• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 6
  • 2
  • Tagged with
  • 44
  • 44
  • 44
  • 28
  • 17
  • 17
  • 12
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Approches microfluidiques pour la séparation de cellules parasitées / Microfluidic approaches for the separation of parasitized cells

Gelszinnis, Renaud 02 July 2015 (has links)
Résumé confidentiel / Résumé confidentiel
32

Développement et intégration de microcapteurs de pH et de température dans des dispositifs microfluidiques polymères / Developing and integrating of pH and temperature microsensors in polymeric microfluidic devices

Ait-Ali, Imene Feriel 13 January 2014 (has links)
Afin de réaliser des dispositifs en polymère à forte valeur ajoutée, l'industrie de la plasturgie s'intéresse depuis quelques années à la convergence possible entre les microtechnologies et les méthodes industrielles de mise en oeuvre des polymères (le thermoformage et la thermo-injection). Dans ce contexte, l'objectif de cette thèse est de démontrer l'intérêt d'une approche à base de microtamponnage pour l'intégration de capteurs à base métallique dans des circuits microfluidiques en thermoplastique réalisés par thermoformage. Pour ces matériaux, cette approche apparait plus pertinente en terme de production de masse qu'une approche de photolithographie classique. Nous avons choisi de démontrer ce concept en étudiant l'intégration d'un capteur de pH et d'un capteur de température dans un système microfluidique en copolymère d'oléfine cyclique (COC) réalisé par thermoformage. En effet, la mesure de ces paramètres physico-chimiques est extrêmement répandue dans différents domaines d'application allant de la chimie à la biologie et à la médecine. Pour le capteur de pH, nous avons développé une couche sensible au pH à base d'oxyde d'iridium (IrOx) électrodéposé sur or. L'influence de différents paramètres (solution d'électrodépôt, méthode d'électrodéposition, nature du substrat métallique et son mode de préparation) sur la réponse au pH de ces couches a été étudiée. Nous avons ainsi pu démonter qu'une approche par microtamponnage passive est adaptée à la préparation de capteurs de pH sur un substrat en COC/Au ayant une sensibilité de -72 mV/pH et une durée de vie de 1 an. Pour le capteur de température, la solution retenue est basée sur le principe d'une thermorésistance. Les capteurs ont été élaborés en utilisant une approche par microtamponnage actif avec croissance d'une couche de nickel (dont l'épaisseur varie entre 0,2 et 5 μm) par métallisation autocatalytique sur polyimide. La dérive des capteurs est actuellement trop importante pour une application pratique. Finalement, des résultats préliminaires d'intégration de ces capteurs dans un microsystème fluidique thermoformé sont présentés avec notamment une configuration originale de mesure différentielle du pH / The plastics industry has been interested for some years in the possible convergence between microtechnologies and conventional polymer manufacturing (hot embossing and injection molding). In this context, this thesis aims at demonstrating the potential of a process based on microcontact printing in order to integrate metal based sensors in thermoplastic microfluidic devices shaped by hot embossing. For the mass production of thermoplastic devices, this approach appears more relevant than conventional photolithography. We chose to demonstrate this concept by investigating the integration of both a pH sensor and a temperature sensor in a thermoformed Cyclo Olefin Copolymer (COC) microfluidic system. Indeed, the measurement of these physicochemical parameters are extremely widespread in different applicative areas ranging from chemistry tobiology and medicine. For the pH sensor, we developed a pH-sensitive layer based on electrodeposited iridium oxide (IrOx) on Au. The influence of various parameters (plating solution and method , nature of the metal substrate and its method of preparation) on the pH response of these layers was studied. We were able to demonstrate that microcontact printing based on a passive approach is suitable for the preparation of pH sensors on a COC substrate with a sensitivity of -72 mV/pH and a 1 year lifetime. As regards the temperature sensor, the solution was to design a thermistor. Sensors were implemented with an approach based on active microcontact printing followed by electroless deposition of nickel (thickness varies between 0,2 and 5 μm) on polyimide. The drift of these sensors is too large for practical application. Finally, preliminary results presenting the integrating of these sensors in a fluidic microsystem are reported using an original configuration based on differential measurement of pH
33

Charges à l’interface liquide/solide : caractérisation par courants d’écoulement et application à la préconcentration de molécules biologiques dans un système micro/nanofluidique / Charges at the liquid / solid interface : characterization by streaming current and application to pre-concentration of biological molecules in a micro / nano-fluidics system

Yuan, Xichen 04 November 2016 (has links)
Les charges à l'interface liquide/solide sont un élément originel majeur des phénomènes électrocinétiques observés en micro/nanofluidique. Elles sont donc la colonne vertébrale de mon manuscrit de thèse, qui se décompose en trois parties : Dans la première partie, un rappel des concepts de base sur les interfaces liquides/solides est proposé au lecteur. Il est suivi d'une description des différentes méthodes expérimentales permettant de mesurer le potentiel zeta de couples solide/électrolyte, puis d'une présentation des travaux de la littérature exploitant les charges aux interfaces pour la préconcentration de molécules biologiques dans des systèmes Micro-Nano-Micro (MNM) fluidiques. Ensuite, une deuxième partie est consacrée à la mesure du potentiel zeta par la méthode des courants d'écoulement. Nous y présentons l'amélioration du banc expérimental issu des travaux antérieurs à ma thèse, ainsi que le développement de nouveaux protocoles de préparation des surfaces permettant de rationaliser et de stabiliser les mesures. Une application à un détecteur original de molécules biologiques clos cette deuxième partie. Enfin, la troisième et dernière partie s'intéresse à la préconcentration de molécules biologiques. Une méthode originale de fabrication des dispositifs MNM et les résultats de préconcentration obtenus, très encourageants, sont décrits. Des premiers modèles numériques et phénoménologiques sont proposés, qui mettent en avant l'originalité de notre travail / The charges at liquid/solid interfaces are a key element for both understanding and exploiting the electrokinetic phenomena in micro/nanofluidics. The manuscript of my Ph.D thesis is dedicated to these phenomena, which is divided into three main parts: Above all, a simple overview of charges at the liquid/solid interface is proposed. Then, several common methods for measuring the zeta potential at the liquid/solid interface are described. Next, various effective methods to preconcentrate the biological molecules is presented with the help of the surface charges. Secondly, the streaming current, which is a standard method to measure the zeta potential in our laboratory, is detailed. It contains the upgrade of the experimental setup from the previous version and the development of new protocols, which improve dramatically the stabilization and the reproducibility of the measurements. In addition, an original biological sensor is briefly presented based on these advancements. Lastly, in the final part, we describe a method which is primitively utilised in the fabrication of Micro-Nano-Micro fluidic system. Based on this system, some favorable preconcentration results is obtained. Moreover, numerical simulations are presented to prove the originality of our work
34

Microsystèmes pour la préparation d'échantillons sanguins

Sollier, Elodie 12 November 2009 (has links) (PDF)
Beaucoup de tests de diagnostic médical sont réalisés sur le sang, qui est un échantillon représentatif d'états pathologiques complexes. La séparation des différents constituants du sang est surtout réalisée par centrifugation ; son passage en microsystème reste l'obstacle principal en vue de l'intégration complète de l'analyse sanguine. Notre but est donc de développer une technique simple et rapide, permettant de séparer les éléments sanguins de façon continue et efficace, et intégrable dans un laboratoire sur puce. Tout d'abord, des dispositifs microfluidiques innovants sont proposés pour l'extraction du plasma, fondés sur le couplage de différents phénomènes microfluidiques passifs. En particulier, ces dispositifs exploitent la couche appauvrie dans un écoulement en canal et l'amplifient par l'effet restriction ainsi que par des singularités géométriques. Un rendement d'extraction maximal de 17% est obtenu à partir de sang dilué au 1:20 et injecté à 100µL/min, soit une amélioration d'un facteur 4 par rapport au dispositif de référence. L'influence de la dilution de l'échantillon est analysée, et le plasma extrait est biologiquement validé. En parallèle, des méthodes de tri cellulaire par capture spécifique sont développées, fondées sur la fonctionnalisation de surface et le greffage d'anticorps. Une accroche spécifique et proportionnelle est mise au point et optimisée, à partir de sang total, pour chaque type cellulaire. Des solutions ont été proposées pour l'intégration de ces deux opérations unitaires, séparation microfluidique et tri cellulaire.
35

Nanofils de silicium pour analyse sensible de biomolécules par spectrométrie de masse et pour l'adressage fluidique de cellules en vue des applications laboratoires sur puce et biopuces.

Offranc Piret, Gaëlle 16 February 2010 (has links) (PDF)
Ce travail porte sur la fabrication d'un support inorganique de nanofils de silicium dédié à la détection sensible de biomolécules par désorption/ionisation laser (LDI) en spectrométrie de masse (MS). Cette technique, contrairement à l'analyse LDI assistée par matrice (MALDI), permet de s'affranchir des ions parasites de la matrice organique qui interfèrent avec les molécules de masses inférieures à 700 Da. La littérature fait état de la difficulté à déterminer les paramètres liés à la performance de la technique : nous avons varié la morphologie, la composition, la chimie de surface des nanofils de silicium et nous avons discuté de l'importance des propriétés optiques et thermiques, de la mouillabilité de surface et de l'accessibilité des molécules au faisceau laser. Le support de nanofils optimal montre une haute sensibilité de détection des molécules de petites masses (50 fois supérieure au MALDI), il s'adapte à des analyses protéomiques et nous a permis d'instaurer un contrôle complémentaire au suivi de la réaction de méthylation pour la conception d'une biopuce à peptides. Nous avons finalement travaillé sur l'intégration de ce support dans un laboratoire sur puce. Une goutte d'1 µL d'un mélange de peptide (50.10-15M) a été déplacée par microfluidique discrète (électromouillage sur diélectrique) puis analysée avec succès par LDIMS. Finalement, nous avons développé une méthode originale combinant la chimie et la topographie de surface des nanofils de silicium à des techniques de lithographie optique : des zones de différentes tensions de surface liquide/solide sont ainsi créées et sont favorables à l'adhésion localisée de protéines, de cellules et de bactéries.
36

Développement d'un dispositif intégré de photodétection de grande sensibilité avec discrimination spectrale pour les laboratoires sur puce

Courcier, Thierry 17 June 2014 (has links) (PDF)
Ce travail de thèse a pour but de développer un dispositif basé autour d'un dispositif intégré de photodétection pour des applications biomédicales nécessitant une grande sensibilité de détection et une discrimination spectrale (sélectivité). Ce dispositif peut être appliqué, par exemple, à la mesure simultanée de plusieurs marqueurs fluorescents dans les laboratoires sur puce mettant en œuvre de très faibles volumes de réactifs (inférieurs au microlitre). Le travail de thèse se focalise sur la conception, la réalisation et le test de ce dispositif intégré de photodétection. Ce travail se décline selon deux axes principaux : d'une part, la conception d'un photodétecteur CMOS avec préamplificateurs intégrés, et d'autre part la conception, la réalisation et la caractérisation de filtres optiques intégrés performants pour la détection de fluorescence
37

Strain-engineering of thin polymer films : a novel route for the development of functional materials and microfluidic devices / Ingénierie des contraintes de films minces de polymères : une nouvelle voie pour le développement de matériaux fonctionnels et d'outils microfluidiques

Egunov, Aleksandr 23 November 2015 (has links)
Les deux systèmes de création d’une contrainte dans les films polymériques ont été développés, chacun répondant à un gradient de gonflement du polymère dans la direction normale au film. Ce gonflement peut être provoqué soit par la présence d’un gradient de densité de réticulation dans la direction normale à la surface (films de poly(4-vinylpyridine) réticulés par UV ou dans les films de chitosan réticulés thermiquement et ioniquement ; ou soit par une pénétration asymétrique de vapeur de solvant dans le film (ici le polydiméthylsiloxane oxydé en surface). Un troisième système polymérique auto-enroulant a également été réalisé par la création d’une contrainte permanente au sein du film de polydiméthylsiloxane, grâce à l’extraction sélective d’un additif non-réticulé, l’huile de silicone. Un modèle théorique du processus d’auto-enroulement, basé sur la théorie linéaire d’élasticité a ainsi pu être proposé. / Two systems of stress creation in the polymer films were developed, each based on the swelling gradient in the direction normal to the film. This swelling may be caused either by the presence of a crosslinking density gradient in the direction normal to the surface (poly (4-vinylpyridine film) crosslinked by UV or in the thermally or ionically crosslinked chitosan films; or by asymmetric penetration of solvent vapor in the film (here polydimethylsiloxane surface-oxidized). A third self-rolling polymeric system has also been realized by the creation of a permanent strain in the polydimethylsiloxane film by selective extraction of a non-cross-linked additive, silicone oil. A theoretical model of self-rolling process based on the linear theory of elasticity has been proposed.
38

Électrodes nanocomposites pour applications en microfluidique / Nanocomposite electrodes for microfluidic applications

Brun, Mathieu 20 December 2011 (has links)
Le travail de thèse présenté dans ce manuscrit s’inscrit dans une dynamique d’intégration de matériaux non conventionnels en systèmes microfluidiques. Il vise à démontrer le potentiel du cPDMS, un matériau nanocomposite formé d’une matrice de polydiméthylsiloxane rendu conducteur par l’ajout de nanoparticules de carbone. Compatible avec les procédés technologiques habituels, le cPDMS peut être structuré dans une large gamme d’épaisseurs et de géométries mais présente surtout l’avantage de pouvoir être collé irréversiblement sur verre, PDMS et silicium. Son intégration est parfaitement étanche, rapide à mettre en oeuvre, et très économique. La première partie du manuscrit est consacrée à la caractérisation de ce matériau. Ses propriétés électriques et de surface, pouvant être critiques pour une utilisation en microfluidique, ont été particulièrement étudiées. Les champs électriques offrant de nombreuses possibilités pour réaliser des fonctions clés en microfluidique (détection, séparation, manipulation de fluides ou de particules), nous avons choisi d’évaluer l’intérêt d’électrodes de cPDMS dans deux types d’applications. Les aspects de détection ont d’abord été mis en évidence à l’aide de mesures électrochimiques. Cette méthode a permis à la fois de caractériser la surface du cPDMS tout en validant son utilisation potentielle pour des applications d’analyses électrochimiques. Dans la dernière partie du manuscrit, le matériau a été testé pour la manipulation de particules à travers l’observation de différents phénomènes électrocinétiques. Ceux-ci ont conduit à la mise au point de dispositifs microfluidiques (intégrant des lectrodes de cPDMS) dédiés à la lyse et à l’électrofusion de cellules. / The work presented in this thesis deals with the integration of non-conventional materials in microfluidic systems. It aims to demonstrate the potential of cPDMS, a conductive nanocomposite material made up of polydimethylsiloxane matrix mixed with carbon nanoparticles. Compatible with the usual technological processes such as soft lithography, cPDMS can be microstructured in a large range of thicknesses and geometries. Moreover, cPDMS can be quickly, irreversibly and perfectly sealed to glass, PDMS and silicon substrates, something that is not possible for conventional metallic electrodes. The first part of the manuscript is centered on the characterization of this material. Its electrical and surface properties that may turn out critical for microfluidic applications have been particularly studied. Electric fields present many opportunities to perform key functions in microfluidic (detection, separation, fluid or particles handling). We have chosen to assess the potential of cPDMS electrodes for two kinds of applications. Aspects of detection were first demonstrated using cyclic voltammetry measurements. This electrochemical method has enabled both to characterize the cPDMS surface while validating its potential as an electrochemical analysis tool. In the last part of this manuscript, cPDMS was tested for the electrokinetic manipulation of particles through thre study of different electrical fields with induced phenomena. This has led to the development of microfluidic devices (integrating cPDMS electrodes) designed for cell lysis and cells electrofusion.
39

Miniaturized devices for bioanalysis : case of nitric oxide stored as S-nitrosothiols in biological fluids / Dispositifs miniaturisés pour l'analyse de biomolécules : cas du monoxyde d'azote stocké sous forme de s-nitrosothiols dans les fluides biologiques

Ismail, Abdul Ghani 17 October 2016 (has links)
Les S-nitrosothiols (RSNOs) sont considérés comme des stocks circulant de monoxyde d'azote (NO) et qui ont de nombreux rôles in vivo. Une variation de la proportion des taux de RSNOs a été démontrée dans de nombreuses maladies. Il est donc important de pouvoir identifier et quantifier chaque RSNO dans les fluides biologiques pour la réalisation de diagnostics médicaux. Il devient alors intéressant de développer des outils analytiques pour la détermination des RSNOs, en utilisant de faibles volumes d'échantillons biologiques. Ce travail de thèse a ainsi été orienté vers le développement d'outils analytiques miniaturisés pour l'analyse des RSNOs dans les fluides biologiques, en se focalisant sur la conception de micro-dispositifs (laboratoires sur puce), intégrant toutes les étapes de l'analyse, à savoir l'injection, la séparation, la décomposition et la détection sur un seul et même dispositif pour l'identification et la quantification des RSNOs. Pour cela, chaque étape a dû être optimisée. Ainsi, une meilleure compréhension de la réactivité des RSNOs, en terme de voies de décomposition et de cinétique, a été étudiée en développant deux méthodologies basées sur l'électrophorèse capillaire (CE) couplée soit à la spectrométrie de masse (MS) soit à une détection par mesure de conductivité sans contact à couplage capacitif (C4D). Par la suite, les conditions de décomposition et la détection sensible du NO libéré ont été réalisées en utilisant des microcapteurs électrochimiques à NO. Sur la base des résultats obtenus, deux stratégies originales ont été développées pour la détection de la totalité des RSNOs présents dans le plasma (i) via la décomposition des RSNOs en utilisant des nanoparticules d’or couplées à des microcapteurs NO et (ii) via la conception d’un dispositif miniaturisé de diagnostic sur papier. Finalement, grâce à l’optimisation des étapes de décomposition, de séparation et de détection, une étude préliminaire a été menée pour concevoir une micropuce d’électrophorèse intégrant la décomposition des RSNOs et une détection électrochimique afin de quantifier indépendamment différents RSNOs. / S- nitrosothiols (RSNOs) are considered as biological circulating stock of nitric oxide (NO) that have many roles in vivo. The variation of RSNOs proportion has been recognized in many diseases, so that the identification and quantitation of each RSNO in biological fluids is of prime importance. There is thus interest for the development of analytical tools for their determination, using low biological sample volumes. This PhD work was thus orientated towards the development of miniaturized analytical tools for the analysis of RSNOs in biological fluids, with a focus on microdevices (lab-on-a-chip), by integrating the injection, separation, decomposition and detection steps for the simultaneous identification and quantitation of various RSNOs. To this aim, a better understanding of RSNO reactivity, in terms of decomposition, was necessary and was assessed by developing two methodologies based on capillary electrophoresis (CE) coupled to different detection techniques: mass spectrometry (MS) and capacitively coupled contactless conductivity detection (C4D). Then, the conditions for RSNOs decomposition and further sensitive detection of released NO by miniaturized electrochemical NO-sensors were determined. Finally, two original strategies were developed for the detection of the total amount of RSNOs in plasma (i) decomposition using gold nanoparticles and (ii) conception of miniaturized paper-based point of care device. Thanks to the optimization of decomposition, separation and detection steps, preliminary work was conducted to develop a microchip electrophoresis coupled to RSNOs decomposition to quantify separately the different RSNOs.
40

Lateral porous silicon membranes for planar microfluidic applications / Intégration de membranes de silicium poreux à pores latéraux dans des systèmes microfluidiques planaires

He, Yingning 22 November 2016 (has links)
Les laboratoires sur puce visent à miniaturiser et à intégrer les fonctions couramment utilisées dans les laboratoires d'analyse afin de cibler des applications en santé avec un impact prometteur sur le diagnostic médical au lit du patient. Les membranes poreuses sont d'un grand intérêt pour la préparation et l'analyse d'échantillon sur puce car elles permettent la séparation par taille/charge de molécules, mais également leur pré-concentration. Parmi les matériaux disponibles pour constituer des membranes poreuses, le silicium poreux présente de nombreux avantages tels que le contrôle précis de la taille des pores et de la porosité, une chimie de surface pratique et des propriétés optiques uniques. Les membranes de silicium poreux sont généralement intégrées dans des puces fluidiques en les montant entre deux couches comportant des micro-canaux, formant ainsi des réseaux fluidiques à trois dimensions, peu pratiques et peu adaptés à l'observation directe par microscopie. Dans ces travaux de thèse, nous avons développé deux méthodes de fabrication de membranes de silicium à pores latéraux qui permettent leur intégration monolithique dans des systèmes microfluidiques planaires. Le premier procédé est fondé sur l'utilisation d'électrodes localement structurées afin de guider la formation de pores de manière horizontale, en combinaison avec des substrats type silicium sur isolant (SOI) pour localiser spatialement la formation de silicium poreux dans la profondeur du canal. La deuxième méthode repose sur le fait que la formation de silicium poreux par anodisation est fortement dépendante du type de dopant et de sa concentration. Bien que nous utilisons encore le même type d'électrodes structurées sur les parois latérales de la membrane pour injecter le courant lors de l'anodisation, le dopage par implantation permet de confiner la membrane, de façon analogue mais à la place de l'oxyde enterré du SOI. Des membranes à pores latéraux ont été fabriquées par ces deux méthodes et leur fonctionnalité a été démontrée en réalisant des expériences de filtrage. En plus de la filtration d'échantillon, les membranes ont été utilisées pour étudier la possibilité d'effectuer de la pré-concentration électrocinétique et de la détection interférométrique. La sélectivité ionique des membranes microporeuse permet la pré-concentration moléculaire avec des facteurs de concentration pouvant atteindre jusqu'à 103 en 10 min en appliquant moins de 9 V. Ces résultats sont comparables à ceux rapportés dans la littérature à l'aide par exemple de nanocanaux avec une consommation d'énergie beaucoup plus faible. Enfin, nous avons pu détecter une variation de l'indice de réfraction du silicium poreux par le décalage du spectre d'interférence lors du chargement de différents liquides injectés dans les membranes. Le travail présenté dans cette thèse constitue la première étape dans la démonstration de l'intérêt du silicium poreux pour la préparation d'échantillon et la biodétection dans des laboratoires sur puce planaires. / Lab on a chip devices aim at integrating functions routinely used in medical laboratories into miniaturized chips to target health care applications with a promising impact foreseen in point-of-care testing. Porous membranes are of great interest for on-chip sample preparation and analysis since they enable size- and charge-based molecule separation, but also molecule pre-concentration by ion concentration polarization. Out of the various materials available to constitute porous membranes, porous silicon offers many advantages, such as tunable pore properties, large porosity, convenient surface chemistry and unique optical properties. Porous silicon membranes are usually integrated into fluidic chips by sandwiching fabricated membranes between two layers bearing inlet and outlet microchannels, resulting in three-dimensional fluidic networks that lack the simplicity of operation and direct observation accessibility of planar microfluidic devices. To tackle this constraint, we have developed two methods for the fabrication of lateral porous silicon membranes and their monolithic integration into planar microfluidics. The first method is based on the use of locally patterned electrodes to guide pore formation horizontally within the membrane in combination with silicon-on-insulator (SOI) substrates to spatially localize the porous silicon within the channel depth. The second method relies on the fact that the formation of porous silicon by anodization is highly dependent on the dopant type and concentration. While we still use electrodes patterned on the membrane sidewalls to inject current for anodization, the doping via implantation enables to confine the membrane analogously to but instead of the SOI buried oxide box. Membranes with lateral pores were successfully fabricated by these two methods and their functionality was demonstrated by conducting filtering experiments. In addition to sample filtration, we have achieved electrokinetic pre-concentration and interferometric sensing using the fabricated membranes. The ion selectivity of the microporous membrane enables to carry out sample pre-concentration by ion concentration polarization with concentration factors that can reach more than 103 in 10 min by applying less than 9 V across the membrane[TL1]. These results are comparable to what has already been reported in the literature using e.g. nanochannels with much lower power consumption. Finally, we were able to detect a change of the porous silicon refractive index through the shift of interference spectrum upon loading different liquids into the membrane. The work presented in this dissertation constitutes the first step in demonstrating the interest of porous silicon for all-in-one sample preparation and biosensing into planar lab on a chip.

Page generated in 0.091 seconds