• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • Tagged with
  • 20
  • 20
  • 13
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Approche cartésienne pour le calcul du vent en terrain complexe avec application à la propagation des feux de forêt

Proulx, Louis-Xavier 01 1900 (has links)
La méthode de projection et l'approche variationnelle de Sasaki sont deux techniques permettant d'obtenir un champ vectoriel à divergence nulle à partir d'un champ initial quelconque. Pour une vitesse d'un vent en haute altitude, un champ de vitesse sur une grille décalée est généré au-dessus d'une topographie donnée par une fonction analytique. L'approche cartésienne nommée Embedded Boundary Method est utilisée pour résoudre une équation de Poisson découlant de la projection sur un domaine irrégulier avec des conditions aux limites mixtes. La solution obtenue permet de corriger le champ initial afin d'obtenir un champ respectant la loi de conservation de la masse et prenant également en compte les effets dûs à la géométrie du terrain. Le champ de vitesse ainsi généré permettra de propager un feu de forêt sur la topographie à l'aide de la méthode iso-niveaux. L'algorithme est décrit pour le cas en deux et trois dimensions et des tests de convergence sont effectués. / The Projection method and Sasaki's variational technique are two methods allowing one to extract a divergence-free vector field from any vector field. From a high altitude wind speed, a velocity field is generated on a staggered grid over a topography given by an analytical function. The Cartesian grid Embedded Boundary method is used for solving a Poisson equation, obtained from the projection, on an irregular domain with mixed boundary conditions. The solution of this equation gives the correction for the initial velocity field to make it such that it satisfies the conservation of mass and takes into account the effects of the terrain. The incompressible velocity field will be used to spread a wildfire over the topography with the Level Set Method. The algorithm is described for the two and three dimensional cases and convergence tests are done.
12

Une méthode multidomaine parallèle pour les écoulements incompressibles en géométries cylindriques : applications aux écoulements turbulents soumis à la rotation / A parallelized multidomain compact solver for incompressible turbulent flows in cylindrical geometries : application to the simulation of turbulent rotating flows

Oguic, Romain 19 October 2015 (has links)
Ce travail concerne l’étude d’écoulements incompressibles soumis à la rotation avec un solveur haute précision dans des géométries semi-complexes. La technique numérique mise en œuvre combine des schémas compacts, une méthode de projection multi domaine directe et un traitement efficace de la singularité à l’axe basé sur des conditions de parité dans l’espace de Fourier. Le solveur a été parallélisé avec une approche hybride MPI-OpenMP pour réduire les temps de calcul. Dans un premier temps, les précisions spatiales et temporelles de la méthode numérique et la scalabilité du solveur ont été vérifiées. La capacité du solveur à traiter des écoulements plus complexes a été évaluée en considérant des écoulements de type éclatement tourbillonnaire et un écoulement turbulent en conduite cylindrique. Dans un second temps, plusieurs écoulements typiques des machines tournantes ont été étudiés. Le premier écoulement est un écoulement turbulent incompressible isotherme dans un étage simplifié d’un compresseur haute pression d’une turbine à gaz. Les simulations menées ont mises en évidence l’effet de la rotation sur l’écoulement, notamment sur les instabilités se développant le long des parois et sur les différentes structures cohérentes. Le second cas traité est un écoulement turbulent de jet impactant un disque en rotation avec un fort confinement et transfert thermique. Une attention particulière a été portée sur les champs hydrodynamiques et thermique le long du rotor. Enfin, une étude préliminaire d’un jet turbulent impactant un disque fixe d’épaisseur non nulle dans une configuration moins contrainte avec prise en compte du couplage conduction-convection a été réalisée. / This work deals with the study of rotating incompressible flows with a high accurate solver in semi complex geometries. The numerical method used in this work combines compact schemes, a direct multidomain projection method and an efficient axis treatment based on parity conditions in Fourier space. The use of cylindrical coordinates introduces this mathematical singularity. In order to reduce the calculation time, the solver was parallelized with an hybrid MPI-OpenMP parallelization. First, the spatial and temporal accuracies of the numerical method and the scalability of the solver were checked. Then, the capability of the algorithm to deal with more complex flows was verified. Vortex breakdown flows and turbulent pipe flow were studied. In the second step, typical flows of turbomachineries and rotating systems were considered. The first flow was an incompressible isothermal turbulent flow in a high pressure compressor of gas turbine. The different simulations highlighted the rotation effects on the flows, especially on the instabilities appearing along the walls and the coherent structures. The second considered flow was a turbulent impinging jet on a rotating disk with heat transfer in a small aspect ratio cavity. The hydrodynamic fields and heat transfer near the rotor were analyzed in detail. Finally, a preliminary investigation of an impinging jet on a non-rotating disk in a larger aspect ratio cavity with a coupling between conduction and convection transfer was carried out.
13

La méthode IIM pour une membrane immergée dans un fluide incompressible

Morin-Drouin, Jérôme 02 1900 (has links)
La méthode IIM (Immersed Interface Method) permet d'étendre certaines méthodes numériques à des problèmes présentant des discontinuités. Elle est utilisée ici pour étudier un fluide incompressible régi par les équations de Navier-Stokes, dans lequel est immergée une membrane exerçant une force singulière. Nous utilisons une méthode de projection dans une grille de différences finies de type MAC. Une dérivation très complète des conditions de saut dans le cas où la viscosité est continue est présentée en annexe. Deux exemples numériques sont présentés : l'un sans membrane, et l'un où la membrane est immobile. Le cas général d'une membrane mobile est aussi étudié en profondeur. / The Immersed Interface Method allows us to extend the scope of some numerical methods to discontinuous problems. Here we use it in the case of an incompressible fluid governed by the Navier-Stokes equations, in which a membrane is immersed, inducing a singular force. We use a projection method and staggered (MAC-type) finite difference approximations. A very complete derivation for the jump conditions is presented in the Appendix, for the case where the viscosity is continuous. Two numerical examples are shown : one without a membrane, and the other where the membrane is motionless. The general case of a moving membrane is also thoroughly studied.
14

Schéma de transport de l'interface d'un écoulement diphasique visqueux non miscible par la méthode des caractéristiques / Interface transport scheme of a viscous immiscible two-phase flow by the method of characteristics

El-Haddad, Mireille 18 November 2016 (has links)
Dans cette thèse, on utilise des outils mathématiques et numériques pour modéliser les écoulements tridimensionnels incompressibles à surface libre instationnaires. L'application industrielle visée est l'étude de la phase de remplissage des moules dans une fonderie. On développe un algorithme pour le transport de l'interface par la vitesse du fluide pour un fluide diphasique incompressible visqueux non-miscible de rapport de densité important en utilisant la méthode de caractéristiques pour traiter le problème de convection. Il y a des défis majeurs dans le contexte de la modélisation des fluides diphasiques. Tout d'abord, on doit prendre en considération l'évolution de l'interface et de ses changements topologiques. Deuxièmement, on doit traiter la non-linéarité convective de l'interface et de l'écoulement. Troisièmement, les équations de Navier-Stokes et du transport doivent être munies des conditions aux bords appropriées. En outre, il faut traiter soigneusement les singularités géométriques et topologiques à travers l'interface en particulier dans le cas de rapport de densité et viscosité important. On doit également maintenir la résolution d'une interface d'épaisseur nulle durant les cas du pliage, la rupture et la fusion de l'interface. Quatrièmement, on doit respecter les propriétés physiques telles que la conservation de la masse pour tout écoulement d'un fluide incompressible. Cinquièmement, il faut toujours penser aux limitations du temps de calcul et de mémoire pour résoudre ce genre de problème dans les cas pratiques. Notre but est de trouver un schéma fiable capable de modéliser le remplissage des moules tridimensionnelles industrielles. La première partie de cette thèse est dédiée à la description mathématique du schéma de transport de l'interface par la vitesse du fluide. Le mouvement des fluides est décrit par les équations de Navier-Stokes. L'interface est capturée par la fonction Level-Set. Le problème est discrétisée en espace par la méthode des éléments finis et en temps par la méthode de caractéristiques.Des conditions aux bords appropriées pour le problème du remplissage d'un moule sont introduites et un algorithme de calcul de la solution est présentée. Finalement,des résultats numériques montrent et valident l'efficacité duschéma proposé. Dans la deuxième partie de cette thèse, on introduit une méthode de décomposition de domaine qui correspond à la discrétisation par la méthode des caractéristiques dans le but d'améliorer la performance de l'algorithme proposé lors de la modélisation du remplissage des moules industrielles à moyennes séries. Des résultats numériques de comparaison valident la précision du code parallèle. / In this thesis, we use mathematical and numerical tools to model three dimensional incompressible laminar flows with free surface. The described industrial application is the study of the mould filling phase in a foundry. We develop an algorithm for the transport of the interface by the fluid velocity for a viscous incompressible immiscible fluids of high density ratio in two-phase flow using the method of characteristics for the convection problem.There are, however, major challenges in the context of two-phase flow modeling.First, we have to take into account the evolution of the interface and its topological changes. Second, we have to deal with the non-linearity for the convection of the flow and the interface. Third, we must assign appropriate boundary conditions to the flow and transport equations.In addition, care must be taken in treating the geometrical and topological singularities across the interface.We also have to maintain a sharp interface resolution, including the cases of interface folding, breaking and merging.Furthermore, we should respect the physical properties such as the mass conservation for any incompressible fluid flows.Finally, we have to keep in mind the limitations in the time of computation and memory to solve this kind of problem in practical cases. Our purpose is to find a reliable scheme able to model the filling of three dimensional industrial moulds.The first part of the thesis is devoted to the mathematical description of the interface transport scheme by the fluid velocity. The fluids motion is described by the Navier-Stokes equations. The interface is captured by the Level-Set function. The problem isdiscretized by the characteristics method in time and finiteelements method in space. The interface is captured by the Level-Setfunction. Appropriate boundary conditions for the problem ofmould filling are investigated, a new natural boundary conditionunder pressure effect for the transport equation is proposed andan algorithm for computing the solution is presented. Finally,numerical experiments show and validate the effectiveness of theproposed scheme.In the second part of the thesis, we introduce a domain decomposition method that suits the discretization by the method of characteristics in order to improve the performance of the proposed algorithm to model the filling phase for moulds of medium series. Numerical results of comparison validate the precision of the parallel code.
15

Une nouvelle mise en oeuvre de la méthode IIM pour les équations de Navier-Stokes en présence d'une force singulière

Conti, Marc January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
16

Une nouvelle mise en oeuvre de la méthode IIM pour les équations de Navier-Stokes en présence d'une force singulière

Conti, Marc January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
17

Une nouvelle méthode smoothed particle hydrodynamics : simulation des interfaces immergées et de la dynamique Brownienne des molécules avec des interactions hydrodynamiques

Kéou Noutcheuwa, Rodrigue Giselin 12 1900 (has links)
Dans cette thèse, nous présentons une nouvelle méthode smoothed particle hydrodynamics (SPH) pour la résolution des équations de Navier-Stokes incompressibles, même en présence des forces singulières. Les termes de sources singulières sont traités d'une manière similaire à celle que l'on retrouve dans la méthode Immersed Boundary (IB) de Peskin (2002) ou de la méthode régularisée de Stokeslets (Cortez, 2001). Dans notre schéma numérique, nous mettons en oeuvre une méthode de projection sans pression de second ordre inspirée de Kim et Moin (1985). Ce schéma évite complètement les difficultés qui peuvent être rencontrées avec la prescription des conditions aux frontières de Neumann sur la pression. Nous présentons deux variantes de cette approche: l'une, Lagrangienne, qui est communément utilisée et l'autre, Eulerienne, car nous considérons simplement que les particules SPH sont des points de quadrature où les propriétés du fluide sont calculées, donc, ces points peuvent être laissés fixes dans le temps. Notre méthode SPH est d'abord testée à la résolution du problème de Poiseuille bidimensionnel entre deux plaques infinies et nous effectuons une analyse détaillée de l'erreur des calculs. Pour ce problème, les résultats sont similaires autant lorsque les particules SPH sont libres de se déplacer que lorsqu'elles sont fixes. Nous traitons, par ailleurs, du problème de la dynamique d'une membrane immergée dans un fluide visqueux et incompressible avec notre méthode SPH. La membrane est représentée par une spline cubique le long de laquelle la tension présente dans la membrane est calculée et transmise au fluide environnant. Les équations de Navier-Stokes, avec une force singulière issue de la membrane sont ensuite résolues pour déterminer la vitesse du fluide dans lequel est immergée la membrane. La vitesse du fluide, ainsi obtenue, est interpolée sur l'interface, afin de déterminer son déplacement. Nous discutons des avantages à maintenir les particules SPH fixes au lieu de les laisser libres de se déplacer. Nous appliquons ensuite notre méthode SPH à la simulation des écoulements confinés des solutions de polymères non dilués avec une interaction hydrodynamique et des forces d'exclusion de volume. Le point de départ de l'algorithme est le système couplé des équations de Langevin pour les polymères et le solvant (CLEPS) (voir par exemple Oono et Freed (1981) et Öttinger et Rabin (1989)) décrivant, dans le cas présent, les dynamiques microscopiques d'une solution de polymère en écoulement avec une représentation bille-ressort des macromolécules. Des tests numériques de certains écoulements dans des canaux bidimensionnels révèlent que l'utilisation de la méthode de projection d'ordre deux couplée à des points de quadrature SPH fixes conduit à un ordre de convergence de la vitesse qui est de deux et à une convergence d'ordre sensiblement égale à deux pour la pression, pourvu que la solution soit suffisamment lisse. Dans le cas des calculs à grandes échelles pour les altères et pour les chaînes de bille-ressort, un choix approprié du nombre de particules SPH en fonction du nombre des billes N permet, en l'absence des forces d'exclusion de volume, de montrer que le coût de notre algorithme est d'ordre O(N). Enfin, nous amorçons des calculs tridimensionnels avec notre modèle SPH. Dans cette optique, nous résolvons le problème de l'écoulement de Poiseuille tridimensionnel entre deux plaques parallèles infinies et le problème de l'écoulement de Poiseuille dans une conduite rectangulaire infiniment longue. De plus, nous simulons en dimension trois des écoulements confinés entre deux plaques infinies des solutions de polymères non diluées avec une interaction hydrodynamique et des forces d'exclusion de volume. / In this thesis we develop a new smoothed particle hydrodynamics (SPH) method suitable for solving the incompressible Navier-Stokes equations, even with singular forces. Singular source terms are handled in a manner similar to that in the immersed boundary (IB) method of Peskin (2002) or in the method of regularized Stokeslets (Cortez, 2001). The numerical scheme implements a second-order pressure-free projection method due to Kim and Moin (1985) and completely obviates the difficulties that may be faced in prescribing Neumann pressure boundary conditions. We present two variants of this approach, one Langrangian which is commonly used and one Eulerian, simply because we consider that the SPH particles are quadrature points on which the fluid properties are calculated, therefore, these points can be kept fixed in time. The proposed SPH method is first tested on the planar start-up Poiseuille problem and a detailed error analysis is performed. For this problem, the results are similar whether the SPH particles are free to move or fixed on a regular grid. Our hybrid SPH-IB method is then used to calculate the dynamics of a stretched immersed elastic membrane. The membrane is represented by a cubic spline along which the tension in the membrane is computed and transmitted to the surrounding fluid. The Navier-Stokes equations with singular force due to the membrane are then solved to determine the velocity of the fluid in which the membrane is immersed. The fluid velocity thus obtained is interpolated on the interface, to determine its displacement. We discuss the advantages, in this problem, of fixing the SPH particles, rather than allowing them to move with the fluid. A new coupled Brownian dynamics-SPH method for the computation of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces is next presented. The starting point for the algorithm is the system of coupled Langevin equations for polymer and solvent (CLEPS) (see Oono and Freed (1981) and Öttinger and Rabin (1989), for example) describing, in the present case, the microscopic dynamics of a flowing polymer solution with a bead-spring representation of the macromolecules. Numerical tests of some two-dimensional channel flows reveal that use of a second-order projection scheme coupled with fixed SPH quadrature points leads to second-order velocity convergence and almost second-order pressure convergence, provided that the solution is sufficiently smooth. In the case of large-scale dumbbell and bead-spring chain calculations, an appropriate scaling of the number of grid points as a function of the number of beads N ensures, in the absence of excluded volume forces, that the cost of our algorithm is O(N) flops. Finally, we begin calculations in three dimensions with our SPH model. To this end, we solve in three dimensions the problem of Poiseuille flow between two infinite and parallel plates and the problem of Poiseuille flow in a rectangular infinitely long duct. In addition, we carry out three dimensional computations of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces.
18

Une nouvelle méthode smoothed particle hydrodynamics : simulation des interfaces immergées et de la dynamique Brownienne des molécules avec des interactions hydrodynamiques

Kéou Noutcheuwa, Rodrigue Giselin 12 1900 (has links)
Dans cette thèse, nous présentons une nouvelle méthode smoothed particle hydrodynamics (SPH) pour la résolution des équations de Navier-Stokes incompressibles, même en présence des forces singulières. Les termes de sources singulières sont traités d'une manière similaire à celle que l'on retrouve dans la méthode Immersed Boundary (IB) de Peskin (2002) ou de la méthode régularisée de Stokeslets (Cortez, 2001). Dans notre schéma numérique, nous mettons en oeuvre une méthode de projection sans pression de second ordre inspirée de Kim et Moin (1985). Ce schéma évite complètement les difficultés qui peuvent être rencontrées avec la prescription des conditions aux frontières de Neumann sur la pression. Nous présentons deux variantes de cette approche: l'une, Lagrangienne, qui est communément utilisée et l'autre, Eulerienne, car nous considérons simplement que les particules SPH sont des points de quadrature où les propriétés du fluide sont calculées, donc, ces points peuvent être laissés fixes dans le temps. Notre méthode SPH est d'abord testée à la résolution du problème de Poiseuille bidimensionnel entre deux plaques infinies et nous effectuons une analyse détaillée de l'erreur des calculs. Pour ce problème, les résultats sont similaires autant lorsque les particules SPH sont libres de se déplacer que lorsqu'elles sont fixes. Nous traitons, par ailleurs, du problème de la dynamique d'une membrane immergée dans un fluide visqueux et incompressible avec notre méthode SPH. La membrane est représentée par une spline cubique le long de laquelle la tension présente dans la membrane est calculée et transmise au fluide environnant. Les équations de Navier-Stokes, avec une force singulière issue de la membrane sont ensuite résolues pour déterminer la vitesse du fluide dans lequel est immergée la membrane. La vitesse du fluide, ainsi obtenue, est interpolée sur l'interface, afin de déterminer son déplacement. Nous discutons des avantages à maintenir les particules SPH fixes au lieu de les laisser libres de se déplacer. Nous appliquons ensuite notre méthode SPH à la simulation des écoulements confinés des solutions de polymères non dilués avec une interaction hydrodynamique et des forces d'exclusion de volume. Le point de départ de l'algorithme est le système couplé des équations de Langevin pour les polymères et le solvant (CLEPS) (voir par exemple Oono et Freed (1981) et Öttinger et Rabin (1989)) décrivant, dans le cas présent, les dynamiques microscopiques d'une solution de polymère en écoulement avec une représentation bille-ressort des macromolécules. Des tests numériques de certains écoulements dans des canaux bidimensionnels révèlent que l'utilisation de la méthode de projection d'ordre deux couplée à des points de quadrature SPH fixes conduit à un ordre de convergence de la vitesse qui est de deux et à une convergence d'ordre sensiblement égale à deux pour la pression, pourvu que la solution soit suffisamment lisse. Dans le cas des calculs à grandes échelles pour les altères et pour les chaînes de bille-ressort, un choix approprié du nombre de particules SPH en fonction du nombre des billes N permet, en l'absence des forces d'exclusion de volume, de montrer que le coût de notre algorithme est d'ordre O(N). Enfin, nous amorçons des calculs tridimensionnels avec notre modèle SPH. Dans cette optique, nous résolvons le problème de l'écoulement de Poiseuille tridimensionnel entre deux plaques parallèles infinies et le problème de l'écoulement de Poiseuille dans une conduite rectangulaire infiniment longue. De plus, nous simulons en dimension trois des écoulements confinés entre deux plaques infinies des solutions de polymères non diluées avec une interaction hydrodynamique et des forces d'exclusion de volume. / In this thesis we develop a new smoothed particle hydrodynamics (SPH) method suitable for solving the incompressible Navier-Stokes equations, even with singular forces. Singular source terms are handled in a manner similar to that in the immersed boundary (IB) method of Peskin (2002) or in the method of regularized Stokeslets (Cortez, 2001). The numerical scheme implements a second-order pressure-free projection method due to Kim and Moin (1985) and completely obviates the difficulties that may be faced in prescribing Neumann pressure boundary conditions. We present two variants of this approach, one Langrangian which is commonly used and one Eulerian, simply because we consider that the SPH particles are quadrature points on which the fluid properties are calculated, therefore, these points can be kept fixed in time. The proposed SPH method is first tested on the planar start-up Poiseuille problem and a detailed error analysis is performed. For this problem, the results are similar whether the SPH particles are free to move or fixed on a regular grid. Our hybrid SPH-IB method is then used to calculate the dynamics of a stretched immersed elastic membrane. The membrane is represented by a cubic spline along which the tension in the membrane is computed and transmitted to the surrounding fluid. The Navier-Stokes equations with singular force due to the membrane are then solved to determine the velocity of the fluid in which the membrane is immersed. The fluid velocity thus obtained is interpolated on the interface, to determine its displacement. We discuss the advantages, in this problem, of fixing the SPH particles, rather than allowing them to move with the fluid. A new coupled Brownian dynamics-SPH method for the computation of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces is next presented. The starting point for the algorithm is the system of coupled Langevin equations for polymer and solvent (CLEPS) (see Oono and Freed (1981) and Öttinger and Rabin (1989), for example) describing, in the present case, the microscopic dynamics of a flowing polymer solution with a bead-spring representation of the macromolecules. Numerical tests of some two-dimensional channel flows reveal that use of a second-order projection scheme coupled with fixed SPH quadrature points leads to second-order velocity convergence and almost second-order pressure convergence, provided that the solution is sufficiently smooth. In the case of large-scale dumbbell and bead-spring chain calculations, an appropriate scaling of the number of grid points as a function of the number of beads N ensures, in the absence of excluded volume forces, that the cost of our algorithm is O(N) flops. Finally, we begin calculations in three dimensions with our SPH model. To this end, we solve in three dimensions the problem of Poiseuille flow between two infinite and parallel plates and the problem of Poiseuille flow in a rectangular infinitely long duct. In addition, we carry out three dimensional computations of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces.
19

Méthode SPH implicite d’ordre 2 appliquée à des fluides incompressibles munis d’une frontière libre

Rioux-Lavoie, Damien 05 1900 (has links)
L’objectif de ce mémoire est d’introduire une nouvelle méthode smoothed particle hydrodynamics (SPH) implicite purement lagrangienne, pour la résolution des équations de Navier- Stokes incompressibles bidimensionnelles en présence d’une surface libre. Notre schéma de discrétisation est basé sur celui de Kéou Noutcheuwa et Owens [19]. Nous avons traité la surface libre en combinant la méthode multiple boundary tangent (MBT) de Yildiz et al. [43] et les conditions aux limites sur les champs auxiliaires de Yang et Prosperetti [42]. Ce faisant, nous obtenons un schéma de discrétisation d’ordre $\mathcal{O}(\Delta t ^2)$ et $\mathcal{O}(\Delta x ^2)$, selon certaines contraintes sur la longueur de lissage $h$. Dans un premier temps, nous avons testé notre schéma avec un écoulement de Poiseuille bidimensionnel à l’aide duquel nous analysons l’erreur de discrétisation de la méthode SPH. Ensuite, nous avons tenté de simuler un problème d’extrusion newtonien bidimensionnel. Malheureusement, bien que le comportement de la surface libre soit satisfaisant, nous avons rencontré des problèmes numériques sur la singularité à la sortie du moule. / The objective of this thesis is to introduce a new implicit purely lagrangian smoothed particle hydrodynamics (SPH) method, for the resolution of the two-dimensional incompressible Navier-Stokes equations in the presence of a free surface. Our discretization scheme is based on that of Kéou Noutcheuwa et Owens [19]. We have treated the free surface by combining Yildiz et al. [43] multiple boundary tangent (MBT) method and boundary conditions on the auxiliary fields of Yang et Prosperetti [42]. In this way, we obtain a discretization scheme of order $\mathcal{O}(\Delta t ^2)$ and $\mathcal{O}(\Delta x ^2)$, according to certain constraints on the smoothing length $h$. First, we tested our scheme with a two-dimensional Poiseuille flow by means of which we analyze the discretization error of the SPH method. Then, we tried to simulate a two-dimensional Newtonian extrusion problem. Unfortunately, although the behavior of the free surface is satisfactory, we have encountered numerical problems on the singularity at the output of the die.
20

Estimation distribuée adaptative sur les réseaux multitâches / Distributed adaptive estimation over multitask networks

Nassif, Roula 30 November 2016 (has links)
L’apprentissage adaptatif distribué sur les réseaux permet à un ensemble d’agents de résoudre des problèmes d’estimation de paramètres en ligne en se basant sur des calculs locaux et sur des échanges locaux avec les voisins immédiats. La littérature sur l’estimation distribuée considère essentiellement les problèmes à simple tâche, où les agents disposant de fonctions objectives séparables doivent converger vers un vecteur de paramètres commun. Cependant, dans de nombreuses applications nécessitant des modèles plus complexes et des algorithmes plus flexibles, les agents ont besoin d’estimer et de suivre plusieurs vecteurs de paramètres simultanément. Nous appelons ce type de réseau, où les agents doivent estimer plusieurs vecteurs de paramètres, réseau multitâche. Bien que les agents puissent avoir différentes tâches à résoudre, ils peuvent capitaliser sur le transfert inductif entre eux afin d’améliorer les performances de leurs estimés. Le but de cette thèse est de proposer et d’étudier de nouveaux algorithmes d’estimation distribuée sur les réseaux multitâches. Dans un premier temps, nous présentons l’algorithme diffusion LMS qui est une stratégie efficace pour résoudre les problèmes d’estimation à simple-tâche et nous étudions théoriquement ses performances lorsqu’il est mis en oeuvre dans un environnement multitâche et que les communications entre les noeuds sont bruitées. Ensuite, nous présentons une stratégie de clustering non-supervisé permettant de regrouper les noeuds réalisant une même tâche en clusters, et de restreindre les échanges d’information aux seuls noeuds d’un même cluster / Distributed adaptive learning allows a collection of interconnected agents to perform parameterestimation tasks from streaming data by relying solely on local computations and interactions with immediate neighbors. Most prior literature on distributed inference is concerned with single-task problems, where agents with separable objective functions need to agree on a common parameter vector. However, many network applications require more complex models and flexible algorithms than single-task implementations since their agents involve the need to estimate and track multiple objectives simultaneously. Networks of this kind, where agents need to infer multiple parameter vectors, are referred to as multitask networks. Although agents may generally have distinct though related tasks to perform, they may still be able to capitalize on inductive transfer between them to improve their estimation accuracy. This thesis is intended to bring forth advances on distributed inference over multitask networks. First, we present the well-known diffusion LMS strategies to solve single-task estimation problems and we assess their performance when they are run in multitask environments in the presence of noisy communication links. An improved strategy allowing the agents to adapt their cooperation to neighbors sharing the same objective is presented in order to attain improved learningand estimation over networks. Next, we consider the multitask diffusion LMS strategy which has been proposed to solve multitask estimation problems where the network is decomposed into clusters of agents seeking different

Page generated in 0.1405 seconds