Spelling suggestions: "subject:"laminar low control"" "subject:"laminar low coontrol""
1 |
Conceptual design for a laminar-flying-wing aircraftSaeed, Tariq Issam January 2012 (has links)
The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. In addition to boundary layer laminarisation (utilising distributed suction) and limited sweep, a standing-height passenger cabin and subcritical aerofoil flow are imposed as requirements. Subject to these constraints, this research aims to: provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty; suggesting there is little benefit in trying to maintain an optimal suction distribution through increased subsurface-chamber complexity. For representative parameter values, the minimum power associated with boundary-layer losses alone contributes some 80% - 90% of the total power requirement. To identify the viable basic design specification, a high-level exploration of the laminar-flying-wing design space is performed, with an emphasis above all on aerodynamic efficiency. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 10[superscript 6] m[superscript -1], is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. The benefit of laminarisation is manifested in a high lift-to-drag ratio, but the wing loading is low, and the structural efficiency and gust response are thus likely to be relatively poor. On the basis of this specification, a detailed conceptual design is undertaken. A 220-passenger laminar-flying-wing concept, propelled by three turboprop engines, with a cruise range of 9000 km is developed. The estimated fuel burn is 13.9 g/pax.km. For comparison, a conventional aircraft, propelled by four turboprop engines, with a high-mounted, unswept, wing is designed for the same mission specification and propulsion characteristics, and is shown to have a fuel burn of 15.0 g/pax.km. Despite significant aerodynamic efficiency gains, the fuel burn of the laminar flying wing is only marginally better as it suffers from a poor cruise engine efficiency, due to extreme differences between takeoff and cruising requirements, and is much heavier. The laminar flying wing proposed in this thesis falls short of the performance improvements expected of the concept, and is not worth the development effort. It is therefore proposed that research efforts either be focussed on improving the engine efficiency, or switching to a low aspect ratio, high sweep, design configuration.
|
2 |
In-Flight Measurements of Freestream Atmospheric Turbulence IntensitiesFanning, Joshua 1987- 14 March 2013 (has links)
The last key to implementing laminar flow control on swept-wings is controlling the crossflow instability. One promising technology is spanwise-periodic discrete roughness elements (DREs). Previous work has shown success with applique DREs and extending the region of laminar flow. This work seeks to extend the DRE technology to include dielectric barrier discharge plasma actuators as well as recreate past experiments with applique DREs.
One major need in implementing DREs and controlling crossflow is attaining an accurate measurement of the freestream atmospheric turbulence intensities. Knowing the atmospheric turbulence intensity will allow for comparing wind tunnel experiments to the flight environment and help produce better wind tunnel experiments by allowing them to better match the flight environment. Also, knowledge of the turbulence intensity at the specific instance of an experimental data point will allow for determining if differences in experimental results are the result of a difference in turbulence intensity. It has been determined through this work that the levels of freestream turbulence range from 0.023% - 0.047% with an average of 0.035%. These levels were reached through the use of temporal correlations to remove electronic noise as well as acoustic sound from the hotwire measurements and hence are lower than previously calculated.
|
3 |
Laminar Flow Control Flight Experiment DesignTucker, Aaron 1975- 14 March 2013 (has links)
Demonstration of spanwise-periodic discrete roughness element laminar flow control (DRE LFC) technology at operationally relevant flight regimes requires extremely stable flow conditions in flight. A balance must be struck between the capabilities of the host aircraft and the scientific apparatus. A safe, effective, and efficient flight experiment is described to meet the test objectives, a flight test technique is designed to gather research-quality data, flight characteristics are analyzed for data compatibility, and an experiment is designed for data collection and analysis.
The objective is to demonstrate DRE effects in a flight environment relevant to transport-category aircraft: [0.67 – 0.75] Mach number and [17.0M – 27.5M] Reynolds number. Within this envelope, flight conditions are determined which meet evaluation criteria for minimum lift coefficient and crossflow transition location. The angle of attack data band is determined, and the natural laminar flow characteristics are evaluated. Finally, DRE LFC technology is demonstrated in the angle of attack data band at the specified flight conditions.
Within the angle of attack data band, a test angle of attack must be maintained with a tolerance of ± 0.1° for 15 seconds. A flight test technique is developed that precisely controls angle of attack. Lateral-directional stability characteristics of the host aircraft are exploited to manipulate the position of flight controls near the wing glove. Directional control inputs are applied in conjunction with lateral control inputs to achieve the desired flow conditions.
The data are statistically analyzed in a split-plot factorial that produces a system response model in six variables: angle of attack, Mach number, Reynolds number, DRE height, DRE spacing, and the surface roughness of the leading edge. Predictions on aircraft performance are modeled to enable planning tools for efficient flight research while still producing statistically rigorous flight data.
The Gulfstream IIB aircraft is determined to be suitable for a laminar flow control wing glove experiment using a low-bank-angle-turn flight test technique to enable precise, repeatable data collection at stabilized flight conditions. Analytical angle of attack models and an experimental design were generated to ensure efficient and effective flight research.
|
4 |
CFD Investigations of a Transonic Swept-Wing Laminar Flow Control Flight ExperimentNeale, Tyler P. 2010 May 1900 (has links)
Laminar flow control has been studied for several decades in an effort to achieve higher efficiencies
for aircraft. Successful implementation of laminar flow control technology on transport aircraft could
significantly reduce drag and increase operating efficiency and range. However, the crossflow instability
present on swept-wing boundary layers has been a chief hurdle in the design of laminar wings. The use of
spanwise-periodic discrete roughness elements (DREs) applied near the leading edge of a swept-wing
typical of a transport aircraft represents a promising technique able to control crossflow and delay
transition to accomplish the goal of increased laminar flow.
Recently, the Flight Research Laboratory at Texas A&M University conducted an extensive flight test
study using DREs on a swept-wing model at chord Reynolds numbers in the range of eight million. The
results of this study indicated DREs were able to double the laminar flow on the model, pushing transition
back to 60 percent chord. With the successful demonstration of DRE technology at these lower chord
Reynolds numbers, the next logical step is to extend the technology to higher Reynolds numbers in the
range of 15 to 20 million typical of smaller transport aircraft.
To conduct the flight tests at the higher Reynolds numbers, DREs will be placed on a wing glove
attached to the aircraft wing. However, a feasibility study was necessary before initiating the flight-testing.
First, a suitable aircraft able to achieve the Reynolds numbers and accommodate a wing glove was
identified. Next, a full CFD analysis of the aircraft was performed to determine any adverse effects on the
wing flow-field from the aircraft engines. This required an accurate CAD model of the selected aircraft.
Proper modeling techniques were needed to represent the effects of the aircraft engine. Once sufficient CFD results were obtained, they were used as guidance for the placement of the glove. The attainable
chord Reynolds numbers based on the recommendations for the wing glove placement then determined if
the selected aircraft was suitable for the flight-testing.
|
5 |
Receptivity Studies on a Swept-Wing ModelWoodruff, Matthew Jeffery 2011 May 1900 (has links)
A series of flight tests was performed using a swept-wing model mounted on a Cessna O-2 aircraft. The crossflow waves on the airfoil were excited by pneumatic spanwise-periodic distributed roughness elements (DREs). The objective of the experiment was to determine the roughness receptivity i.e. the relationship between roughness height and the amplitude of the unstable crossflow wave. The local skin-friction variation was measured using an array of calibrated and temperature-compensated hotfilm sensors. The amplitudes of the disturbance shear stress were compared to the amplitudes of the DREs. It was found that there is a relationship between the shear stress and DRE amplitude that needs to be studied more before any definitely conclusions can be made. It was also found that the sensitivity of the crossflow to DREs is highly dependent on the freestream turbulence levels.
|
6 |
Using Suction for Laminar Flow Control in Hypersonic Quiet Wind Tunnels: A Feasibility StudyPhillip Portoni (7399604) 16 October 2019 (has links)
<div>To reduce the risk of using suction in a hypersonic quiet-tunnel nozzle design, this project tested micro-perforated suction sections to remove the boundary layer on an axisymmetric model in the Boeing/AFOSR Mach-6 Quiet Tunnel. The model was a cone-flare geometry tested at 0° angle of attack. The turn from the 7° half-angle cone to the flare was designed to prevent flow separation. The flare was designed to amplify the Görtler instability.</div><div><br></div><div>Five suction sections were designed with different perforation patterns and porosities. Four were successfully manufactured, but only the first of the four sections has been tested so far. The first suction section has pores drilled along straight lines with a nominal 5% porosity.</div><div><br></div><div>Measurements were made with temperature-sensitive paint and oil-flow visualization on a non-perforated blank to measure the baseline development of Görtler vortices on the flare. Although the signal-to-noise ratio of the measurement techniques were insufficient to measure the vortices, it was confirmed that the boundary layer is laminar for the entire model. Measurements with suction also did not show the Görtler vortices.</div><div><br></div><div>Surface pressure fluctuations were measured on the flare. Apparent second-mode waves were detected. The suction measurements showed a slight increase in second-mode peak frequency over the baseline results, as expected.</div><div><br></div><div>Concerns had been raised about acoustic noise that might be radiated from the suction section. Thus, fluctuations above the suction section were measured using a pitot probe and using focused-laser differential interferometry. The measurements during suction showed no noticeable increase in fluctuations compared to the baseline results.</div>
|
7 |
Computational Evaluation of a Transonic Laminar-Flow Wing Glove DesignRoberts, Matthew William 2012 May 1900 (has links)
The aerodynamic benefits of laminar flow have long made it a sought-after attribute in aircraft design. By laminarizing portions of an aircraft, such as the wing or empennage, significant reductions in drag could be achieved, reducing fuel burn rate and increasing range. In addition to environmental benefits, the economic implications of improved fuel efficiency could be substantial due to the upward trend of fuel prices. This is especially true for the commercial aviation industry, where fuel usage is high and fuel expense as a percent of total operating cost is high.
Transition from laminar to turbulent flow can be caused by several different transition mechanisms, but the crossflow instability present in swept-wing boundary layers remains the primary obstacle to overcome. One promising technique that could be used to control the crossflow instability is the use of spanwise-periodic discrete roughness elements (DREs). The Flight Research Laboratory (FRL) at Texas A&M University has already shown that an array of DREs can successfully delay transition beyond its natural location in flight at chord Reynolds numbers of 8.0x10^6. The next step is to apply DRE technology at Reynolds numbers between 20x10^6 and 30x10^6, characteristic of transport aircraft.
NASA's Environmentally Responsible Aviation Project has sponsored a transonic laminar-flow wing glove experiment further exploring the capabilities of DRE technology. The experiment will be carried out jointly by FRL, the NASA Langley Research Center, and the NASA Dryden Flight Research Center. Upon completion of a wing glove design, a thorough computational evaluation was necessary to determine if the design can meet the experimental requirements. First, representative CAD models of the testbed aircraft and wing glove were created. Next, a computational grid was generated employing these CAD models. Following this step, full-aircraft CFD flowfield calculations were completed at a variety of flight conditions. Finally, these flowfield data were used to perform boundary-layer stability calculations for the wing glove. Based on the results generated by flowfield and stability calculations, conclusions and recommendations regarding design effectiveness were made, providing guidance for the experiment as it moved beyond the design phase.
|
8 |
Boundary layer streaks as a novel laminar flow control methodSattarzadeh Shirvan, Sohrab January 2016 (has links)
A novel laminar flow control based on generation of spanwise mean velocity gradients (SVG) in a flat plate boundary layer is investigated where disturbances of different types are introduced in the wall-bounded shear layer. The experimental investigations are aimed at; (i) generating stable and steady streamwise streaks in the boundary layer which set up spanwise gradients in the mean flow, and (ii) attenuating disturbance energy growth in the streaky boundary layers and hence delaying the onset of turbulence transition. The streamwise streaks generated by four different methods are investigated, which are spanwise arrays of triangular/rectangular miniature vortex generators (MVGs) and roughness elements, non-linear pair of oblique waves, and spanwise-periodic finite discrete suction. For all the investigated methods the boundary layer is modulated into regions of high- and low speed streaks through formation of pairs of counter-rotating streamwise vortices. For the streaky boundary layers generated by the MVGs a parameter study on a wide range of MVG configurations is performed in order to investigate the transient growth of the streaks. A general scaling of the streak amplitudes is found based on empiricism where an integral amplitude definition is proposed for the streaks. The disturbances are introduced as single- and broad band frequency twodimensional Tollmien–Schlichting (TS) waves, and three-dimensional single and a pair of oblique waves. In an attempt to obtain a more realistic configuration compared to previous investigations the disturbances are introduced upstream of the location were streaks are generated. It is shown that the SVG method is efficient in attenuating the growth of disturbance amplitudes in the linear regime for a wide range of frequencies although the disturbances have an initial amplitude response to the generation of the streaks. The attenuation rate of the disturbance amplitude is found to be optimized for an integral streak amplitude of 30% of the free-stream velocity which takes into account the periodic wavelength of the streaky base flow. The stabilizing effect of the streamwise streaks can be extended to the nonlinear regime of disturbances which in turn results in transition to turbulence delay. This results in significant drag reduction when comparing the skin friction coefficient of a laminar- to a turbulent boundary layer. It is also shown that consecutive turbulence transition delay can be obtained by reinforcing the streaky boundary layer in the streamwise direction. For the streaky boundary layer generated by pair of oblique waves their forcing frequency sets the upper limit for the frequency of disturbances beyond which the control fails. / <p>QC 20160208</p>
|
9 |
Analysis and control of boundary layer transition on a NACA 0008 wing profileSinha Roy, Arijit January 2018 (has links)
The main aim of this thesis was to understand the mechanism behind the classical transition scenario inside the boundary layer over an airfoil and eventually attempting to control this transition utilizing passive devices for transition delay. The initial objective of analyzing the transition phenomenon based on TS wave disturbance growth was conducted at 90 Hz using LDV and CTA measurement techniques at two different angles of attack. This was combined with the studies performed on two other frequencies of 100 and 110 Hz, in order to witness its impact on the neutral stability curve behavior. The challenges faced in the next phase of the thesis while trying to control the transition location, was to understand and encompass the effect of adverse pressure gradient before setting up the passive control devices, which in this case was miniature vortex generators. Consequently, several attempts were made to optimize the parameters of the miniature vortex generators depending upon the streak strength and stability. Finally, for 90 Hz a configuration of miniature vortex generators have been found to successfully stabilize the TS wave disturbances below a certain forcing amplitude, which also led to transition delay.
|
10 |
Global stability analysis of three-dimensional boundary layer flowsBrynjell-Rahkola, Mattias January 2015 (has links)
This thesis considers the stability and transition of incompressible boundary layers. In particular, the Falkner–Skan–Cooke boundary layer subject to a cylindrical surface roughness, and the Blasius boundary layer with applied localized suction are investigated. These flows are of great importance within the aviation industry, feature complex transition scenarios, and are strongly three-dimensional in nature. Consequently, no assumptions regarding homogeneity in any of the spatial directions are possible, and the stability of the flow is governed by an extensive three-dimensional eigenvalue problem. The stability of these flows is addressed by high-order direct numerical simulations using the spectral element method, in combination with a Krylov subspace projection method. Such techniques target the long-term behavior of the flow and can provide lower limits beyond which transition is unavoidable. The origin of the instabilities, as well as the mechanisms leading to transition in the aforementioned cases are studied and the findings are reported. Additionally, a novel method for computing the optimal forcing of a dynamical system is developed. This type of analysis provides valuable information about the frequencies and structures that cause the largest energy amplification in the system. The method is based on the inverse power method, and is discussed in the context of the one-dimensional Ginzburg–Landau equation and a two-dimensional flow case governed by the Navier–Stokes equations. / <p>QC 20151015</p>
|
Page generated in 0.0736 seconds