• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 11
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Student Difficulties with Linearity and Linear Functions and Teachers' Understanding of Student Difficulties

January 2011 (has links)
abstract: The focus of the study was to identify secondary school students' difficulties with aspects of linearity and linear functions, and to assess their teachers' understanding of the nature of the difficulties experienced by their students. A cross-sectional study with 1561 Grades 8-10 students enrolled in mathematics courses from Pre-Algebra to Algebra II, and their 26 mathematics teachers was employed. All participants completed the Mini-Diagnostic Test (MDT) on aspects of linearity and linear functions, ranked the MDT problems by perceived difficulty, and commented on the nature of the difficulties. Interviews were conducted with 40 students and 20 teachers. A cluster analysis revealed the existence of two groups of students, Group 0 enrolled in courses below or at their grade level, and Group 1 enrolled in courses above their grade level. A factor analysis confirmed the importance of slope and the Cartesian connection for student understanding of linearity and linear functions. There was little variation in student performance on the MDT across grades. Student performance on the MDT increased with more advanced courses, mainly due to Group 1 student performance. The most difficult problems were those requiring identification of slope from the graph of a line. That difficulty persisted across grades, mathematics courses, and performance groups (Group 0, and 1). A comparison of student ranking of MDT problems by difficulty and their performance on the MDT, showed that students correctly identified the problems with the highest MDT mean scores as being least difficult for them. Only Group 1 students could identify some of the problems with lower MDT mean scores as being difficult. Teachers did not identify MDT problems that posed the greatest difficulty for their students. Student interviews confirmed difficulties with slope and the Cartesian connection. Teachers' descriptions of problem difficulty identified factors such as lack of familiarity with problem content or context, problem format and length. Teachers did not identify student difficulties with slope in a geometric context. / Dissertation/Thesis / Ph.D. Curriculum and Instruction 2011
22

A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real / The computable category of the coherence spaces generated by basic sets with an application in real analysis

Reiser, Renata Hax Sander January 1997 (has links)
Neste trabalho desenvolve-se um estudo sobre os Espaços Coerentes Gerados por Conjuntos Básicos, dotados de uma estrutura adicional. Por estrutura adicional entende-se uma estrutura algébrica, de ordem pontual, de medidas, topológica e lógica. Estes espaços, denotados por , constituem uma subcategoria dos Espaços Coerentes, cujos objetos, ordenados pela inclusão, são conjuntos coerentes constituídos por subconjuntos do conjunto básico, os quais estão relacionados pela relação de coerência induzida, que estrutura a teia deste espaço. Os morfismos desta categoria são as funções de objetos geradas por funções básicas. As propriedades algébricas e relacionais destas funções básicas, externas ao processo de construção, ao se propagarem, passam a influenciar na verificação das propriedades internas das funções de objetos. Contudo, este trabalho não é um estudo categórico. A metodologia adotada utiliza a linguagem simples e intuitiva da Teoria dos Conjuntos, que possibilita a visualização e a análise dos relacionamentos existentes, não apenas entre os morfismos que envolvem os objetos totais ou parciais desta categoria, mas também das estruturas ou pré-estruturas externas que os formam, representados pelas funções de tokens e funções básicas. Mostra-se que as funções de objetos são totais e bem definidas, alem de serem monótonas e continuas neste espaço. Entretanto a análise da estabilidade, e consequentemente da linearidade esta associada a injetividade das funções básicas. Uma das características mais importantes da construção proposta e o desenvolvimento de um sistema de representação linear para funções localmente lineares, com a definição do espaço coerente A* gerado pelo produto de subteias. Neste espaço, as funções de objetos são lineares e coincidem com os morfismo da categoria dos espaços coerentes. Além disso, mostra-se que A* e isomorfo ao espaço coerente gerado pelo produto direto dos sub-espaços, ПĄ. Desta forma, toda transformação definida para um tipo de dado estruturado a partir de um conjunto básico enumerável tem uma representação linear, constituída pelos morfismos da categoria dos espaços coerentes. A existência da representação linear para as funções elementares garante a existência da representação linear para outras funções derivadas destas. Apresenta-se ainda uma especificação desta construção, introduzindo-se o Espaço Coerente de Intervalos Racionais, IIQ. Na busca de uma aplicação compatível com uma abordagem computacional, em especial para Análise Real, mostra-se que, em IIQ, cada função real elementar esta identificada com uma função de objetos linear, definida a partir da correspondente função elementar racional. Dentre as funções que foram analisadas destacam-se: a exponencial, a logarítmica, a potência, a potência estendida, a raiz n-ésima, as funções trigonométricas como seno, cosseno e tangente e suas correspondentes funções inversas, como também a função polinomial. Verificou-se que todas estas funções de objetos são totais, bem definidas, ou pertencem ou possuem uma representação linear na categoria COSP-LIN dos espaços coerentes, alem de serem fechadas para os objetos totais e quasi-totais deste espaço, sendo possível estabelecer o correspondente par-projeção para cada uma delas. / In this work the Coherence Spaces Generated by Basic Sets with additional structure are studied. By additional structure one means an algebraic, topological and logical structure with a punctual order and a measure system. These spaces, indicated by A, are a subcategory of the category of Coherence Spaces, whose objects, ordered by inclusion, are coherent sets formed by the induced web coherence relation. The morphisms of this category are the functions of objects generated by basic functions. The algebraic and relational properties of these basic functions - external to the construction process - are propagated and cause important influences in the verification of the internal properties of the functions of objects However, this research is not a categorical study. The methodology uses the simple and intuitive language of the Set Theory, which allows the visualization and the analysis of the existing relationships, not only among, the morphisms of the total and partial objects of this category, but also among their structures or pre-structures, represented by the functions of tokens and basic functions. It is shown that the functions of objects are total and well defined. They are also monotone and continuous. However the stability and the linearity of the functions of objects depend on the fact if the basic functions are injective or not. One of the most important features of this construction is the development of a linear representation system for the local linear functions, by the definition of a coherence space A*, which is generated by the subweb product. In this space the functions of objects are linear and therefore they are the morphisms of the category of Coherence Spaces. Moreover, it is proved that A* is isomorphic to the coherence space generated by the directed product of the subspaces, denoted by ПĄ . Then, for each transformation defined for a structured data type considering a denumerable basic set there exists its related linear representation. The existence of a linear representation for elementary functions guarantees the existence of a linear representation for others derived functions. As an application of this construction, the Coherence Space of Rational Intervals, denoted by IIQ, is introduced. In order to show an application which is compatible to a computational approach, specially for the real analysis, each elementary real function is identified with a linear function of objects, defined considering the related elementary rational function. Some of the analyzed functions are the exponential, the logarithmic, the power , the extended power, the root, the trigonometric (sine, cosine and tangent and their relates inverses), and the polynomial functions. It is proved that all of these functions of objects are total and well defined. Moreover, either they belong to the category COPS-LIN of the coherence spaces or they have a linear representation in the same category. It is also possible to define a related projection pair for each one of them.
23

Funções : uma introdução

Lima, Thiago de January 2016 (has links)
Orientador: Prof. Dr. Daniel Miranda Machado / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016. / "A Matemática fornece uma variedade de conceitos abstratos que servem de modelos para situações concretas, permitindo assim analisar, prever e tirar conclusões de forma eficaz em circunstâncias nas quais a abordagem empírica muitas vezes conduz a nada [15]." Um desses conceitos certamente é o de função. Neste trabalho, apresentaremos as principais noções envolvendo-o. Em seguida, faremos um estudo, sob o ponto de vista elementar e com o intuito de que sirvam para um curso introdutório, das funções afins e quadráticas, que são duas das principais funções reais de uma variável real que mais aparecem na prática e no desenvolvimento do estudo da Matemática e exibiremos algumas de suas aplicações. / "Mathematics provides a variety of abstract concepts that serve as models for concrete situations, allowing us to analyze, predict and draw conclusions effectively in circumstances in which the empirical approach often leads to nothing [15]." One of these concepts is certainly that of function. In this text, we will present the main notions involving it. We will make a study, from the elementary point of view and with the purpose of serving an introductory course, of linear and quadratic functions, which are two of the main real-valued functions of a real variable that appear most in practice and development of the study of Mathematics and we will show some of its applications.
24

Análise da curva de crescimento de bovinos da raça Nelore utilizando funções não-lineares em análises Bayesianas: Selma Forni. -

Forni, Selma [UNESP] 16 February 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:16Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-02-16Bitstream added on 2014-06-13T21:03:49Z : No. of bitstreams: 1 forni_s_dr_jabo.pdf: 637612 bytes, checksum: 7582789a64d339985e5f44fda47b627d (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo do presente trabalho foi estimar conjuntamente os parâmetros das curvas de crescimento de animais da raça Nelore, seus componentes de (co)variâncias e os efeitos genéticos e ambientais que atuaram sobre eles. As funções de Brody, Von Bertalanffy, Gompertz e Logística foram empregadas no primeiro estágio de um modelo hierárquico Bayesiano. Os efeitos genéticos e ambientais foram considerados em um modelo animal no segundo estágio de hierarquia. Diferentes abordagens para a variância do erro de ajuste foram avaliadas: constância ao longo da trajetória, aumento linear até os três anos de idade e aumento exponencial. Amostras aleatórias das distribuições marginais foram obtidas aplicando-se os algoritmos de Metropolis-Hastings e amostragem de Gibbs. A presença de animais que não atingiram a maturidade no conjunto de dados não prejudicou a predição dos pesos adultos. Grande parte da variância fenotípica observada neste peso foi devida a efeitos genéticos aditivos. O parâmetro a das curvas de Brody, Von Bertalanffy e Gompertz poderia ser utilizado como critério de seleção para controlar o aumento de peso adulto. O ambiente materno influenciou não somente o crescimento inicial dos animais mas também os pesos maduros e deve ser considerado na avaliação de todas as etapas do crescimento. Os modelos linear e exponencial empregados para a variância do erro de ajuste não representaram de forma adequada este parâmetro no início da curva. A seleção para alterar a pendente da curva de crescimento mantendo o peso adulto constante seria ineficiente, uma vez que, é alta e positiva a correlação genética entre o peso assintótico e a taxa de maturação. / The objective of this work was to estimate the joint posterior distribution of Nelore growth curve parameters, their (co)variance components and the environmental and additive genetic components affecting them. The Brody, Von Bertalanffy, Gompertz and Logistic functions were applied in the first stage of a hierarchical Bayesian model. The environmental and genetic effects were described by an animal model in the second stage. Different approaches for describing the adjustment error variance along the growth curve were evaluated: constancy throughout the trajectory, linear increasing until three years of age and exponential increasing. Random samples of the marginal distributions were drawn using Metropolis-Hastings and Gibbs sampling algorithms. Even thought the curve parameters were estimated for animals with records just from the beginning of the growth process, the adult weights were accurately predicted. A high additive genetic variance for mature weight was observed. The parameter a of Brody, Von Bertalanffy and Gompertz models could be used as a selection criterion to control adult weight increases. The effect of maternal environment on growth was carried through to maturity and it should be considered while evaluating all weights. The adjustment error variances at the beginning of growth curve were not adequately described by the linear and exponential models. Selection to change the growth curve slope without modifying adult weight would be inefficient, since their genetic correlation is high.
25

A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real / The computable category of the coherence spaces generated by basic sets with an application in real analysis

Reiser, Renata Hax Sander January 1997 (has links)
Neste trabalho desenvolve-se um estudo sobre os Espaços Coerentes Gerados por Conjuntos Básicos, dotados de uma estrutura adicional. Por estrutura adicional entende-se uma estrutura algébrica, de ordem pontual, de medidas, topológica e lógica. Estes espaços, denotados por , constituem uma subcategoria dos Espaços Coerentes, cujos objetos, ordenados pela inclusão, são conjuntos coerentes constituídos por subconjuntos do conjunto básico, os quais estão relacionados pela relação de coerência induzida, que estrutura a teia deste espaço. Os morfismos desta categoria são as funções de objetos geradas por funções básicas. As propriedades algébricas e relacionais destas funções básicas, externas ao processo de construção, ao se propagarem, passam a influenciar na verificação das propriedades internas das funções de objetos. Contudo, este trabalho não é um estudo categórico. A metodologia adotada utiliza a linguagem simples e intuitiva da Teoria dos Conjuntos, que possibilita a visualização e a análise dos relacionamentos existentes, não apenas entre os morfismos que envolvem os objetos totais ou parciais desta categoria, mas também das estruturas ou pré-estruturas externas que os formam, representados pelas funções de tokens e funções básicas. Mostra-se que as funções de objetos são totais e bem definidas, alem de serem monótonas e continuas neste espaço. Entretanto a análise da estabilidade, e consequentemente da linearidade esta associada a injetividade das funções básicas. Uma das características mais importantes da construção proposta e o desenvolvimento de um sistema de representação linear para funções localmente lineares, com a definição do espaço coerente A* gerado pelo produto de subteias. Neste espaço, as funções de objetos são lineares e coincidem com os morfismo da categoria dos espaços coerentes. Além disso, mostra-se que A* e isomorfo ao espaço coerente gerado pelo produto direto dos sub-espaços, ПĄ. Desta forma, toda transformação definida para um tipo de dado estruturado a partir de um conjunto básico enumerável tem uma representação linear, constituída pelos morfismos da categoria dos espaços coerentes. A existência da representação linear para as funções elementares garante a existência da representação linear para outras funções derivadas destas. Apresenta-se ainda uma especificação desta construção, introduzindo-se o Espaço Coerente de Intervalos Racionais, IIQ. Na busca de uma aplicação compatível com uma abordagem computacional, em especial para Análise Real, mostra-se que, em IIQ, cada função real elementar esta identificada com uma função de objetos linear, definida a partir da correspondente função elementar racional. Dentre as funções que foram analisadas destacam-se: a exponencial, a logarítmica, a potência, a potência estendida, a raiz n-ésima, as funções trigonométricas como seno, cosseno e tangente e suas correspondentes funções inversas, como também a função polinomial. Verificou-se que todas estas funções de objetos são totais, bem definidas, ou pertencem ou possuem uma representação linear na categoria COSP-LIN dos espaços coerentes, alem de serem fechadas para os objetos totais e quasi-totais deste espaço, sendo possível estabelecer o correspondente par-projeção para cada uma delas. / In this work the Coherence Spaces Generated by Basic Sets with additional structure are studied. By additional structure one means an algebraic, topological and logical structure with a punctual order and a measure system. These spaces, indicated by A, are a subcategory of the category of Coherence Spaces, whose objects, ordered by inclusion, are coherent sets formed by the induced web coherence relation. The morphisms of this category are the functions of objects generated by basic functions. The algebraic and relational properties of these basic functions - external to the construction process - are propagated and cause important influences in the verification of the internal properties of the functions of objects However, this research is not a categorical study. The methodology uses the simple and intuitive language of the Set Theory, which allows the visualization and the analysis of the existing relationships, not only among, the morphisms of the total and partial objects of this category, but also among their structures or pre-structures, represented by the functions of tokens and basic functions. It is shown that the functions of objects are total and well defined. They are also monotone and continuous. However the stability and the linearity of the functions of objects depend on the fact if the basic functions are injective or not. One of the most important features of this construction is the development of a linear representation system for the local linear functions, by the definition of a coherence space A*, which is generated by the subweb product. In this space the functions of objects are linear and therefore they are the morphisms of the category of Coherence Spaces. Moreover, it is proved that A* is isomorphic to the coherence space generated by the directed product of the subspaces, denoted by ПĄ . Then, for each transformation defined for a structured data type considering a denumerable basic set there exists its related linear representation. The existence of a linear representation for elementary functions guarantees the existence of a linear representation for others derived functions. As an application of this construction, the Coherence Space of Rational Intervals, denoted by IIQ, is introduced. In order to show an application which is compatible to a computational approach, specially for the real analysis, each elementary real function is identified with a linear function of objects, defined considering the related elementary rational function. Some of the analyzed functions are the exponential, the logarithmic, the power , the extended power, the root, the trigonometric (sine, cosine and tangent and their relates inverses), and the polynomial functions. It is proved that all of these functions of objects are total and well defined. Moreover, either they belong to the category COPS-LIN of the coherence spaces or they have a linear representation in the same category. It is also possible to define a related projection pair for each one of them.
26

A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real / The computable category of the coherence spaces generated by basic sets with an application in real analysis

Reiser, Renata Hax Sander January 1997 (has links)
Neste trabalho desenvolve-se um estudo sobre os Espaços Coerentes Gerados por Conjuntos Básicos, dotados de uma estrutura adicional. Por estrutura adicional entende-se uma estrutura algébrica, de ordem pontual, de medidas, topológica e lógica. Estes espaços, denotados por , constituem uma subcategoria dos Espaços Coerentes, cujos objetos, ordenados pela inclusão, são conjuntos coerentes constituídos por subconjuntos do conjunto básico, os quais estão relacionados pela relação de coerência induzida, que estrutura a teia deste espaço. Os morfismos desta categoria são as funções de objetos geradas por funções básicas. As propriedades algébricas e relacionais destas funções básicas, externas ao processo de construção, ao se propagarem, passam a influenciar na verificação das propriedades internas das funções de objetos. Contudo, este trabalho não é um estudo categórico. A metodologia adotada utiliza a linguagem simples e intuitiva da Teoria dos Conjuntos, que possibilita a visualização e a análise dos relacionamentos existentes, não apenas entre os morfismos que envolvem os objetos totais ou parciais desta categoria, mas também das estruturas ou pré-estruturas externas que os formam, representados pelas funções de tokens e funções básicas. Mostra-se que as funções de objetos são totais e bem definidas, alem de serem monótonas e continuas neste espaço. Entretanto a análise da estabilidade, e consequentemente da linearidade esta associada a injetividade das funções básicas. Uma das características mais importantes da construção proposta e o desenvolvimento de um sistema de representação linear para funções localmente lineares, com a definição do espaço coerente A* gerado pelo produto de subteias. Neste espaço, as funções de objetos são lineares e coincidem com os morfismo da categoria dos espaços coerentes. Além disso, mostra-se que A* e isomorfo ao espaço coerente gerado pelo produto direto dos sub-espaços, ПĄ. Desta forma, toda transformação definida para um tipo de dado estruturado a partir de um conjunto básico enumerável tem uma representação linear, constituída pelos morfismos da categoria dos espaços coerentes. A existência da representação linear para as funções elementares garante a existência da representação linear para outras funções derivadas destas. Apresenta-se ainda uma especificação desta construção, introduzindo-se o Espaço Coerente de Intervalos Racionais, IIQ. Na busca de uma aplicação compatível com uma abordagem computacional, em especial para Análise Real, mostra-se que, em IIQ, cada função real elementar esta identificada com uma função de objetos linear, definida a partir da correspondente função elementar racional. Dentre as funções que foram analisadas destacam-se: a exponencial, a logarítmica, a potência, a potência estendida, a raiz n-ésima, as funções trigonométricas como seno, cosseno e tangente e suas correspondentes funções inversas, como também a função polinomial. Verificou-se que todas estas funções de objetos são totais, bem definidas, ou pertencem ou possuem uma representação linear na categoria COSP-LIN dos espaços coerentes, alem de serem fechadas para os objetos totais e quasi-totais deste espaço, sendo possível estabelecer o correspondente par-projeção para cada uma delas. / In this work the Coherence Spaces Generated by Basic Sets with additional structure are studied. By additional structure one means an algebraic, topological and logical structure with a punctual order and a measure system. These spaces, indicated by A, are a subcategory of the category of Coherence Spaces, whose objects, ordered by inclusion, are coherent sets formed by the induced web coherence relation. The morphisms of this category are the functions of objects generated by basic functions. The algebraic and relational properties of these basic functions - external to the construction process - are propagated and cause important influences in the verification of the internal properties of the functions of objects However, this research is not a categorical study. The methodology uses the simple and intuitive language of the Set Theory, which allows the visualization and the analysis of the existing relationships, not only among, the morphisms of the total and partial objects of this category, but also among their structures or pre-structures, represented by the functions of tokens and basic functions. It is shown that the functions of objects are total and well defined. They are also monotone and continuous. However the stability and the linearity of the functions of objects depend on the fact if the basic functions are injective or not. One of the most important features of this construction is the development of a linear representation system for the local linear functions, by the definition of a coherence space A*, which is generated by the subweb product. In this space the functions of objects are linear and therefore they are the morphisms of the category of Coherence Spaces. Moreover, it is proved that A* is isomorphic to the coherence space generated by the directed product of the subspaces, denoted by ПĄ . Then, for each transformation defined for a structured data type considering a denumerable basic set there exists its related linear representation. The existence of a linear representation for elementary functions guarantees the existence of a linear representation for others derived functions. As an application of this construction, the Coherence Space of Rational Intervals, denoted by IIQ, is introduced. In order to show an application which is compatible to a computational approach, specially for the real analysis, each elementary real function is identified with a linear function of objects, defined considering the related elementary rational function. Some of the analyzed functions are the exponential, the logarithmic, the power , the extended power, the root, the trigonometric (sine, cosine and tangent and their relates inverses), and the polynomial functions. It is proved that all of these functions of objects are total and well defined. Moreover, either they belong to the category COPS-LIN of the coherence spaces or they have a linear representation in the same category. It is also possible to define a related projection pair for each one of them.
27

CASE STUDIES LISTENING TO STUDENTSUSING KINESTHETIC MOVEMENT WHILE LEARNING TO GRAPH LINEAR FUNCTIONS

Novak, Melissa A. 11 August 2017 (has links)
No description available.
28

Likheter och skillnader mellan högstadiet och gymnasiet inom ämnet matematik : en läromedelsanalys med fokus på området linjära funktioner / Similarities and differences between lower and upper secondary school in the subject of mathematics : A textbook analysis focusing on linear functions

Lundell, Anton January 2024 (has links)
I det svenska skolsystemet sker olika stadieövergångar och övergången från högstadiet till gymnasiet är en sådan. I ämnet matematik visar tidigare forskning att en skillnad mellan dessa stadier är ett ökat studietempo och en förskjutning mot en mer formell matematik i det senare stadiet. Syftet med denna studie har varit att undersöka vilka innehållsmässiga likheter och skillnader det finns mellan dessa stadier inom området linjära funktioner. Detta har gjorts via en innehållsanalys av några läroböcker som används för respektive stadie då dessa kan ses som den potentiellt realiserade läroplanen. Vidare har studien baserats på Anna Sfards teori om operationell respektive strukturell begreppsuppfattning som ett sätt att få syn på och kontrastera det innehåll som behandlas i de olika läroböckerna. Resultatet visar att det finns likheter och skillnader mellan de olika stadierna, utifrån hur detta uttrycks via läroböckerna, och gymnasiet tenderar att fokusera mer på det strukturella i funktionsbegreppet medan högstadiet i högre grad betonar det operationella. Vidare finns det skillnader mellan de olika läroböckerna inom samma stadie där studien visar att beroende på kombination av läromedel för högstadiet respektive gymnasiet kan det bli olika grad av repetition på gymnasiet. Vissa kombinationer kan ge en större överlappning mellan innehållet i stadierna medan andra kombinationer riskerar att istället skapa ett glapp mellan stadierna. / In the Swedish school system, different stage transitions take place and the transition from lower secondary school to upper secondary school is one such. In the subject of mathematics, previous research shows that a difference in these stages is an increased pace of study and a shift towards more formal mathematics. The purpose of this study has been to investigate what content-related similarities and differences there are between junior high school and high school mathematics in the area of ​​linear functions. This has been done via a content analysis of some textbooks that are used for the different stages, as these can be seen as the potentially implemented curriculum. Furthermore, the study has been based on Anna Sfard's theory of operational and structural concepts as a way to gain insight into and contrast the content covered in the various textbooks. The result shows that there are similarities and differences in the different stages, from how this is expressed via the textbooks, and the upper secondary school tends to focus more on the structural concept of function, while the lower secondary emphasizes the operational aspects to a greater degree. Furthermore, there are differences between the different textbooks within the same stage, where this study shows that depending on the combination of textbooks for lower- and upper secondary school, there may be different degrees of repetition in the latter. Some combinations can provide a greater overlap between the content of the stages, while other combinations risk instead creating a gap between the stages.
29

The effect of using computers for the teaching and learning of Mathematics to grade 10 learners at secondary school / The effect of using computers for the teaching and learning of Mathematics to grade ten learners at secondary school

Khobo, Ramaesela Jerminah 11 1900 (has links)
Over the past several decades there has been an emphasis on educational research pertaining to learners’ performance in Mathematics and on finding methods to improve learner performance in this subject. In South Africa, Grade 12 learners’ results in Mathematics from 2010 to 2013 were unsatisfactory as shown in DBE, 2013a. The teachers are challenged to find new teaching methods that will make the subject more interesting and appealing to the learners (Oliver & Makar, 2010 in Goos, 2010). The purpose of this study was to investigate the effect of using computers in the teaching and learning of Mathematics with special reference to the topic of linear functions in order to improve learner performance. The literature reviewed shows that the use of computers not only improves the learners’ performance but also changes their attitude towards Mathematics (Bester & Brand, 2013). The quantitative research approach was used to gather the data, namely the quasi- experimental, non-equivalent control group pre-test-post-test design. Two intact classes formed part of the research study, that is an experimental group (n=50) and control group (n=50). The experimental group learnt the concept of linear function using GeoGebra software. The control group learnt the same concept through the traditional pen and paper method. The data were analysed using the SPSS on ANOVA. The results indicated that there was a significant difference between the mean scores of the experimental group (μ=70.5) and the control group (μ=47.5). From the results it was evident that the use of computers had a positive effect on learners understanding of linear functions as reflected in their performance and on their attitude towards Mathematics, as seen in the questionnaire responses. / Mathematics Education / M. Ed. (Mathematics Education)
30

Estratégias de computação seqüenciais e paralelas sobre espaços coerentes / Sequential and parallel computational strategies of coherence spaces

Schneider Sellanes, Ruben Gerardo January 1996 (has links)
As estruturas de dados concretas (cds) são quaternas (C, V, E, l-) que contêm um conjunto C de células, um conjunto V de valores, um conjunto E de eventos e uma relação de habilitação l-. O conjunto de estados de uma cds é um domínio concreto que pode ser considerada a parte "abstrata" das cds. Da mesma maneira tem-se que os domínios de eventos (que são generalizações dos domínios concretos) são a parte abstrata das estruturas de eventos. Mostra-se a relação dos domínios concretos e domínios de eventos com os espaços coerentes, assim como também das teias de espaços coerentes com as cds e estruturas de eventos. Intuitivamente, uma cds é uma teia de um espaço coerente se toda célula c de C não é habilitada por nenhum evento (ou equivalentemente, é habilitada pelo conjunto vazio), isto é, V C E C, 0 F c. Outra forma de expressar isto é dizer que uma cds e uma teia de um espaço coerente se o conjunto de estados da cds é um espaço coerente. Definem-se os algoritmos lineares como sendo estados de uma cds no estilo dos algoritmos seqüenciais do Curien ([CUR 86]). Em particular as cds consideradas são teias de espaços coerentes. Mostra-se como obter a cds !A—>B, a partir de uma função estável f. A —> B. O algoritmo linear desta cds possui todas as estratégias de computação (seqüenciais e paralelas) que computam a função subjacente f, o que implica que os algoritmos lineares podem ser considerados meta-algoritmos. Mostra-se que para toda estratégia de computação seqüencial de um algoritmo linear, existe um algoritmo seqüencial de Curien que computa a mesma função, e vice-versa. A definição de estratégia de computação é dada de maneira tal que permite se dar semântica a segmentos de programas. Define-se uma operação de composição de estratégias, de forma tal que se pode obter uma estratégia de computação de um programa, a partir da composição das estratégias dos segmentos. / The concrete data structures, or cds, (C, V, E, l-) consists of a set C of cells, a set V of values. a set E of events and an enabling relation l-. The set of states of a cds is a concrete domain, that can be considered the "abstract" counterpart of the cds. In the same way we have that the events domains (that are more general that the concretes domains) are the abstract counterpart of the events structures. We show the relation between the concretes domains and events domains with the coherence spaces, as just as the relation between the cds and events structures with webs of coherence spaces. Intuitivelly, a cds is a web of a coherence space if any cell c is not enabled for any event, i.e. Vce C, 0 F c. We can say that a cds is a web of a coherence space if the set of states of the cds is a coherence space. We define the linear algorithms as states of a cds following the Curien's sequential algorithms ([CUR 86]). In particular the cds considered are webs of coherence spaces. We show how to obtain a cds !A—>B from a stable function f. A —> B. The linear algorithm of this cds contain all the computational strategies (sequentials and parallels) that compute the subjacent function f; this implies that the linear algorithms can be considered a kind of meta-algorithms. We show that for all sequential computational strategy of a linear al gorithm exists a Curien's sequential algorithm that compute the same function and conversely. We define the computational strategies in such a way that we can give semantic of segments of programs. We define a composition operation for strategies. This operation has the advantage that we can obtain the computational strategy of a program as the composition of the segments of it.

Page generated in 0.0579 seconds