based on our results, we associate the optical activity of porous silicon to quasi- spherical nanocrystalline regions in the material. Both the absorption and green emission occur in the core of the crystallites, and shows blue-shift, with decreasing size; the red-orange luminescence occurs at the surface, through photo- generated defects, being thus pinned in energy. The blue shift of absorption with oxidation we interpret as being due to decrease in crystallite size, and the decrease in luminescence intensity as being due to \"hardening\" of the oxidized surface, which decreases the total number of sites for photogeneration of defects.
7

Growth and characterizations of AlGaN/GaN HEMT structure for spintronic application

Gau, Ming-Horng 28 July 2009 (has links)
The design, fabrication, and characterizations of the spin-polarized AlxGa1-xN/GaN HEMT structure have been achieved for spintronic application. By band calculation within linear combination of atomic orbitals and two-band k·p methods, the theoretical spin-splitting energy and minimum-spin-splitting surface of wurtzite structure have been investigated as a function of the Fermi wavevector with various strain-relaxations. Base on these results, the design of host material of the nonballistic spin-FET has also been proposed. By optimizing the Al composition and n2DEG, the Fermi surface of two-dimensional electron gas is supposed to reach the minimum-spin-splitting surface to produce resonant spin-lifetime. Because the high quality AlxGa1-xN/GaN HEMT structure is necessary for realizing the spin-FET, the influence of the growth conditions on the polarity and structure quality of the GaN epilayer have been studied on the sample grown by plasma-assisted molecular beam epitaxy. Ga-polar AlGaN/GaN heterostructures on c-Al2O3 has been realized by growing over the Al-rich AlN nucleation layer. And the reduction of interface roughness and threading dislocation scatterings of the electrons in two-dimensional electron gas has also been achieved by growing GaN epilayer under slightly Ga-rich condition. Furthermore, the effect of different types of threading dislocation on the electron mobility of the AlxGa1-xN/GaN HEMT structure has been investigated as well. At low temperature, the electron mobility of two-dimensional electron gas in AlGaN/GaN heterostructures is majorly scattered by the edge type dislocation rather than the screw type. The designs of proposed host material for spin-FETs have been realized through growing high quality spin-polarized AlxGa1-xN/GaN HEMT structures with various Al composition (x= 0.191 ¡V 0.397) grown on c-Al2O3 by metalorganic vapor phase epitaxy. The high mobility (10682 cm2/Vs at 0.4 K), flat interface (surface roughness < 0.5 nm), and high quality HEMT provide a good environment to study the spin-splitting energy. To investigate the spin-splitting energy as functions of the Fermi wavevector, the Shubnikov-de Haas measurements were performed. A large spin-splitting energy (10.76 meV) has been fabricated in Al0.390Ga0.61N/GaN HEMT structure with kf = 8.14 ¡Ñ 108 m-1 for the host material of the Datta-Das spin-FET. And for the first time, the minimum-spin-splitting surface has been experimentally generated in Al0.390Ga0.61N/GaN HEMT structure with kf = 8.33 ¡Ñ 108 m-1 for the host material of the nonballistic spin-FET.
8

The Electronic Structure of Perfect and Defective Perovskite Crystals: Ab Initio Hybrid Functional Calculations

Piskunovs, Sergejs 28 January 2004 (has links)
In order to study the electronic and optical properties of complex materials an approach providing a reliable estimate of band gaps in combination with the reasonable description of the ground state is required. In the present study of pure and defective perovskite crystals, the fulfillment of such requirements is clearly demonstrated using a simple hybrid HF/DFT scheme containing an admixture of non-local Fock exchange. In present theoretical investigations, a wide class of perovskite oxides is represented by three, the most attractive (from a scientific point of view) crystals of SrTiO3, BaTiO3, and PbTiO3 in their high symmetry cubic phases. These perovskite crystals present a great technological and fundamental interest due to their numerous applications related to ferroelectricity, non-linear and electro-optics, superconductivity, and catalysis. Although the above-mentioned perovskite-type materials have been intensively investigated theoretically and experimentally at least in the last fifteen years, a proper description of their electronic properties is still an area of active research. In order to make a contribution to the explanation of various electro-optical effects observed in perovskite materials, their ground-state properties have been calculated from first principles and analyzed in the present study.
9

Molekulardynamische Simulation der Stabilität und Transformation von Kohlenstoff-Nanoteilchen

Fugaciu, Florin 02 May 2000 (has links) (PDF)
Ziel der Arbeit ist die theoretische Analyse von Kohlenstoff-Clustern der Größe 100 - 500 Atome. Die experimentellen Beobachtungen sind bei dieser geringen Anzahl der Atome schwierig. Anderseits sind Kenntnisse über solche Cluster sehr wichtig, z.B. für die Keimbildung von Diamant auf Substraten, oder für die Kohlenstoff-Nanotechnologie (Fullerene, Nanotubes), oder für strukturelle Defekte in Kohlenstoff-Systemen. Es wurden gekrümmte Grenzflächen im Diamant simuliert. Zuerst mit einem empirischen Potential. Es wurde danach eine Methode entwickelt, bei der die schwach gestörten Gebiete einem empirischen Potential gehorchen, und die stark gestörten Gebiete, wo eine genaue Berechnung erforderlich ist, durch eine quantenmechanische Näherung beschrieben wurden. Somit kann man mit guter Genauigkeit große Systeme, bestehend aus einigen 10 (hoch)4 Atomen, simulieren, bei denen nur lokal quantenmechanische Methoden erforderlich sind. Mit diesem Hybrid-Code wurden weiterhin Diamantkeime auf Silizium gerechnet. Es wurden Aussagen bezüglich der Stabilität des Diamants auf dem Siliziumsubstrat, der kritischen Keimgröße, der Änderungen, die der Keim erfährt, gemacht. Ein anderes Gebiet ist die molekulardynamische Simulation bezüglich der Stabilität und des Transformationsverhaltens von Kohlenstoff-Nanoteilchen. Es wurden als »Rohstoffe» sowohl Diamant- und Graphitkristalle sphärischer, ellipsoidischer oder quadratischer Form benutzt, als auch amorpher Kohlenstoff. Es wurde demonstriert, daß sich Diamant unter höherer Temperatur und Bestrahlung in Kohlenstoffzwiebeln transformiert. Es wurde der innere Kern, bestehend aus zwei Schalen, der Kohlenstoffzwiebel simuliert. Es wurde, nach meinem Wissen, zum ersten Mal gezeigt, daß zwischen den Schalen der Kohlenstoffzwiebel Quer-Verbindungen (cross-links) existieren. Diese waren von den Experimentatoren vermutet worden. Sie bilden die Initiatoren der Diamantkeime der Kohlenstoffzwiebel bei ihrer ohne äußeren Druck möglichen Transformation in Diamant. Die Zentren der Kohlenstoffzwiebeln befinden sich bereits in der Entstehung der Zwiebel unter einem Selbstdruck. Bei den größeren Kohlenstoffzwiebeln beträgt der experimentell bestimmte Abstand zwischen den Schalen von außen nach innen von 3.34 Å bis 2.2 Å. Anlagen: nano1.mpg (91,8 MB); nano2.mpg (131 MB) Nutzung: Referat Informationsvermittlung der SLUB / The scope of this work is the analysis of carbon clusters of about 100 - 500 atoms. The experimental studies are at such small clusters heavy. Knowledges about thus clusters are very important, for example in the field of the nucleation of diamond on substrates, or for the carbon nano-technology (fullerene, nanotubes), or for local defects in carbon systems. There were simulated curved interfaces in diamond. Firstly with an empirical potential. Than I developed a method, in wich the defects and the structure around them are treated by a quantum mechanical algorithm and the rest with a near to ideal structure with an empirical potential. So, it is possible an accurate calculation of great systems of about 10 (high)4 atoms on wich only locally quantum mechanical methods are necessary. With this hybrid-code diamond nuclei on silicon substrate were simulated. The stability of the diamond nuclei on the silicon substrate, the critical radius of the nuclei and the changes of the nuclei during his transformation was investigated. Another field of investigations is the molecular dynamics simulation of free carbon clusters. The initial structures had spherical, ellipsoidical or square form and consists of diamond and graphite or a free form in the case of amorphous carbon. It was demonstrated that diamond transforms at higher temperatures and under irradiation in carbon onions. The genesis of the nucleus of a carbon onion with two shells was here for the first time simulated. The existence of the cross-links between the shells of a carbon onion was demonstrated. These existence was expected from the experimentators. The cross-links are the initiators of the transformation of carbon onions to diamond. The center of carbon onions is under self-pressure, because the distance between the outer shells is about 3.34 Å and between the inner shells about 2.2 Å. Appendix: nano1.mpg (91,8 MB); nano2.mpg (131 MB) Usage: Referat Informationsvermittlung/ SLUB
10

Molekulardynamische Simulation der Stabilität und Transformation von Kohlenstoff-Nanoteilchen

Fugaciu, Florin 15 May 2000 (has links)
Ziel der Arbeit ist die theoretische Analyse von Kohlenstoff-Clustern der Größe 100 - 500 Atome. Die experimentellen Beobachtungen sind bei dieser geringen Anzahl der Atome schwierig. Anderseits sind Kenntnisse über solche Cluster sehr wichtig, z.B. für die Keimbildung von Diamant auf Substraten, oder für die Kohlenstoff-Nanotechnologie (Fullerene, Nanotubes), oder für strukturelle Defekte in Kohlenstoff-Systemen. Es wurden gekrümmte Grenzflächen im Diamant simuliert. Zuerst mit einem empirischen Potential. Es wurde danach eine Methode entwickelt, bei der die schwach gestörten Gebiete einem empirischen Potential gehorchen, und die stark gestörten Gebiete, wo eine genaue Berechnung erforderlich ist, durch eine quantenmechanische Näherung beschrieben wurden. Somit kann man mit guter Genauigkeit große Systeme, bestehend aus einigen 10 (hoch)4 Atomen, simulieren, bei denen nur lokal quantenmechanische Methoden erforderlich sind. Mit diesem Hybrid-Code wurden weiterhin Diamantkeime auf Silizium gerechnet. Es wurden Aussagen bezüglich der Stabilität des Diamants auf dem Siliziumsubstrat, der kritischen Keimgröße, der Änderungen, die der Keim erfährt, gemacht. Ein anderes Gebiet ist die molekulardynamische Simulation bezüglich der Stabilität und des Transformationsverhaltens von Kohlenstoff-Nanoteilchen. Es wurden als »Rohstoffe» sowohl Diamant- und Graphitkristalle sphärischer, ellipsoidischer oder quadratischer Form benutzt, als auch amorpher Kohlenstoff. Es wurde demonstriert, daß sich Diamant unter höherer Temperatur und Bestrahlung in Kohlenstoffzwiebeln transformiert. Es wurde der innere Kern, bestehend aus zwei Schalen, der Kohlenstoffzwiebel simuliert. Es wurde, nach meinem Wissen, zum ersten Mal gezeigt, daß zwischen den Schalen der Kohlenstoffzwiebel Quer-Verbindungen (cross-links) existieren. Diese waren von den Experimentatoren vermutet worden. Sie bilden die Initiatoren der Diamantkeime der Kohlenstoffzwiebel bei ihrer ohne äußeren Druck möglichen Transformation in Diamant. Die Zentren der Kohlenstoffzwiebeln befinden sich bereits in der Entstehung der Zwiebel unter einem Selbstdruck. Bei den größeren Kohlenstoffzwiebeln beträgt der experimentell bestimmte Abstand zwischen den Schalen von außen nach innen von 3.34 Å bis 2.2 Å. Anlagen: nano1.mpg (91,8 MB); nano2.mpg (131 MB) Nutzung: Referat Informationsvermittlung der SLUB / The scope of this work is the analysis of carbon clusters of about 100 - 500 atoms. The experimental studies are at such small clusters heavy. Knowledges about thus clusters are very important, for example in the field of the nucleation of diamond on substrates, or for the carbon nano-technology (fullerene, nanotubes), or for local defects in carbon systems. There were simulated curved interfaces in diamond. Firstly with an empirical potential. Than I developed a method, in wich the defects and the structure around them are treated by a quantum mechanical algorithm and the rest with a near to ideal structure with an empirical potential. So, it is possible an accurate calculation of great systems of about 10 (high)4 atoms on wich only locally quantum mechanical methods are necessary. With this hybrid-code diamond nuclei on silicon substrate were simulated. The stability of the diamond nuclei on the silicon substrate, the critical radius of the nuclei and the changes of the nuclei during his transformation was investigated. Another field of investigations is the molecular dynamics simulation of free carbon clusters. The initial structures had spherical, ellipsoidical or square form and consists of diamond and graphite or a free form in the case of amorphous carbon. It was demonstrated that diamond transforms at higher temperatures and under irradiation in carbon onions. The genesis of the nucleus of a carbon onion with two shells was here for the first time simulated. The existence of the cross-links between the shells of a carbon onion was demonstrated. These existence was expected from the experimentators. The cross-links are the initiators of the transformation of carbon onions to diamond. The center of carbon onions is under self-pressure, because the distance between the outer shells is about 3.34 Å and between the inner shells about 2.2 Å. Appendix: nano1.mpg (91,8 MB); nano2.mpg (131 MB) Usage: Referat Informationsvermittlung/ SLUB

Page generated in 0.025 seconds