• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 7
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 37
  • 25
  • 25
  • 20
  • 19
  • 18
  • 18
  • 18
  • 18
  • 15
  • 15
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Assessment of LS-DYNA and Underwater Shock Analysis (USA) Tools for Modeling Far-Field Underwater Explosion Effects on Ships

Klenow, Bradley A. 03 October 2006 (has links)
This thesis investigates the use of the numerical modeling tools LS-DYNA and USA in modeling general far-field underwater explosions (UNDEX) by modeling a three-dimensional box barge that is subjected to a far-field underwater explosion. Past UNDEX models using these tools have not been validated by experiment and most are limited to very specific problems because of the simplifying assumptions they make. USA is a boundary element code that requires only the structural model of the box barge. LS-DYNA is a dynamic finite element code and requires both the structural model and the surrounding fluid model, which is modeled with acoustic pressure elements. Analysis of the box barge problem results finds that the program USA is a valid tool for modeling the initial shock response of surface ships when cavitation effects are not considered. LS-DYNA models are found to be very dependent on the accuracy of the fluid mesh. The accuracy of the fluid mesh is determined by the ability of the mesh to adequately capture the peak pressure and discontinuity of the shock wave. The peak pressure captured by the model also determines the accuracy of the cavitation region captured in the fluid model. Assumptions made in the formulation of the fluid model causes potential inaccurate fluid-structure interaction and boundary condition problems cause further inaccuracies in the box barge model. These findings provide a base of knowledge for the current capabilities of UNDEX modeling in USA and LS-DYNA from which they can be improved in future work. / Master of Science
32

Avaliação do desempenho estrutural de barreiras de segurança de concreto armado para uso em rodovias / Structural performance evaluation of reinforced concrete safety barriers for use on highways

Queiroz, Paulo Cesar de Oliveira 13 May 2016 (has links)
As barreiras de concreto são dispositivos utilizados como componentes de segurança em rodovias, que visam absorver o choque lateral de veículos desgovernados, propiciando sua recondução à faixa de tráfego e minimizando os danos aos ocupantes do veículo. Neste trabalho é analisado o desempenho de barreiras de concreto com o uso de modelos experimentais e numéricos baseados nas recomendações das normas brasileiras e internacionais. O estudo consiste em analisar a eficiência estática e dinâmica dessas barreiras. A análise estática engloba o estudo de distribuição de tensões na barreira considerando diferentes tipos de conectores, modo de ruptura, bem como a resistência desses conectores através de ensaios experimentais. Os ensaios são realizados de acordo com os critérios estabelecidos pela norma americana AASHTO LRFD 2012. A análise numérica, realizada com o uso de software de elementos finitos LS-DYNA©, contempla a atuação da geometria e da rigidez da barreira no processo de absorção de energia de impacto entre a barreira e o veículo, a eficiência do seu redirecionamento e adequação para os níveis de contenção estabelecidos em normas internacionais. Os resultados evidenciaram que a geometria da barreira é um fator importante para o desempenho da mesma, e, também que o uso de conectores em barreiras temporárias são primordiais para o bom funcionamento do sistema de contenção. / Concrete barriers are devices used as safety components in roads, which aim at absorbing side impact of unguided vehicles, redirecting them to the traffic lane and minimizing damage to the vehicle occupants. The present work analyzes the performance of concrete barriers through experimental and numerical models based on the recommendations of the Brazilian and international standards. The study consists in analyzing the static and dynamic efficiency of these barriers. The static analysis includes determining the stress distribution and yield lines in the barrier for different types of connectors, as well as studying the resistance of these connectors by performing experimental tests; these tests were conducted according to the criteria established by the American Standard AASHTO LRFD 2012. The numerical analysis, conducted with the commercial finite element software LS-DYNA©, evaluates the effect of geometry and stiffness of the barrier on the energy absorption performance., efficiency in redirecting the vehicles and suitability for providing restraint levels established in international standards. The results showed that the geometry of the barrier is an important factor for the barrier performance. In addition, the use of connectors in temporary barriers is essential for the smooth operation of the containment system.
33

Avaliação do desempenho estrutural de barreiras de segurança de concreto armado para uso em rodovias / Structural performance evaluation of reinforced concrete safety barriers for use on highways

Paulo Cesar de Oliveira Queiroz 13 May 2016 (has links)
As barreiras de concreto são dispositivos utilizados como componentes de segurança em rodovias, que visam absorver o choque lateral de veículos desgovernados, propiciando sua recondução à faixa de tráfego e minimizando os danos aos ocupantes do veículo. Neste trabalho é analisado o desempenho de barreiras de concreto com o uso de modelos experimentais e numéricos baseados nas recomendações das normas brasileiras e internacionais. O estudo consiste em analisar a eficiência estática e dinâmica dessas barreiras. A análise estática engloba o estudo de distribuição de tensões na barreira considerando diferentes tipos de conectores, modo de ruptura, bem como a resistência desses conectores através de ensaios experimentais. Os ensaios são realizados de acordo com os critérios estabelecidos pela norma americana AASHTO LRFD 2012. A análise numérica, realizada com o uso de software de elementos finitos LS-DYNA©, contempla a atuação da geometria e da rigidez da barreira no processo de absorção de energia de impacto entre a barreira e o veículo, a eficiência do seu redirecionamento e adequação para os níveis de contenção estabelecidos em normas internacionais. Os resultados evidenciaram que a geometria da barreira é um fator importante para o desempenho da mesma, e, também que o uso de conectores em barreiras temporárias são primordiais para o bom funcionamento do sistema de contenção. / Concrete barriers are devices used as safety components in roads, which aim at absorbing side impact of unguided vehicles, redirecting them to the traffic lane and minimizing damage to the vehicle occupants. The present work analyzes the performance of concrete barriers through experimental and numerical models based on the recommendations of the Brazilian and international standards. The study consists in analyzing the static and dynamic efficiency of these barriers. The static analysis includes determining the stress distribution and yield lines in the barrier for different types of connectors, as well as studying the resistance of these connectors by performing experimental tests; these tests were conducted according to the criteria established by the American Standard AASHTO LRFD 2012. The numerical analysis, conducted with the commercial finite element software LS-DYNA©, evaluates the effect of geometry and stiffness of the barrier on the energy absorption performance., efficiency in redirecting the vehicles and suitability for providing restraint levels established in international standards. The results showed that the geometry of the barrier is an important factor for the barrier performance. In addition, the use of connectors in temporary barriers is essential for the smooth operation of the containment system.
34

Evaluation of Coefficient of Friction in Oblique Helmet Impacts: An Experimental and Numerical Study / Utvärdering av friktionskoefficienten för sneda hjälmislag: En experimentell och numerisk studie

Singh, Philip January 2022 (has links)
The focus of this thesis was to increase the knowledge in the area of "dynamic friction" during oblique helmet impacts, both experimentally and numerically. Physical experiments have been performed with multiple helmets, different angles of the anvil and different surface materials, with results of impact forces from the anvil and accelerations of the head. By the use of the Coulomb friction model the friction, over time, during the impact of the head and helmet has been calculated. Finite element method has then been used in LS-DYNA to try and replicate the physical results with the goal of creating an accurate friction model. There has been previous work done where the commonly used abrasive paper has been compared to asphalt as ground material in the drop tests. A similar study has been performed in this project which has been compared to the previous work. The results when comparing asphalt to abrasive paper and stainless steel shows that abrasive paper has a higher friction and rotational acceleration of the head compared to asphalt. Stainless steel however displays similar characteristics as asphalt in both friction and accelerations. The load cell used during the experimental testing has been examined carefully since the value of the friction coefficient has differed depending on the angle and the impact location on the anvil. There are still uncertainties surrounding the reliability of the results from the load cell. LS-DYNA has two different ways of modelling friction, one where LS-DYNA uses a modified equation of the Coulomb friction model and another one where the user can insert a table of values on coefficient of friction and relative velocity. Both methods have been used, however the latter method has proven to be more suitable for the kind of tests used in this project. / Fokuset för denna rapport var att öka förståelsen inom området ”dynamisk friktion” under sneda hjälmislag, både experimentellt och numeriskt. Fysiska experiment har genomförts med flertalet hjälmar och olika vinklar samt underlag på städet, med resultat på både krafter från städet samt accelerationer från huvudet. Genom användandet av Coulombs friktionsmodell har friktionen, över tid, under islag med en hjälm beräknats. Finita elementmetoden har använts i LS-DYNA för att försöka efterlikna resultaten från de fysiska experimenten med målet att kunna skapa en friktionsmodell. Det har gjorts liknande arbete tidigare där sandpapper har jämförts mot asfalt som underlagsmaterial i falltesterna. En liknande studie har genomförts i detta projekt vilket har jämförts med den tidigare gjorda studien. Resultaten när asfalt jämförs mot sandpapper och rostfritt stål visar att sandpapper har en högre friktion samt rotations acceleration av huvudet jämfört med asfalt. Rostfritt stål uppvisar dock liknande egenskaper som asfalt när det kommer till både friktion och acceleration. Lastcellen som har använts har undersökts noggrant, då värdet på friktionskoefficienten har förändrats beroende på vinkeln och träffpunkten på städet. Osäkerheter kring trovärdigheten på resultatet från lastcellen kvarstår. LS-DYNA har två olika sätt att modellera friktionen på, antingen så används en modifierad ekvation av Coulombs friktionsmodell eller så skapar användaren en tabell med värden på friktionskoefficienten och den relativa hastigheten. Båda metoderna har använts men det har visat sig att den senare metoden är bättre anpassad för de test som har utförts i detta projekt.
35

CAE modelling of cast aluminium in automotive structures

Singh, Subrat, Veditherakal Shreedhara, Sreehari January 2019 (has links)
In the automobile industry, there is a big push for the automotive car manufacturers to base engineering decisions on the results of Computer Aided Engineering (CAE) solutions, and to transform the prototyping and testing, from a costly iterative process to a final verification and validation step. The variability in components material properties and environmental conditions together with the lack of knowledge about the underlying physics of complex systems often make it impractical to make reliable predictions based on only deterministic CAE models. One such area is the CAE modelling of cast aluminium components. These cast aluminium components have gained a huge relevance in the automobile industries due to their commendable mechanical properties. The advantage of the cast aluminium alloys are being a well-established alloy system in manufacturing processes, their functional integrity and relatively low weight. However, the presence of pores and micro-voids obtained during the manufacturing process constitutes a specific material behaviour and establishes a challenge in modelling of the cast materials. Furthermore, the low ductility of the materialdemands for the advanced numerical model to predict the failure. The main focus of this master thesis work is to investigate modelling technique of a cast aluminium alloy component, a spring tower, for a drop tower test and validate the predicted behaviour with the physical test results. Volvo Car Corporation currently uses a material model provided by MATFEM for cast aluminium parts which are explored in this thesis work, to validate the material model for component level testing. The methodology used to achieve this objective was to develop a boundary condition to perform component level tests in the drop tower and to correlate these with the obtained results found by using various modelling techniques in the explicit solver LS-DYNA. Therefore, precise and realistic modelling of the drop tower is crucial because the simulation results can be influenced by major design changes. A detailed finite element model for the spring tower has been developed from the observations made during the physical testing. The refined model showed good agreement with the existing model for the spring tower and observations from physical tests.
36

Sheet Metal Forming Simulations with Elastic Dies: Emphasis on Computational Cost

Allesson, Sara January 2019 (has links)
The car industry produces many of their car parts by using sheet metal forming, where one of the most time-consuming phases is the development and manufacturing of new forming tools. As of today, when a new tool is to be evaluated in terms of usability, a forming simulation is conducted to predict possible failures before manufacturing. The assumption is then that the tools are rigid, and the only deformable part is the sheet metal itself. This is however not the case, since the tools also deform during the forming process. A previous research, which is the basis of this thesis, included a model with only elastic tools and showed results of high accuracy in comparison to using a rigid setup. However, this simulation is not optimal to implement for a daily based usage, since it requires high computational power and has a long simulation time.  The aim and scope for this thesis is to evaluate how a sheet metal forming simulation with elastic tool consideration can be reduced in terms of computational cost, by using the software LS-DYNA. A small deviation of the forming result is acceptable and the aim is to run the simulation with a 50-75 % reduction of time on fewer cores than the approximate 14 hours and 800 CPUs that the simulation requires today. The first step was to alter the geometry of the tools and evaluate the impact on the deformations of the blank. The elastic solid parts that only has small deformations are deleted and replaced by rigid surfaces, making the model partly elastic. Later, different decomposition methods are studied to determine what kind that makes the simulation run faster. At last, a scaling analysis is conducted to determine the range of computational power that is to be used to run the simulations as efficient as possible, and what part of the simulation that is affecting the simulation time the most. The correlation of major strain deviation between a fully elastic model and a partly elastic model showed results of high accuracy, as well as comparison with production measurements of a formed blank. The computational time is reduced by over 90 % when using approximately 65 % of the initial computational power. If the simulations are run with even less number of cores, 10 % of the initial number of CPUs, the simulation time is reduced by over 70 %. The conclusion of this work is that it is possible to run a partly elastic sheet metal forming simulation much more efficient than using a fully elastic model, without reliability problems of the forming results. This by reducing the number of elements, evaluate the decomposition method and by conducting a scaling analysis to evaluate the efficiency of computational power. / Bilindustrin producerar många av sina bildelar genom att tillämpa plåtformning, där en av de mest tidskrävande faserna är utveckling och tillverkning av nya formningsverktyg. Idag, när ett nytt verktyg ska utvärderas med avseende på användbarhet, genomförs en formningssimulering för att förutsäga eventuella fel innan tillverkning. Antagandet är då att verktygen är stela och den enda deformerbara delen är själva plåten. Det är dock inte så, eftersom verktygen också deformeras under formningsprocessen. Tidigare forskning, som ligger till grund för detta examensarbete, inkluderade en modell med endast elastiska verktyg och visade resultat med hög noggrannhet i jämförelse med att använda stela verktyg. Simuleringen med elastiska verktyg är emellertid inte optimal att implementera för daglig användning, eftersom den kräver hög beräkningskraft och har en lång simuleringstid. Syftet och omfattningen av detta examensarbete är att utvärdera hur en plåtformningssimulering med elastiska verktyg kan minskas med avseende på beräkningskostnaden, genom att använda programvaran LS-DYNA. En liten avvikelse från formningsresultatet är acceptabelt, och målet är att köra simuleringen med en 50-75 % minskning av tiden på färre kärnor än ungefär 14 timmar och 800 processorer som simuleringen kräver idag. Det första steget är att ändra verktygets geometri och utvärdera inverkan på deformationerna av plåten. De elastiska solida verktygsdelarna som endast har små deformationer raderas och ersätts av stela ytor, vilket gör modellen delvis elastisk. Senare studeras olika dekompositionsmetoder för att avgöra vilka som gör simuleringen snabbare. Till sist utförs en skalningsanalys för att bestämma antalet processorer som ska användas för att köra simuleringen så effektivt som möjligt. Korrelationen av huvudtöjningarna mellan en helt elastisk modell och en delvis elastisk modell visade resultat av hög noggrannhet, såväl som jämförelse med produktionsmätningar av en format plåt. Beräkningstiden minskar med över 90 % när man använder ungefär 65 % av den ursprungliga beräkningskraften. Om simuleringarna körs med färre antal kärnor, cirka 10 % av ursprungligt antal CPUer, minskar simuleringstiden med 70 %.  Slutsatsen av detta arbete är att det är möjligt att köra en delvis elastisk plåtformningssimulering mycket effektivare än att använda en helt elastisk modell, utan att de resulterar i pålitlighetsproblem. Detta genom att minska antalet element, utvärdera dekompositionsmetoden och genom att genomföra en skalningsanalys för att utvärdera effektiviteten av beräkningskraften. / Reduced Lead Time through Advanced Die Structure Analysis - Swedish innovation agency Vinnova
37

An Arbitrary Lagrangian-Eulerian Finite Element Method for Shock Wave Propagation: Validating Simulations of Underwater Explosions / En finit elementmetod med ALE för stötvågsutbredning: validering av simulerade undervattensdetonationer

Sandström, Sebastian January 2021 (has links)
Underwater explosions are often modeled with Arbitrary Lagrangian-Eulerian (ALE) Finite Element Methods. The objective of this thesis is to validate the simulation method, with respect to the propagating shock wave. A two-dimensional axisymmetric model of a spherical TNT charge submerged in water is simulated using LS-DYNA. The explosive is modeled with the Burn Fraction technique and the Jones-Wilkins-Lee equation of state. Water is modeled as a non-viscous fluid, with the Grüneisen equation of state. The convergence for different mesh resolutions, the effect of different advection methods, and varied constants in the artificial viscosity are examined. Generally, the simulations agree well with empirical results, but the maximum pressure diminishes more rapidly with distance compared to experiments. The excessive dampening is most notable in the early stages of the propagation. Also, unexpected oscillations are observed near the discontinuity. The choice of advection scheme and constants in the artificial viscosity do not resolve the issues suggesting that other numerical techniques for treating the discontinuity should be considered. / Undervattensexplosioner simuleras ofta med ALE-baserade finita elementmetoder. Detta examensarbete avser att validera simuleringsmetoden med hänsyn till stötvågens utbredning i vattnet. En tvådimensionell axisymmetrisk modell av en sfärisk TNT-laddning nedsänkt i vatten simuleras i LS-DYNA. Laddningen modelleras med hjälp av brinnfraktioner och Jones-Wilkins-Lee tillståndsekvation. Vattnet modelleras som en inviskös fluid tillsammans med Grüneisens tillståndsekvation. Nätkonvergens, val av advektionsmetod och ändring av konstanter i den artificiella viskositeten studeras. Övergripande resultat stämmer väl överens med empirisk data, men stötvågens topptryck avtar fortare än väntat. Denna dämpning är tydligast i utredningens tidiga skeden. Dessutom observeras oväntade oscillationer kring stötvågens diskontinuerliga tryckprofil. Val av advektionsmetod och konstanter tillhörande artificiella viskositeten verkar ha liten betydelse för resultaten. En alternativ numerisk metod för behandling av stötvågens diskontinuitet bör implementeras.
38

A finite element study of shell and solid element performance in crash-box simulations / En jämförande finita elementstudie av skal- och solidelement i simulering av krockboxar

Bari, Mahdi January 2015 (has links)
This thesis comprehends a series of nonlinear numerical studies with the finite element software's LS-Dyna and Impetus AFEA. The main focus lies on a comparative crash analysis of an aluminium beam profile which the company Sapa technology has used during their crash analysis. The aluminium profile has the characteristic of having different thickness over span ratios within the profile. This characteristic provided the opportunity to conduct a performance investigation of shell and solid elements with finite element analysis. Numerical comparisons were made between shell and solid elements where measurable parameters such as internal energy, simulation times, buckling patterns and material failures were compared to physical tests conducted prior to this thesis by Sapa technology. The performance investigation of shell and solid elements was initiated by creating models of the aluminium profile for general visualization and to facilitate the meshing of surfaces. The meshing procedure was considered to be an important factor of the analysis. The mesh quality and element orientations were carefully monitored in order to achieve acceptable results when the models were compared to physical tests. Preliminary simulations were further conducted in order to obtain a clear understanding of software parameters when performing crash simulations in LS-Dyna and Impetus AFEA. The investigated parameters were element formulations and material models. A general parameter understanding facilitated in the selection of parameters for actual simulations, where material failure and damage models were used. In conclusion, LS-Dyna was observed to provide a bigger internal energy absorption during the crushing of the beam with longer simulation times for solid elements when compared to shell elements. Impetus AFEA did on the other hand provide results close to physical test data with acceptable simulation times when compared to physical tests. The result difference obtained from the FE-software's in relation to physical crash experiments were considered to be varied but did indicate that shell elements were efficient enough for the specific profile during simulations with LS-Dyna. Impetus AFEA proved that the same time to be numerically efficient for energy approximations with solid elements refined with the third polynomial.
39

Weld head motion control of girth and tubular joint welding simulations in LS-DYNA

Segerstark, Andreas January 2013 (has links)
The basis for performing a thermo-mechanical staggered coupled heat source analysis of a welding simulation is implemented into LS-DYNA. In this report, three methods for initiating the heat source’s mechanical motion during girth and tubular joint welding are developed and evaluated. The first method is a reformulation of the equations used at Det Norske Veritas, the second is an incorporation of the equations into excel and the third is a standalone third party software. The most efficient of the developed methods turned out to be the software which creates k-files which are implemented into the main k-file using LS-PrePost. All methods have been visually and numerically evaluated using Excel, LS-DYNA and LS-PrePost.
40

Finite element analysis and optimisation of egg-box energy absorbing structures

Sanaei, Maryam January 2013 (has links)
This study investigates the mechanical and geometrical attributes of egg–box energy absorbing structures as crash safety barriers in the automotive industry. The research herein was originated from the earlier work of Prof. Shirvani, patented and further investigated by Cellbond Composites Ltd. who has invested in further research, for developing an analytical tool for geometric optimisation as an enhanced resolution to various shapes and materials. Energy absorption in egg-box occurs through plastic deformation of cell walls, examined through non–linear finite element simulations using ANSYS® and ANSYS/LS–DYNA® FE packages. Experimental dynamic crash tests have been designed to verify the validity of the FE simulations. Geometrical models are defined as 3D graphical representations, outlined in detail. Further, the impact behaviour of commercially pure aluminium egg-box energy absorbers is studied to identify the optimum design parameters describing the geometry of the structure. A simulation-based multi-objective optimisation strategy is employed to find a set of Pareto-optimal solutions where each solution represents a trade-off point with respect to the two conflicting objectives: the maximum impact force and the energy absorption capacity of the structure. The aim is to simultaneously minimise the former and maximise the latter, in the attempt to find purpose–specific optimal egg–box geometries. In light of the associated outcomes, it is shown that egg–box geometries with < ω ), thin walls (t < 1mm), short inter–peak distances and small peak diameters. M – < ω ), thin walls (t < 1mm), lengthy inter–peak distances and smaller peak diameters. It is concluded that, egg–box structures combined in the form of sandwich panels can be designed per application to act as optimised energy absorbers. Results of the proposed optimised sandwich structure are verified using analytical techniques.

Page generated in 0.419 seconds