Spelling suggestions: "subject:"aminated class"" "subject:"iaminated class""
11 |
EXPERIMENTAL COMPARISON STUDY OF THE RESPONSE OF POLYCARBONATE AND LAMINATED GLASS BLAST RESISTANT GLAZING SYSTEMS TO BLAST LOADINGCalnan, Joshua 01 January 2013 (has links)
This thesis recounts the experimental study of the dynamic response of polycarbonate blast resistant glazing systems to explosive loading through the use of triaxial load cells, pressure sensors, and a laser displacement gauge. This instrumentation captured the response of the glazing systems to blast loading over three phases of testing. The first phase of testing characterizes the load distribution around the perimeter and the second phase examines the repeatability of the results. The final phase of testing pushes the samples to failure. The results are then compared to HazL, a commonly used blast resistant glazing system analysis software tool. The experimental data is also compared to data available characterizing the response of laminated glass.
|
12 |
Beteende hos laminerade glasbalkar med och utan sprickor / Behaviour of laminated glass beams with and without cracksBasim, Weaam, Abdul Khader, Nour, Rehsid, Vijan January 2020 (has links)
Det blir allt vanligare att använda laminerat glas som ett konstruktionsmaterial. Men glas är ett känsligt och genomskinligt material som kan ge en obehaglig känsla om det spricker. Särskilt om det handlar sig om en glaskonstruktion som ska hålla en stor del av en byggnad. En glaskonstruktion bör upplevas trygg att vistas i. Idag är det svårt att ersätta bärande konstruktionsdelar med glas i Sverige eftersom det inte finns några särskilda dimensioneringsregler för glas. I det här examensarbetet genomförs en undersökning om hur laminerat glas böjer sig när det utsätts för belastning och varierande temperaturer under en kort tid. Det studeras hur tjockleken på mellanskiktet påverkar spänningen samt skjuvstyvheten i glasen. För att få relevanta jämförelser studeras även beteendet hos en osprucken och en sprucken laminerad balk. Med hjälp av litteraturstudier och teoretiska beräkningar har beteendet hos laminerade glasbalkar med olika förutsättningar undersökts. Resultatet visar att belastningar som verkar på en laminerad balk under en kort tid leder till ett varierande beteende och deformationer beroende på temperatur, skjuvstyvhet och tjocklek hos laminatet. Det upptäcktes ett gränsvärde vid temperaturen 50 °C där en förändring sker i sambandet mellan laminatets tjocklek, temperatur och nedböjningen. Beteendet och deformationen hos en laminerad balk varierar också beroende på om balken är sprucken eller inte. / It is becoming increasingly common to use laminated glass as a construction material. But glass is a sensitive and translucent material that can give an unpleasant feeling if it cracks. Especially if it is a glass structure that will hold a large part of a building. A glass structure should be considered safe to stay in. Today, it is difficult to replace supporting structural parts with glass in Sweden due to the lack of design rules. In this thesis, a study is conducted on how laminated glass bends when exposed to mechanical loads and varying temperatures for a short time. It is studied how the thickness of the middle layer plays a role, how the tension and the shear stiffness vary in the glass. In order to obtain relevant comparisons, the behavior of an unbroken and a cracked laminated beam is also studied. With the help of literature studies and theoretical calculations, the behavior of laminated beams under different conditions was examined. The results show that loads that act on a laminated beam for a short time lead to varying behavior and deformations depending on temperature, shear stiffness and interlayer thickness. A limit value was detected at the temperature of 50 °C where a change in the relation between interlayer thickness, temperature and deformation occurs. The behavior and deformation of a laminated beam also varies whether the laminate is cracked or not cracked.
|
13 |
Stabilitní problémy prutů z vrstveného konstrukčního skla / Stability problems of laminated structural glass membersPešek, Ondřej January 2018 (has links)
Transparent and subtle structures are features of modern architecture. Structural glass is constructional material that provides to realize architect's visions and ideas. Glass as a constructional material is more often used as a material for primary load-bearing structures. Realization of safe, reliable and economic glass structure is real challenge for structural engineers because of absence of standards for designing of glass members and elements. Compressed members (columns), bended members (beams) and members loaded by compression and bending (beam-columns) were analysed in the frame of the doctoral thesis whereby the emphasis is being placed on the lack of stability – flexural buckling, lateral-torsional buckling and flexural-lateral-torsional buckling. Measuring of shape and amplitude of initial geometrical imperfections is a part of doctoral thesis. The theoretical analysis describes the behaviour of the member by means of solving the differential equations. The solution according to the second order theory developed for metal members is applied on structural laminated glass members with use of effective cross-sectional characteristics. Numerical analysis is focused on the use of commonly available software based on finite element method in order to predict the load-bearing resistance of laminated glass members. Actual behaviour of laminated and monolithic structural glass members was found within experimental program. The correctness of FEM model and analytical solutions were evaluated by comparing with test results. The goal of the doctoral thesis was determine of buckling curves for calculation of flexural buckling and lateral-torsional buckling resistances by the same calculation procedure as for metal members. Because of small number of experimentally tested specimens the Monte Carlo simulation was performed.
|
14 |
Entwicklung von Dünnglas-Kunststoff-Hybridplatten für das BauwesenHänig, Julian 19 July 2023 (has links)
Moderne architektonische Fassadengestaltungen und Ganzglaskonstruktionen fordern immer häufiger entmaterialisiert wirkende Ansichten mit maximaler Transparenz für eine edle Erscheinung und einen hohen Grad an natürlicher Belichtung. Damit gehen große Spannweiten einher. Diese führen zu stark dimensionierten Glasaufbauten und bringen hohes Eigengewicht in die Konstruktion ein. Die Verfügbarkeit von Dünnglas in bautechnisch relevanten Abmessungen ermöglicht neue gewichtssparende Konstruktionsprinzipien und innovative Materialkombinationen.
Dünnglas-Kunststoff-Hybridplatten bestehen aus einem leichten transparenten Kunststoffkern mit außenliegenden kratzbeständigen und dauerhaften Deckschichten aus Dünnglas. Sie bieten eine hohe Steifigkeit, Dauerhaftigkeit und volle Transparenz bei geringem Eigengewicht. Die Aushärtung der Ausgangskomponenten des Kunststoffkerns erfolgt direkt zwischen den Deckschichten und erzeugt dadurch einen vollflächigen Verbund zwischen Glas und Kunststoff ohne zusätzliche Zwischenschichten.
Im Bauwesen sind Dünnglas-Kunststoff-Hybridplatten bislang unbekannt. Es liegen weder ausreichend Kenntnisse zu den Material- und Verbundeigenschaften vor noch sind die Eigenschaften als Bauprodukt entsprechend den hohen strukturellen und sicherheitstechnischen Anforderungen sowie den Ansprüchen an die Dauerhaftigkeit und an die optischen Eigenschaften nachgewiesen. Darüber hinaus fehlen konkrete Verbindungskonzepte zur Integration in das Bauwesen, um das Leichtbaupotenzial für entmaterialisiert wirkende transparente Konstruktionen auszunutzen.
Im Rahmen dieser Arbeit werden erstmals Dünnglas-Kunststoff-Hybridplatten als innovatives Leichtbauprodukt systematisch untersucht und in das Bauwesen eingeordnet. Experimentelle und numerische Untersuchungen charakterisieren die Material- und Verbundeigenschaften mit zwei, am Markt verfügbaren, Kunststoffkernmaterialien – Polymethylmethacrylat (PMMA) und Polyurethan (PU), die jeweils für ein unterschiedliches Eigenschaftsspektrum stehen. Darüber hinaus wird zur Umsetzung maximaler Transparenz eine materialgerechte Verbindungstechnik entwickelt und deren mechanische Tragfähigkeiten charakterisiert.
Zunächst werden in experimentellen Kleinteilprüfungen die thermophysikalischen und mechanischen Kennwerte der reinen Kunststoffkernmaterialien für die Beschreibung des Tragverhaltens im Verbund ermittelt. Anhand der Ergebnisse werden das PMMA als steifes, dauerhaftes, aber sprödes Material und das PU als vergleichsweise flexibles, zähes Material charakterisiert. Die experimentellen Untersuchungen zum Verbundverhalten fokussieren sich auf die Anforderungen für den Einsatz im Bauwesen. Eine numerische Strukturanalyse erweitert die Ergebnisse zum Tragverhalten und klärt offengebliebene Fragestellungen zum thermischen Ausdehnungsverhalten. Die Ergebnisse zeigen, dass mit Dünnglas-Kunststoff-Hybridplatten ein effizientes Tragverhalten und eine signifikante Gewichtsreduktion gegenüber herkömmlichem monolithischem Glas und Verbundglas erreicht wird. Anhand der spezifizierten Verbundeigenschaften werden resultierende Anwendungspotenziale entsprechend der Materialkombination abgeleitet.
Die weiterführende Entwicklung einer tragfähig in den Kunststoffkern integrierten Verbindungstechnik bietet innovative Anbindungsmöglichkeiten für Dünnglas-Kunststoff-Hybridplatten im Strukturleichtbau. Die Funktionsweise wurde anhand eines Konstruktionsbeispiels auf der „glasstec 2022“ demonstriert.
Die vorliegende Arbeit beinhaltet eine strukturierte Kennwertsammlung zur erstmaligen ingenieurmäßigen Beschreibung des Material- und Verbundverhaltens von Dünnglas-Kunststoff-Hybridplatten mit zwei unterschiedlichen Kunststoffkernmaterialien. Die Materialkombination aus Dünnglas und PMMA-Kunststoffkern erzielt die größte Materialeffizienz für eine effektive Gewichtsreduktion und erfüllt die grundlegenden Anforderungen aus dem Bauwesen. Anhand der weiterführend entwickelten konstruktiven Verbindungstechnik wird ein breiter Anwendungsbereich erschlossen. Mit den Ergebnissen dieser Arbeit werden somit die Grundlagen für die Einführung als Bauprodukt und für eine gewichtssparende Konstruktionsweise zur Umsetzung maximaler Transparenz geschaffen.:1 Einleitung
2 Grundlagen
3 Dünnglas-Kunststoff-Hybridplatten
4 Materialcharakterisierung Kunststoffkern
5 Verbundverhalten
6 Numerische Strukturanalyse
7 Einordnung in das Bauwesen
8 Konstruktive Verbindungstechnik
9 Konstruktionsbeispiel und Empfehlungen
10 Zusammenfassung und Ausblick
11 Literatur / Modern façade designs and all-glass construction are increasingly calling for dematerialisation and maximum transparency for a sophisticated appearance and a high degree of natural lighting. This is accompanied by large glass spans leading to increasing thickness of glass panels that introduce a high dead load into the supporting structure. The availability of thin glass in architecturally relevant dimensions permits new lightweight design principles and innovative material combinations.
Innovative thin glass-plastic-composite panels consist of a lightweight and transparent polymeric interlayer core with scratch-resistant and durable cover layers of thin glass. They offer high stiffness, durability and full transparency at a low specific weight. The raw components of the polymer core are directly cured between the cover layers resulting in a chemical bond between glass and polymer over the entire surface without the need for additional interlayers.
The thin glass-plastic-composite panels are currently unknown in the building industry. There is a lack of knowledge about the material and its composite behaviour. It has not been verified as a building product in accordance with the high structural and safety requirements as well as the requirements for durability and optical properties. In order to employ the lightweight design potential for dematerialised and transparent construction suitable for the building industry, there is a need for specific and material-appropriate connection techniques.
In the context of this thesis, the novel thin glass-plastic-composite panels are systematically investigated in order to assess them as an innovative lightweight product. For the first time, they are classified in detail for application in the building industry. Material and composite properties using two different polymeric interlayer core materials – polymethyl methacrylate (PMMA) and polyurethane (PU) – are characterised by means of experimental and numerical investigations. Moreover, to achieve maximum transparency, a material-specific connection technique is developed and a wide range of mechanical load-bearing capacities are specified.
First of all, the thermophysical and mechanical parameters of the pure polymer core materials are determined in experimental small part tests for the description of the composite load-bearing behaviour. The results identify the PMMA as a stiff, durable but brittle material and the PU as a fairly flexible, viscoelastic material. The investigations on the composite behaviour focus on the demands for use in the building industry and include experimental tests on the durability, the adhesion, the composite load-bearing behaviour as well as the response to hard and soft body impacts. A numerical analysis extends the results of experimental investigations on the structural load-bearing behaviour and examines the thermal expansion behaviour. The results indicate that the new material combination achieves a highly efficient structural load-bearing behaviour and a significant weight reduction compared to conventional monolithic and laminated glass. Application possibilities are derived based on the observed interlayer core material and composite characteristics.
Further development of a connection technique as an integrated design into the polymeric interlayer core offers wide-ranging concepts of connecting thin glass-plastic-composite panels. Its functionality and practicability have been demonstrated in a construction prototype exhibited at “glasstec 2022” fair.
The present work contains a well-structured material dataset to describe the material and composite behaviour of thin glass-plastic-composite panels comprehensively with two different polymeric interlayer core materials in engineering methodology. The material combination of thin glass and PMMA interlayer core achieves outstanding material efficiency with an effective weight reduction and fulfils the general requirements for application in building industry. A wide range of applications is facilitated thanks to the further development of a slim and integrated structural connection technique. The results of this work provide the framework for the introduction of a new lightweight building product with an innovative structural design to realise maximum transparency of façades and all-glass structures.:1 Einleitung
2 Grundlagen
3 Dünnglas-Kunststoff-Hybridplatten
4 Materialcharakterisierung Kunststoffkern
5 Verbundverhalten
6 Numerische Strukturanalyse
7 Einordnung in das Bauwesen
8 Konstruktive Verbindungstechnik
9 Konstruktionsbeispiel und Empfehlungen
10 Zusammenfassung und Ausblick
11 Literatur
|
15 |
Beteende hos laminerat glas efter brott / Post-Breakage behavior of laminated glassBaquedano Romero, Kevin, Oudka, Saadia, Musa, Amira January 2022 (has links)
Glas är ett styvt material som används bland annat inom byggbranschen och fordonsindustrin. Glas har hög styvhet och hög hållfasthet men är ett sprött material. När en spricka uppstår i en laminerad glasbalk minskas dess bärförmåga och styvhet och säkerhetsrisken ökar. För att garantera en hög säkerhet används laminerat glas där tunna plastfilmer limmar ihop flera skikt av glas (som även kallas för lameller). När glaset lamineras fungerar det som ett paket där spänningarna kan överföras mellan de olika lamellerna. Användningsområden inom byggbranschen kan vara plana element, till exempel för fönster eller balkonräcken, dessutom finns både liggande balkar (böjning i den tunna riktningen) samt stående balkar. Även i balkar av laminerat glas kan sprickor i en av lamellerna uppstå. Dessa fångas dock upp av de andra lamellerna så att hela balken förblir intakt och hålls på plats. En sprucken balk tappar då en del av bärförmågan och styvheten jämfört med en osprucken balk. Spruckna balkar kan alltså inte bära samma last. Syftet med arbetet är att öka kunskapen om beteendet hos laminerat glas som är sprucket och få bättre förståelse för hur laminerat glas beter sig när det går till brott. Målet är att verifiera den numeriska beräkningsmodellen av Abdul Khader, Basim & Reshid (2020) genom experimentella försök. Modellen beskriver liggande balkar av laminerat glas, både spruckna och ospruckna balkar. I detta examenarbete användes olika metoder: litteraturundersökning, tillämpning av en beräkningsmodell samt experiment. Litteratundersökningen gav ett fördjupande förståelse dels om ämnet glas exempelvis om olika typer av glas och glasets generella egenskaper, dels om laminerat glas, hur det är uppbyggt, tillverkat och egenskaper förbättras genom lamineringen. Beräkningsmodellen som detta arbete bygger på är från en tidigare studie, där en beräkningsmetod för spruckna glasbalkar beskrevs med hjälp av den så kallade effektiva tjockleksmetoden för böjstyvhet av laminerat glas. Experiment genomfördes för att studera hur laminerade glasbalkar med och utan spricka i mitten beter sig när de utsätts för belastning. Resultaten visar skillnaden mellan ospruckna och spruckna balkar av laminerat glas med två skikt när det gäller böjstyvheten och bärförmågan. Experimenten visar att nedböjningen för spruckna balkar är dubbelt så stor som för ospruckna balkar. Skillnaden beror på att böjstyvheten hos spruckna balkar är lägre än hos ospruckna balkar. På grund av sprickan i mitten överförs lasterna endast i en skiva, och dessutom minskas böjstyvheten i den ospruckna delen. Beräkningsmodellen överensstämde väl med resultaten från de utförda experimenten. Detta bekräftar att modellen kan tillämpas för laminerade glasbalkar. Mer omfattande studier bör dock genomföras där de ingående parametrarna varieras, till exempel genom längre balkar, sprickor på andra ställen än i mitten, samt att olika material för mellansiktet används.
|
16 |
Obchodní galerie / Shopping galleryLorenc, Jakub January 2020 (has links)
The subject of this diploma thesis is the design and assessment of main load-bearing elements od the steel structure of shopping gallery in Hodonín. Part of floor plan is rectangular and rest of it is half-circled. Object's dimensions are 7é m x 147,75 m (and roof overhang 1,5 m on each side), the height of the ridge is 13,43 m and the height of the roof's dome is 22,70 m. It's a two-storey building. The load-bearing structure consist of pin-suported columns, in this case there is max. 8,5 m distance between them in direction of main frame. The distance between main frames is 9 m. The spatial rigidity of the structure is ensured with floor slabs and system of bracings. The cladding consists of sandwich panels, roof's fanlights and dome of glazed areas. Most of elements are made of S355 steel.
|
17 |
Spannglasträger – Glasträger mit vorgespannter Bewehrung / Spannglass Beams – Glass Beams with Post-Tensioned ReinforcementEngelmann, Michael 17 October 2017 (has links) (PDF)
Glas und Beton sind sich in wesentlichen Materialeigenschaften ähnlich: Beide zeigen gegenüber einer hohen Druckfestigkeit eine vergleichsweise geringe Zugfestigkeit und versagen spröde. Diese Analogie führte zur Entwicklung bewehrter Glasträger, die sich durch eine aufgeklebte Stahllasche an ihrer Biegezugkante auszeichnen. Dadurch wurden die Übertragung von Zugkräften auch im Rissfall möglich, sodass ein duktiles Bauteilverhalten erreicht und der im Konstruktiven Glasbau notwendige Nachweis der Resttragfähigkeit erfüllt wird. Glasträger mit verbundlos vorgespannter Bewehrung – Spannglasträger – stellen die Fortführung dieses Analogiegedankens dar. Neben einer gezielten Steigerung der Erstrisslast, können die Träger planmäßig überhöht werden. Damit wird einer bisher üblichen Überdimensionierung mit der Anordnung nicht ausgenutzter „Opferscheiben“ entgegen gewirkt und sichere sowie materialeffiziente Konstruktionen mit maximaler Transparenz ermöglicht. Diese Konstruktionsweise wurde bislang ausschließlich für einzelne Sondierungsuntersuchungen in breiter Variantenvielfalt genutzt. Eine Systematik und einheitliche Bezeichnungsweise ist nicht vorhanden. Darüber hinaus beschränken sich verfügbare Ergebnisse auf die Beschreibung der Tragfähigkeit, ohne die Resttragfähigkeit explizit zu belegen oder die Dauerhaftigkeit nachzuweisen.
Mit dieser Arbeit wurde anhand einer Analogiebetrachtung zum Eurocode 2 eine Bezeichnungsweise für bewehrte und vorgespannte Glasträger entwickelt und für vorhandene Konstruktionen erfolgreich angewendet. Darin zeigt sich, dass der Stand der Technik auf diese Weise charakterisierbar ist. Zusätzlich wird die These aufgestellt, dass sich das Tragverhalten von Spannglasträgern wie im Stahlbeton- und Spannbetonbau beschreiben und die auftretenden Spannkraftverluste analog berechnen lassen. Diese These wird mithilfe experimenteller Studien als Kern dieser Arbeit untersucht und durch eine ergänzende numerische Modellierung bestätigt. Zunächst wird das Tragverhalten im Kurzzeit-Biegeversuch an 15 Prüfkörpern unter variierten Bewehrungsgraden und Vorspannkräften untersucht. Dabei zeigen sich gesteigerte Erstrisslasten sowie ein sicheres Verhalten im Anschluss an die Belastung. Durch die Vorspannung wird das Tragverhalten gezielt beeinflusst. Zusätzlich erbringt eine zerstörungsfreie Untersuchungsreihe an 28 Prüfkörpern unter konstanter Gebrauchslast über 1000 Stunden erstmals eine Beschreibung der auftretenden Spannkraftverluste. Diese sind maßgeblich von der horizontalen Durchbiegung sowie der daraus resultierenden Belastung der Zwischenschicht im Verbund-Sicherheitsglas abhängig. Aus der Größenordnung der Verluste lässt sich schlussfolgern, dass eine Begrenzung dieses Verformungsanteils sowie eine konstruktive Entlastung der Zwischenschicht notwendig sind. Zudem wird die Änderung der Vorspannkraft unter einer Temperaturlast beschrieben. Im Ergebnis zeigt sich, dass dieser Lastfall mittels der linearen Balkentheorie beschreibbar und der damit assoziierte Spannkraftverlust berechenbar ist. Die Resttragfähigkeit von 24 Spannglasträgern wird mithilfe eines eigens entwickelten Prüfverfahrens bestätigt. Während die Bewehrung einerseits eine Überbrückung von Rissflanken ermöglicht, verursacht die Vorspannkraft andererseits im teilzerstörten Tragsystem bisweilen ein frühzeitiges Versagen. Daher wird empfohlen, die baukonstruktive Detailentwicklung zu intensivieren, um einen größeren Sicherheitsvorteil aus der Konstruktionsweise zu generieren.
Die Arbeit beinhaltet erstmals eine systematische Datensammlung zum Tragverhalten von Spannglasträgern. Es zeigt sich, dass auf eine Anordnung von „Opferscheiben“ zugunsten einer steigenden Materialeffizienz nicht nur verzichtet werden kann, sondern im Sinne eines effektiven Tragverhaltens verzichtet werden muss. Mit der vorgeschlagenen Bezeichnungsweise, den abgeleiteten konstruktiven Maßnahmen sowie den gezeigten Untersuchungsmethoden besteht nunmehr die Möglichkeit, sichere und dauerhafte Spannglasträger zu entwerfen und deren Trageffizienz zu belegen. / Glass and concrete share essential material characteristics: Their compressive strength exceeds their tensile strength considerably and both of them fail in a brittle manner. This analogy led to the development of reinforced glass beams, which are improved by means of adhesively bonded steel sections in the tensile zone. This improvement allowed for a direct transfer of tensile loads in a post-breakage state and resulted in a ductile structural element, which met the special demand of structural glass for a sufficient residual loadbearing capacity. Glass beams with unbonded, post-tensioned reinforcement – Spannglass Beams – carry this analogy concept on. The members will comprise an increased initial fracture strength and may be uplifted intentionally. This development has rendered the need for over-dimensioning by removing unnecessary sacrificial layers, which will result in a material efficient structure and will maximise transparency. Solely single exploratory investigations have used this idea in a wide variety of options so far. There is neither a uniform classification nor a consistent nomenclature. Furthermore, available results are limited to the concise description of the short-term load-bearing properties without proving the residual load-bearing capacity explicitly and confirming longterm durability.
This thesis describes the development and the application of a nomenclature for reinforced and pre-compressed glass beams in an analogy study according to Eurocode 2. The state of technology can be characterised in this manner. Additionally, the research describes the load-bearing behaviour as well as the calculation of the loss of pre-stress of Spannglass Beams by analogy with concrete structures. As the key section of this thesis, this statement is examined by means of comprehensive experimental studies and completed by a numerical calculation. Primarily, the load-bearing behaviour of 15 specimens in short-term bending tests and a variety of reinforcement ratios and pre-stress levels were determined. The results show an increase of initial fracture strength as well as safe behaviour after failure. The pre-stress changes the load-bearing performance significantly. Furthermore, a non-destructive study including a constant loading for 1000 h describes the loss of pre-stress in 28 specimens for the first time. The horizontal deflection and the thus resulting shear stresses of the interlayer material of a laminated glass section are the critical parameters. From the magnitude of losses it may be concluded that the deflections need to be limited and the interlayer foils need to be relieved from stress. Moreover, the structural response during a change in temperature is in good agreement with the results obtained from linear beam theory. This allows for an estimation of the associated losses.
Finally, a specifically developed test approach confirms the residual load-bearing capacity of 24 specimens. The reinforcement shows the ability to bridge cracks in the glass. However, it should be noted that pre-stress occasionally causes an early failure of the partially broken Spannglass cross-section. Therefore, intensifying the development of structural details in order to generate an increased advantage concerning safety is recommended. This contribution contains a systematic acquisition of analytical, experimental and numerical data regarding the loadbearing characteristics of Spannglass Beams for the first time. The use of a sacrificial layers is not necessary. Even more, to reach the most effective load-bearing behaviour, it is necessary to abandon them completely. Implementing the developed nomenclature, realising the recommended structural provisions and using the proposed methods, it is now possible to compose safe and durable Spannglass Beams as well as prove their structural efficiency.
|
18 |
Spannglasträger – Glasträger mit vorgespannter BewehrungEngelmann, Michael 24 August 2017 (has links)
Glas und Beton sind sich in wesentlichen Materialeigenschaften ähnlich: Beide zeigen gegenüber einer hohen Druckfestigkeit eine vergleichsweise geringe Zugfestigkeit und versagen spröde. Diese Analogie führte zur Entwicklung bewehrter Glasträger, die sich durch eine aufgeklebte Stahllasche an ihrer Biegezugkante auszeichnen. Dadurch wurden die Übertragung von Zugkräften auch im Rissfall möglich, sodass ein duktiles Bauteilverhalten erreicht und der im Konstruktiven Glasbau notwendige Nachweis der Resttragfähigkeit erfüllt wird. Glasträger mit verbundlos vorgespannter Bewehrung – Spannglasträger – stellen die Fortführung dieses Analogiegedankens dar. Neben einer gezielten Steigerung der Erstrisslast, können die Träger planmäßig überhöht werden. Damit wird einer bisher üblichen Überdimensionierung mit der Anordnung nicht ausgenutzter „Opferscheiben“ entgegen gewirkt und sichere sowie materialeffiziente Konstruktionen mit maximaler Transparenz ermöglicht. Diese Konstruktionsweise wurde bislang ausschließlich für einzelne Sondierungsuntersuchungen in breiter Variantenvielfalt genutzt. Eine Systematik und einheitliche Bezeichnungsweise ist nicht vorhanden. Darüber hinaus beschränken sich verfügbare Ergebnisse auf die Beschreibung der Tragfähigkeit, ohne die Resttragfähigkeit explizit zu belegen oder die Dauerhaftigkeit nachzuweisen.
Mit dieser Arbeit wurde anhand einer Analogiebetrachtung zum Eurocode 2 eine Bezeichnungsweise für bewehrte und vorgespannte Glasträger entwickelt und für vorhandene Konstruktionen erfolgreich angewendet. Darin zeigt sich, dass der Stand der Technik auf diese Weise charakterisierbar ist. Zusätzlich wird die These aufgestellt, dass sich das Tragverhalten von Spannglasträgern wie im Stahlbeton- und Spannbetonbau beschreiben und die auftretenden Spannkraftverluste analog berechnen lassen. Diese These wird mithilfe experimenteller Studien als Kern dieser Arbeit untersucht und durch eine ergänzende numerische Modellierung bestätigt. Zunächst wird das Tragverhalten im Kurzzeit-Biegeversuch an 15 Prüfkörpern unter variierten Bewehrungsgraden und Vorspannkräften untersucht. Dabei zeigen sich gesteigerte Erstrisslasten sowie ein sicheres Verhalten im Anschluss an die Belastung. Durch die Vorspannung wird das Tragverhalten gezielt beeinflusst. Zusätzlich erbringt eine zerstörungsfreie Untersuchungsreihe an 28 Prüfkörpern unter konstanter Gebrauchslast über 1000 Stunden erstmals eine Beschreibung der auftretenden Spannkraftverluste. Diese sind maßgeblich von der horizontalen Durchbiegung sowie der daraus resultierenden Belastung der Zwischenschicht im Verbund-Sicherheitsglas abhängig. Aus der Größenordnung der Verluste lässt sich schlussfolgern, dass eine Begrenzung dieses Verformungsanteils sowie eine konstruktive Entlastung der Zwischenschicht notwendig sind. Zudem wird die Änderung der Vorspannkraft unter einer Temperaturlast beschrieben. Im Ergebnis zeigt sich, dass dieser Lastfall mittels der linearen Balkentheorie beschreibbar und der damit assoziierte Spannkraftverlust berechenbar ist. Die Resttragfähigkeit von 24 Spannglasträgern wird mithilfe eines eigens entwickelten Prüfverfahrens bestätigt. Während die Bewehrung einerseits eine Überbrückung von Rissflanken ermöglicht, verursacht die Vorspannkraft andererseits im teilzerstörten Tragsystem bisweilen ein frühzeitiges Versagen. Daher wird empfohlen, die baukonstruktive Detailentwicklung zu intensivieren, um einen größeren Sicherheitsvorteil aus der Konstruktionsweise zu generieren.
Die Arbeit beinhaltet erstmals eine systematische Datensammlung zum Tragverhalten von Spannglasträgern. Es zeigt sich, dass auf eine Anordnung von „Opferscheiben“ zugunsten einer steigenden Materialeffizienz nicht nur verzichtet werden kann, sondern im Sinne eines effektiven Tragverhaltens verzichtet werden muss. Mit der vorgeschlagenen Bezeichnungsweise, den abgeleiteten konstruktiven Maßnahmen sowie den gezeigten Untersuchungsmethoden besteht nunmehr die Möglichkeit, sichere und dauerhafte Spannglasträger zu entwerfen und deren Trageffizienz zu belegen.:1 Einleitung
1.1 Problemstellung und Motivation
1.2 Zielsetzung
1.3 Vorgehensweise
1.4 Abgrenzung
2 Analogiebetrachtung
2.1 Zielsetzung
2.2 Anwendungsbereich
2.3 Begriffe
2.3.1 Bewehrte und hybride Glastragwerke
2.3.2 Thermische und mechanische Vorspannung
2.3.3 Spanngliedkonstruktion und Spannverfahren
2.3.4 Lage und Verlauf des Spanngliedes
2.3.5 Weitere Begriffe
2.4 Grundlagen der Tragwerksplanung
2.5 Baustoffe
2.5.1 Festigkeit
2.5.2 Elastische Formänderungseigenschaften
2.5.3 Kriechen und Schwinden
2.5.4 Bewehrungsmaterial
2.5.5 Komponenten von Spannsystemen
2.5.6 Querschnittsgestaltung
2.6 Dauerhaftigkeit
2.7 Schnittgrößenermittlung
2.7.1 Allgemeines
2.7.2 Imperfektionen
2.7.3 Idealisierung
2.7.4 Lineare Berechnung
2.7.5 Nichtlineare Berechnung
2.7.6 Zeitabhängigkeit der Vorspannkraft
2.7.7 Vorspannung während der Berechnung
2.8 Grenzzustände und Nachweise
2.8.1 Grenzzustand der Tragfähigkeit
2.8.2 Grenzzustand der Gebrauchstauglichkeit
2.8.3 Nachweis der Resttragfähigkeit
2.9 Bewehrungs- und Konstruktionsregeln
2.10 Zusammenfassung
3 Experimentelle Untersuchungen
3.1 Zielsetzung
3.2 Prüfkörper – Konstruktion und Materialien
3.3 Tragverhalten unter kurzzeitiger Beanspruchung
3.3.1 Prüfkörper
3.3.2 Versuchseinrichtung
3.3.3 Untersuchungsverfahren und -bedingungen
3.3.4 Analyse- und Auswertungsverfahren
3.3.5 Ergebnisse und Ergebnisdiskussion
3.3.6 Folgerungen und Zusammenfassung
3.4 Tragverhalten unter Dauerlast
3.4.1 Prüfkörper
3.4.2 Versuchseinrichtung
3.4.3 Untersuchungsverfahren und -bedingungen
3.4.4 Analyse- und Auswertungsverfahren
3.4.5 Ergebnisse und Ergebnisdiskussion
3.4.6 Folgerungen und Zusammenfassung
3.5 Resttragfähigkeit
3.5.1 Prüfkörper
3.5.2 Versuchseinrichtung
3.5.3 Untersuchungsverfahren und -bedingungen
3.5.4 Analyse- und Auswertungsverfahren
3.5.5 Ergebnisse und Ergebnisdiskussion
3.5.6 Folgerungen und Zusammenfassung
3.6 Tragverhalten unter Temperaturbelastung
3.6.1 Prüfkörper
3.6.2 Versuchseinrichtung
3.6.3 Untersuchungsverfahren und -bedingungen
3.6.4 Analyse- und Auswertungsverfahren
3.6.5 Ergebnisse und Ergebnisdiskussion
3.6.6 Folgerungen und Zusammenfassung
3.7 Zusammenfassung
4 Numerische Untersuchungen
4.1 Zielsetzung
4.2 Modellbeschreibung
4.2.1 Systembeschreibung
4.2.2 Einwirkungen
4.2.3 Berechnung
4.3 Ergebnisse und Ergebnisdiskussion
4.3.1 Vergleich mit dem analytischen Modell
4.3.2 Modellierung der Umlenkung
4.3.3 Einfluss der Zwischenschicht
4.3.4 Auswahl eines Imperfektionswertes
4.3.5 Seilkraftverlust im Dauerversuch
4.4 Zusammenfassung
5 Diskussion
5.1 Zielsetzung
5.2 Tragverhalten unter kurzzeitiger Beanspruchung
5.2.1 Tragverhalten unter Vorspannbelastung
5.2.2 Trag- und Bruchverhalten unter Biegebelastung
5.2.3 Rissverhalten unter Biegebelastung
5.2.4 Spannungszuwachs in der Bewehrung
5.3 Tragverhalten unter Dauerbelastung
5.4 Resttragfähigkeit
5.5 Zusammenfassung
6 Konstruktive Empfehlungen
6.1 Zielsetzung
6.2 Teilprojekte
6.2.1 Forschungsprojekt „Glasträger mit Bewehrung“
6.2.2 Spannglasbrücke – glasstec 2014
6.2.3 Fußgängerbrücke in Nara (Japan) 2015
6.3 Verankerungen
6.3.1 Tragfähigkeit der Verankerung
6.3.2 Seilkrafteinleitung
6.3.3 Toleranzausgleich
6.3.4 Neigungsausgleich
6.4 Vorspannverfahren
6.5 Umlenkpunkte
6.5.1 Geklotzte Umlenkpunkte
6.5.2 Geklebte Umlenkpunkte
6.6 Montage
6.7 Weiterführende Konstruktionen
6.7.1 Spannglasträger mit nachträglichem Verbund
6.7.2 Segmentbauweise
6.8 Zusammenfassung
7 Zusammenfassung und Ausblick
7.1 Zusammenfassung
7.2 Ausblick
8 Literatur
8.1 Fachbücher und Fachaufsätze
8.2 Normen und Richtlinien
Bezeichnungen
Abbildungsverzeichnis und -nachweis
Tabellenverzeichnis
A Analytische Schnittgrößenberechnung
B Kurzzeit-Biegeversuche
C Dauerversuche 1000 h
D Versuche zur Resttragfähigkeit
E Biegeversuche unter Temperaturlast
F SOFiSTiK Quelltext / Glass and concrete share essential material characteristics: Their compressive strength exceeds their tensile strength considerably and both of them fail in a brittle manner. This analogy led to the development of reinforced glass beams, which are improved by means of adhesively bonded steel sections in the tensile zone. This improvement allowed for a direct transfer of tensile loads in a post-breakage state and resulted in a ductile structural element, which met the special demand of structural glass for a sufficient residual loadbearing capacity. Glass beams with unbonded, post-tensioned reinforcement – Spannglass Beams – carry this analogy concept on. The members will comprise an increased initial fracture strength and may be uplifted intentionally. This development has rendered the need for over-dimensioning by removing unnecessary sacrificial layers, which will result in a material efficient structure and will maximise transparency. Solely single exploratory investigations have used this idea in a wide variety of options so far. There is neither a uniform classification nor a consistent nomenclature. Furthermore, available results are limited to the concise description of the short-term load-bearing properties without proving the residual load-bearing capacity explicitly and confirming longterm durability.
This thesis describes the development and the application of a nomenclature for reinforced and pre-compressed glass beams in an analogy study according to Eurocode 2. The state of technology can be characterised in this manner. Additionally, the research describes the load-bearing behaviour as well as the calculation of the loss of pre-stress of Spannglass Beams by analogy with concrete structures. As the key section of this thesis, this statement is examined by means of comprehensive experimental studies and completed by a numerical calculation. Primarily, the load-bearing behaviour of 15 specimens in short-term bending tests and a variety of reinforcement ratios and pre-stress levels were determined. The results show an increase of initial fracture strength as well as safe behaviour after failure. The pre-stress changes the load-bearing performance significantly. Furthermore, a non-destructive study including a constant loading for 1000 h describes the loss of pre-stress in 28 specimens for the first time. The horizontal deflection and the thus resulting shear stresses of the interlayer material of a laminated glass section are the critical parameters. From the magnitude of losses it may be concluded that the deflections need to be limited and the interlayer foils need to be relieved from stress. Moreover, the structural response during a change in temperature is in good agreement with the results obtained from linear beam theory. This allows for an estimation of the associated losses.
Finally, a specifically developed test approach confirms the residual load-bearing capacity of 24 specimens. The reinforcement shows the ability to bridge cracks in the glass. However, it should be noted that pre-stress occasionally causes an early failure of the partially broken Spannglass cross-section. Therefore, intensifying the development of structural details in order to generate an increased advantage concerning safety is recommended. This contribution contains a systematic acquisition of analytical, experimental and numerical data regarding the loadbearing characteristics of Spannglass Beams for the first time. The use of a sacrificial layers is not necessary. Even more, to reach the most effective load-bearing behaviour, it is necessary to abandon them completely. Implementing the developed nomenclature, realising the recommended structural provisions and using the proposed methods, it is now possible to compose safe and durable Spannglass Beams as well as prove their structural efficiency.:1 Einleitung
1.1 Problemstellung und Motivation
1.2 Zielsetzung
1.3 Vorgehensweise
1.4 Abgrenzung
2 Analogiebetrachtung
2.1 Zielsetzung
2.2 Anwendungsbereich
2.3 Begriffe
2.3.1 Bewehrte und hybride Glastragwerke
2.3.2 Thermische und mechanische Vorspannung
2.3.3 Spanngliedkonstruktion und Spannverfahren
2.3.4 Lage und Verlauf des Spanngliedes
2.3.5 Weitere Begriffe
2.4 Grundlagen der Tragwerksplanung
2.5 Baustoffe
2.5.1 Festigkeit
2.5.2 Elastische Formänderungseigenschaften
2.5.3 Kriechen und Schwinden
2.5.4 Bewehrungsmaterial
2.5.5 Komponenten von Spannsystemen
2.5.6 Querschnittsgestaltung
2.6 Dauerhaftigkeit
2.7 Schnittgrößenermittlung
2.7.1 Allgemeines
2.7.2 Imperfektionen
2.7.3 Idealisierung
2.7.4 Lineare Berechnung
2.7.5 Nichtlineare Berechnung
2.7.6 Zeitabhängigkeit der Vorspannkraft
2.7.7 Vorspannung während der Berechnung
2.8 Grenzzustände und Nachweise
2.8.1 Grenzzustand der Tragfähigkeit
2.8.2 Grenzzustand der Gebrauchstauglichkeit
2.8.3 Nachweis der Resttragfähigkeit
2.9 Bewehrungs- und Konstruktionsregeln
2.10 Zusammenfassung
3 Experimentelle Untersuchungen
3.1 Zielsetzung
3.2 Prüfkörper – Konstruktion und Materialien
3.3 Tragverhalten unter kurzzeitiger Beanspruchung
3.3.1 Prüfkörper
3.3.2 Versuchseinrichtung
3.3.3 Untersuchungsverfahren und -bedingungen
3.3.4 Analyse- und Auswertungsverfahren
3.3.5 Ergebnisse und Ergebnisdiskussion
3.3.6 Folgerungen und Zusammenfassung
3.4 Tragverhalten unter Dauerlast
3.4.1 Prüfkörper
3.4.2 Versuchseinrichtung
3.4.3 Untersuchungsverfahren und -bedingungen
3.4.4 Analyse- und Auswertungsverfahren
3.4.5 Ergebnisse und Ergebnisdiskussion
3.4.6 Folgerungen und Zusammenfassung
3.5 Resttragfähigkeit
3.5.1 Prüfkörper
3.5.2 Versuchseinrichtung
3.5.3 Untersuchungsverfahren und -bedingungen
3.5.4 Analyse- und Auswertungsverfahren
3.5.5 Ergebnisse und Ergebnisdiskussion
3.5.6 Folgerungen und Zusammenfassung
3.6 Tragverhalten unter Temperaturbelastung
3.6.1 Prüfkörper
3.6.2 Versuchseinrichtung
3.6.3 Untersuchungsverfahren und -bedingungen
3.6.4 Analyse- und Auswertungsverfahren
3.6.5 Ergebnisse und Ergebnisdiskussion
3.6.6 Folgerungen und Zusammenfassung
3.7 Zusammenfassung
4 Numerische Untersuchungen
4.1 Zielsetzung
4.2 Modellbeschreibung
4.2.1 Systembeschreibung
4.2.2 Einwirkungen
4.2.3 Berechnung
4.3 Ergebnisse und Ergebnisdiskussion
4.3.1 Vergleich mit dem analytischen Modell
4.3.2 Modellierung der Umlenkung
4.3.3 Einfluss der Zwischenschicht
4.3.4 Auswahl eines Imperfektionswertes
4.3.5 Seilkraftverlust im Dauerversuch
4.4 Zusammenfassung
5 Diskussion
5.1 Zielsetzung
5.2 Tragverhalten unter kurzzeitiger Beanspruchung
5.2.1 Tragverhalten unter Vorspannbelastung
5.2.2 Trag- und Bruchverhalten unter Biegebelastung
5.2.3 Rissverhalten unter Biegebelastung
5.2.4 Spannungszuwachs in der Bewehrung
5.3 Tragverhalten unter Dauerbelastung
5.4 Resttragfähigkeit
5.5 Zusammenfassung
6 Konstruktive Empfehlungen
6.1 Zielsetzung
6.2 Teilprojekte
6.2.1 Forschungsprojekt „Glasträger mit Bewehrung“
6.2.2 Spannglasbrücke – glasstec 2014
6.2.3 Fußgängerbrücke in Nara (Japan) 2015
6.3 Verankerungen
6.3.1 Tragfähigkeit der Verankerung
6.3.2 Seilkrafteinleitung
6.3.3 Toleranzausgleich
6.3.4 Neigungsausgleich
6.4 Vorspannverfahren
6.5 Umlenkpunkte
6.5.1 Geklotzte Umlenkpunkte
6.5.2 Geklebte Umlenkpunkte
6.6 Montage
6.7 Weiterführende Konstruktionen
6.7.1 Spannglasträger mit nachträglichem Verbund
6.7.2 Segmentbauweise
6.8 Zusammenfassung
7 Zusammenfassung und Ausblick
7.1 Zusammenfassung
7.2 Ausblick
8 Literatur
8.1 Fachbücher und Fachaufsätze
8.2 Normen und Richtlinien
Bezeichnungen
Abbildungsverzeichnis und -nachweis
Tabellenverzeichnis
A Analytische Schnittgrößenberechnung
B Kurzzeit-Biegeversuche
C Dauerversuche 1000 h
D Versuche zur Resttragfähigkeit
E Biegeversuche unter Temperaturlast
F SOFiSTiK Quelltext
|
Page generated in 0.1095 seconds