• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 31
  • 29
  • 23
  • 16
  • 12
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 247
  • 65
  • 56
  • 46
  • 44
  • 34
  • 34
  • 33
  • 32
  • 28
  • 26
  • 26
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Formação e reatividade de filmes finos de macrocíclicos de ferro sobre silício monocristalino / Formation and reactivity of iron macrocycle thin films on oxidized silicon wafer- SiO2/Si

Andresa, Juliana Salvador 31 October 2007 (has links)
Neste trabalho foi estudado o desenvolvimento de uma superfície modelo de silício monocristalino, SiO2/Si, modificada com organossilanos derivados de N-heterocíclicos que permitisse a imobilização de um complexo de coordenação, FeTIM. Estas superfícies modificadas poderão ser empregadas em estudos de reatividade frente a analitos de interesse, como o NO. Sob esse aspecto, a síntese desses novos silanos, contendo N-heterocíclicos, e o desenvolvimento de uma metodologia de formação dos filmes finos automontados, sobre a superfície de SiO2/Si, tornou-se de grande relevância na aplicabilidade deste trabalho. Para a obtenção dessas superfícies, fez-se necessária a compreensão dos parâmetros de formação dos filmes de silanos. Os parâmetros estudados foram os efeitos do tempo de adsorção, da concentração da solução dos silanos, da polaridade do solvente e do tamanho da cadeia alquílica do silano no processo de formação dos filmes. Deste modo, foi possível inferir sobre as alterações na morfologia e na estrutura química dos filmes formados, através de medidas de Espectroscopia de Fotoelétrons excitados por Raios-X (XPS), Microscopia de Força Atômica (AFM) e Microscopia Eletrônica de Varredura (MEV). A imobilização do complexo de FeTIM sobre a superfície organomodificada foi comprovada pela variação da linha de fotoemissão do Fe 2p nas medidas de XPS. / This work describes the study of model surfaces on oxidized silicon wafer, SiO2/Si, modified with N-heterocycles rings, that allows the grafting of a macrocycle iron complex, FeTIM, that could be used in reactivity studies, with biologically relevant molecules, as nitrogen monoxide (NO). On this way, the synthesis of these silanes and a new methodology of the formation of self-assembled monolayers had become a relevant question on this work applicability. These thin films contain silanes bearing nitrogenated Lewis bases on silicon surfaces. In order to obtain these modified surfaces, it was necessary a comprehensive study of the adsorption parameters of the thin films. The parameters studied were the effect of: adsorption time, the solution concentration, the role of the solvents polarity and the chain length alkylsilanes in the film formation. Then, it was possible to infer about the film\'s morphology differences and chemical structures by the XPS, AFM and MEV measurements. X-ray photoemission lines of Fe 2p were used to probe the iron chemical environment in the chemically adsorbed macrocycles complexes.
142

Performance Optimization in Three-Dimensional Programmable Logic Arrays (PLAs)

Sunki, Supriya 07 June 2005 (has links)
Increased chip size and reduced feature size has helped following Moores law for long decades. This has an impact on interconnect length, which is resulting in chip performance degradation. Despite the introduction of new materials with Low-K dielectrics for interconnects, their delay is expected to substantially limit the chip performance. To overcome this problem the need for new technology has arrived. One such promising technology is the three-dimensional Integrated chips (3D ICs) with multiple silicon layers. In this thesis, three dimensional integrated chip (3D IC) technology has been implemented on programmable logic arrays (PLAs). The two-dimensional PLAs are converted to three-dimensional PLAs to realize the advantages of the third dimension. Two novel approaches for partitioning of PLAs are introduced for topological optimization. Greedy algorithm is implemented on the partitioned PLAs to utilize the third dimension for further enhancement in scalability factors. This concept has been implemented on MPLA (Magic Programmable Logic Array) tool. The 3D PLA has been tested on MCNC91 benchmark suite and the results are presented. The experimental results are compared with the 2D-PLA on the same benchmark set. The results obtained indicate the efficacy of the proposed synthesis approach.
143

Technologische Konzepte zur Herstellung von monolithischen bidirektionalen Schaltern (MBS) /

Baus, Matthias. January 2007 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2007.
144

Evaluation des performances isolantes de couches de SIOCH poreuses et de polymères destinés aux technologies d'intégration innovantes

Dubois, Christelle 13 May 2011 (has links) (PDF)
L'objectif de ce travail de thèse a été d'évaluer, à partir d'outils de caractérisation électrique (spectroscopie d'impédance basse fréquence et courants thermo-stimulés), l'impact des étapes de polissage mécanochimique (CMP) et de recuits thermiques sur les propriétés diélectriques de matériaux utilisés pour les dernières générations de circuits intégrés. Une première partie est focalisée sur le matériau SiOCH poreux déposé par voie chimique " en phase vapeur " assisté par plasma (PECVD) suivant une approche porogène (p=26%, d=2nm et er=2,5). Son intégration dans les technologies 45nm nécessite l'utilisation d'un procédé de 'CMP directe' qui induit une dégradation des propriétés isolantes attribuée à l'adsorption de surfactants et de molécules d'eau. L'analyse diélectrique sur une large gamme de fréquence (10-1Hz- 105Hz) et de température (-120°C -200°C) a mis en évidence plusieurs mécanismes de relaxation diélectrique et de conduction liés à la présence de molécules nanoconfinées (eau et porogène) dans les pores du matériau. L'étude de ces mécanismes a permis d'illustrer le phénomène de reprise en eau du SiOCH poreux ainsi que d'évaluer la capacité de traitements thermiques à en restaurer les performances. Une seconde partie concerne l'étude d'une résine époxy chargée avec des nanoparticules de silice, utilisée en tant que 'wafer level underfill' dans les technologies d'intégration 3D. Les analyses en spectroscopie d'impédance ont montré que l'ajout de nanoparticules de silice s'accompagne d'une élévation de la température de transition vitreuse et de la permittivité diélectrique, ainsi que d'une diminution de la conductivité basse fréquence. L'autre contribution majeure des mesures diélectriques a été de montrer qu'un refroidissement trop rapide de la résine à l'issue de la réticulation était responsable d'une contrainte interne qui pourra occasionner des problèmes de fiabilité pour l'application.
145

Microrobotique numérique fondée sur l'utilisation de modules bistables : conception, fabrication et commande de modules monolithiques.

Chen, Qiao 18 March 2010 (has links) (PDF)
Au cours de la dernière décennie, des travaux de recherche importants ont été effectués dans le domaine de la microrobotique. Ces travaux concernent la conception, la fabrication et la commande de microrobots destinés à exécuter diverses tâches dans le micromonde (le monde des objets de taille micrométrique). Il s'agit notamment de tâches de manipulation d'objets artificiels ou biologiques à des fins de positionnement, de caractérisation ou de tri mais aussi pour le micro-assemblage industriel. Les recherches effectuées ont montré l'efficacité des matériaux actifs pour l'actionnement des microrobots. Toutefois, en dépit de leur haute résolution intrinsèque, ces matériaux présentent des inconvénients qui rendent la commande des microrobots difficile. Le comportement de ces matériaux et plus généralement des actionneurs qui les utilisent est souvent complexe, non linéaire et parfois non stationnaire. L'implantation de lois de commande nécessite donc l'emploi de capteurs et d'instruments coûteux et encombrants pour le traitement des signaux et l'exécution en temps réel. Dans le but de lever les difficultés citées précédemment et d'ouvrir des perspectives nouvelles pour la conception et la commande de microrobots, nous proposons une nouvelle approche pour la microrobotique appellée « microrobotique numérique » qui utilise un concept de modularité et une commande en boucle ouverte. Ces nouveaux microrobots sont construits à partir de « modules élémentaires » possédant deux états mécaniques stables et répétables. La position de l'extrémité du microrobot dépend de l'état des différents modules bistables qui le composent. Cette approche introduit un nouveau paradigme en microrobotique permettant la conception de cinématiques diverses adaptées au micromonde. Les principaux avantages de cette nouvelle microrobotique sont la modularité, l'absence de capteurs, la flexibilité, la possibilité de réaliser des robots microfabriqués et l'absence d'asservissement. Cette thèse propose la conception, la microfabrication et la caractérisation d'un module bistable.
146

Silicon and Quartz Microengineering : Processing and Characterisation

Vallin, Örjan January 2005 (has links)
<p>Microengineering has developed a broad range of production techniques to reduce size, increase throughput, and reduce cost of electrical and mechanical devices. The miniaturisation has also entailed entirely new opportunities.</p><p>In this work, a piezoresistive silicon sensor measuring mechanical deformation has been designed and fabricated with the help of microengineering. Due to the large variety of used processes, this device can serve as a survey of techniques in this field. Four basic process categories are recognised: additive, subtractive, modifying, and joining methods.</p><p>The last category, joining methods, has previously been the least investigated, especially when it comes to compatibility with the other categories. The adaptability of wet chemical etching to established silicon wafer bonding technique has been investigated. Further, phenomena related to oxygen plasma pre-treatment for direct bonding has been investigated by blister bond adhesion tests, X-ray photoelectron spectroscopy, and atomic force microscopy.</p><p>Wafer bonding has been adapted to monocrystalline quartz. For wet chemical pre-treatment, characteristics specific for quartz raise obstacles. Problems with limited allowable annealing temperature, low permeability of water released in the bond at annealing, and electrostatic bonding of particles to the quartz surface, have been studied and overcome. The influence of internal bond interfaces on resonators has been investigated.</p><p>Chemical polishing of quartz by ammonium bifluoride has been experimentally investigated at high temperatures and concentrations. Chemometrical methods were used to search for optimum conditions giving the lowest surface roughness. These extreme conditions showed no extra advantages.</p><p>Adhesion quantification methods for wafer bonding have been comprehensively reviewed, and augmentations have been suggested. The improved techniques’ usefulness for three areas of use has been forecasted: general understanding, bonding scheme optimisation, and quality control. It was shown that the quality of measurements of all commonly used methods could be dramatically improved by small means.</p>
147

Silicon and Quartz Microengineering : Processing and Characterisation

Vallin, Örjan January 2005 (has links)
Microengineering has developed a broad range of production techniques to reduce size, increase throughput, and reduce cost of electrical and mechanical devices. The miniaturisation has also entailed entirely new opportunities. In this work, a piezoresistive silicon sensor measuring mechanical deformation has been designed and fabricated with the help of microengineering. Due to the large variety of used processes, this device can serve as a survey of techniques in this field. Four basic process categories are recognised: additive, subtractive, modifying, and joining methods. The last category, joining methods, has previously been the least investigated, especially when it comes to compatibility with the other categories. The adaptability of wet chemical etching to established silicon wafer bonding technique has been investigated. Further, phenomena related to oxygen plasma pre-treatment for direct bonding has been investigated by blister bond adhesion tests, X-ray photoelectron spectroscopy, and atomic force microscopy. Wafer bonding has been adapted to monocrystalline quartz. For wet chemical pre-treatment, characteristics specific for quartz raise obstacles. Problems with limited allowable annealing temperature, low permeability of water released in the bond at annealing, and electrostatic bonding of particles to the quartz surface, have been studied and overcome. The influence of internal bond interfaces on resonators has been investigated. Chemical polishing of quartz by ammonium bifluoride has been experimentally investigated at high temperatures and concentrations. Chemometrical methods were used to search for optimum conditions giving the lowest surface roughness. These extreme conditions showed no extra advantages. Adhesion quantification methods for wafer bonding have been comprehensively reviewed, and augmentations have been suggested. The improved techniques’ usefulness for three areas of use has been forecasted: general understanding, bonding scheme optimisation, and quality control. It was shown that the quality of measurements of all commonly used methods could be dramatically improved by small means.
148

Fabrication Of Nanostructured Samples For The Investigation Of Near Field Radiation Transfer

Artvin, Zafer 01 September 2012 (has links) (PDF)
Radiative heat transfer in nanostructures with sub-wavelength dimensions can exceed that predicted by Planck&#039 / s blackbody distribution. This increased effect is due to the tunneling of infrared radiation between nanogaps, and can allow the eventual development of nano-thermo-photo-voltaic (Nano-TPV) cells for energy generation from low temperature heat sources. Although near field radiation effects have been discussed for many years, experimental verification of these effects is very limited so far. In this study, silica coated silicon wafer sample chips have been manufactured by using MEMS fabrication methods for testing the near field radiation effects. A variety of samples with 1&times / 1, 2&times / 2 and 5&times / 5 mm2 area, and with 25 nm, 50 nm, 100 nm and 200 nm (nano-gap) separations have been prepared. 3D structures with vacuum gaps have been obtained by bonding of the silica coated wafers. The samples have been tested in an experimental setup by a collaborative group at &Ouml / zyegin University, Istanbul. An increase in the net radiation heat transfer with decreasing nano-gap size has been reported by the &Ouml / zyegin group who used these samples in a parallel study. The thesis outlines the micro-fabrication techniques used for the sample preparation. Also, the manufacturing problems we have faced during this research program are discussed.
149

A Tactical Grade Mems Acceleroemeter

Ocak, Ilker Ender 01 September 2010 (has links) (PDF)
Micromachining technologies enabled the use of miniaturized transducers in many high technology sensing systems. These transducers have many advantages like small-size, low-cost and high-reliability. One of the applications micro-machined transducers are used is inertial navigation systems, where the exact position of a moving frame is continuously monitored by tracking the linear and angular motions of the frame. Other than navigation applications, inertial sensors are used in health and military applications as well as consumer electronics. Today accelerometers capable of measuring accelerations from 0.5g-1g range up to several thousand g&rsquo / s are commercially available in the market which have been fabricated using micromachining technologies. The aim of this research is to develop such a state-of-the-art micro-machined accelerometer system, whose performance is expected to reach tactical-grade level. In order to achieve these performance values a MATLAB algorithm is developed to optimize the accelerometer performances in the desired levels. Expected performance parameters of the designed accelerometer structures are extracted from the simulations done by both Coventorware finite element modeling tool and MATLAB. Designed structures are then fabricated with silicon-on-glass, dissolved wafer and dissolved epitaxial wafer processes. These fabrication results are compared and it is observed that highest yield accelerometers are fabricated with the SOG process. But these accelerometers could not be able to satisfy tactical grade performance parameters. Best performances are obtained with DWP, but due to high internal stress, yield of the sensors were very low. DEWP increased the yield of this process from 2-3% to 45-50% but the expected operation range of the designs dropped to &plusmn / 12.5g range. Using the fabricated accelerometers in DEWP a three axial accelerometer package is prepared and tests results proved that this three axial accelerometer system was satisfying the tactical grade requirements. In addition to these a three axial monolithic accelerometer fabrication technique is proposed and sensors are designed which are suitable for this process. Best performances achieved with single axis accelerometers were 153&micro / g/&radic / Hz noise floor, 50&micro / g bias drift, 0.38% non-linearity and a maximum operation range of 33.5g which has the higher dynamic range among its counterparts in the literature. Performance results achieved with the three axes accelerometer were ~150&micro / g bias drift, &lt / 200&micro / g/&radic / Hz noise density, ~0.4% non-linearity with higher than &plusmn / 10g operation range.
150

Study on Wafer-Level Packaging and Electrochemical Characterization of Planar Silver-Chloride Micro Reference Electrode

Chu, Chi-Chih 15 February 2008 (has links)
This thesis devotes to develop a wafer-level packaging technique of the planar AgCl-based micro reference electrode and to investigate its various electrochemical characteristics (including the potential stability and offset voltage, AC impedance, cyclic-voltammetry analysis, electrochemical noise and reproducibility). The miniaturized all-solid-state reference electrode can integrated with many biomedical or biochemical sensors for substantially reduce the dimension of the whole sensing system and improve the commercial capability of portable detecting products. This study reports firstly a smallest module of the micro reference electrode with dimension only about 9 mm (L) ¡Ñ 6 mm (W) ¡Ñ 1 mm (H) in the worldwide using the silicon bulk-micromachining technology, thin film deposition and chloridation techniques. The packaged reference electrode module is constructed by two bonded wafers with different functions. One wafer of this module is defined as ¡§electrode chip¡¨ and it has a Ti/Pd/Ag/AgCl planar quasi-reference electrode deposited on its surface. Another wafer is called as ¡§packaging chip¡¨ and it has two bulk-micromachined silicon cavities for the filling/sealing of 1.33 ~ 6.40 £gL KCl-gel (as the salt-bridge of electrode) and electrical connection. Many electrochemical characteristics of the encapsulated solid-state micro reference electrode are tested and improved for the commercial applications. Including a very stable cell potential (<4 mV in 30000 sec.), an approximately zero offset-voltage, a low AC impedance (1~20 K£[), and high reproducibility (drift less than 3~8 mV in 30000 sec. and the range of offset voltage is -6 ~ 3 mV) of the packaged micro reference electrode are demonstrated. Furthermore, stable CV curve of the packaged Ti/Pd/Ag/AgCl/KCl-gel reference electrode were proved by cyclic-voltammetry analysis and its low electrochemical noise spectrum was investigated and discussed in this work. Compared with the commercial reference electrode, the planar miniaturized AgCl reference electrode module developed in this thesis has displayed its many excellent characteristics and with a dimension only 250 times smaller than the conventional reference electrode.

Page generated in 0.028 seconds