• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 35
  • 35
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Upgrading of Landfill Gas with Household Waste Slag / Rening av svavelväte och koldioxid i deponigas med slaggrus

Sadatgol, Seyedhani January 2015 (has links)
Modern landfills produce landfill gas, LFG, on a smaller scale and with limited content of degradable organic materials in the waste. The waste deposit in the Sofielund landfill began in 2005 and the final coverage is not yet commenced. The landfill waste must contain up to 10% decomposable organic materials at most. In a previous experiment on Sofielund landfill in summer 2011, the measurements from four sample wells showed the landfill gas consisted of up to 45% Methane and about 17000 ppm of Hydrogen sulfide, and the rest was only carbon dioxide. During the earlier experiment in 2011 and during 2012 the smell of H2S got offensive periodically and apart from that, concentrations above 1000 ppm are toxic. Previous research, Bottom ash for biogas upgrading, BABIU, shows that bottom ash from municipal solid waste incinerator (MSWI) can effectively reduce CO­­2 and H2S contents of landfill gas. Bottom ash from MSWI can be utilized in upgrading landfill gas and reduce odor problems of landfills with high H2S production. In this study, an area of 15m x 12m was covered with weathered slag from bottom ash with thickness of about 30cm, to examine how this layer can reduce the concentrations of H2S and CO2. Gas samples were taken from depths of 10cm and 15cm below the surface of bottom ash. There were also samples taken from around the slag-covered area. The surface was laid out 5 days before the first measurement was performed. The experiment was carried out for 20 days, 5, 7, 11, 13, 18 and 20 days after establishment of the surface with bottom ash. The intensity of emissions in different parts of the landfill varied from time to time, due to compacting and changing the permeability of the surface, and it shows that LFG flow in the Sofielund is near the lowest limit of it. Considering the results from the tests in 2011 in deep wells, the recent measurements done in this study showed low contents of LFGs. The highest contents of LFGs in the measurements belong to a pipe, which was found in the waste area of the landfill. Those highest contents of LFG were 15.1% methane, 12.1% carbon dioxide, 0.4% oxygen and the hydrogen sulfide did not exceed 2 ppm. This shows that in deeper depths concentrations of LFG is higher than that of the surface and 10cm below the surface. In the slag covered area CO2 content increased day by day from the first day of the measurement to the last day due to carbonation of the slag and its role in CO2 sequestration.  According to the recent measurement, it can be suggested to cover the landfill with a layer of slag as a construction material, to minimize the LFG emissions and the bad smell from H2S. Therefore it can eliminate direct emissions of LFG to the atmosphere by diffusion through the slag layer. This diffusion allows adsorption of CO2 and oxidation of H2S.
22

Adapting Solid Oxide Fuel Cells to Operate on Landfill Gas.Methane Passivation of Ni Anode

Dogho, Moses Ohakumhe 11 May 2023 (has links)
No description available.
23

Conversion of Landfill Gas to Liquid Hydrocarbon Fuels: Design and Feasibility Study

Kent, Ryan Alexander 24 March 2016 (has links)
This paper will discuss the conversion of gas produced from biomass into liquid fuel through the combination of naturally occurring processes, which occur in landfills and anaerobic digesters, and a gas-to-liquids (GTL) facility. Landfills and anaerobic digesters produce gases (LFG) that can be converted into syngas via a Tri-reforming process and then synthesized into man-made hydrocarbon mixtures using Fischer-Tropsch synthesis. Further processing allows for the separation into liquid hydrocarbon fuels such as diesel and gasoline, as well as other middle distillate fuels. Conversion of landfill gas into liquid fuels increases their energy density, ease of storage, and open market potential as a common “drop in” fuel. These steps not only allow for profitable avenues for landfill operators but potential methods to decrease greenhouse gas emissions. The objective of this paper is to present a preliminary design of an innovative facility which processes contaminated biogases and produces a valuable product. An economic analysis is performed to show feasibility for a facility under base case scenario. A sensitivity analysis is performed to show the effect of different cost scenarios on the breakeven price of fuel produced. Market scenarios are also presented in order to further analyze situations where certain product portions cannot be sold or facility downtime is increased. This facility is then compared to traditional mitigation options, such as flaring and electricity generation, to assess the effect each option has on cost, energy efficiency, and emissions reduction.
24

Researches of H2S generation from municipal landfills and systematical evaluation of landfills pollution / Komunalinių atliekų sąvartynuose išsiskiriančio H2S tyrimai ir sąvartynų taršos sisteminis įvertinimas

Kazlauskas, Dainius 14 June 2005 (has links)
In Lithuania the amount of waste generation is increasing every year. According to national strategy, all wastes should be disposed in new regional landfills. Landfills pollutes environment with leachate and landfill gas and odours. Landfill gas consists of odorous compounds and one of them is hydrogen sulphide (H2S). Hydrogen sulphide is highly toxic and affects the nervous system with low threshold. As the landfill gas and leachate generation was word widely investigated before this work, it is not necessary to provide new researches on them. The measurements of H2S generation were provided in Jerubaiciai landfill. For the measurements was used “site-on” measurement method, measurements were provided with equipment GD/MG 7, in 51 measurement points and 2 monitoring wells, during different seasons of the year. Results of the measurement shows, that amount of H2S varies in different areas of landfill and during different seasons. The results of dispersion modeling achieved with dispersion model AERMOD, provided under calm weather conditions and under wind dominated in that session winter speed and direction, during different seasons of the year shows, that H2S spreads from landfill in longest distances from landfill’s section during summer (almost in distance equal to 2.5 km the H2S concentration is higher then Highest Allowable Concentration ). In autumn and spring this distance is equal to 1.5 km, and in winter – 800 m. / Susidarančių komunalinių atliekų kiekis Lietuvoje kiekvienais metais didėja. Pagal nacionalinę strategiją, visos komunalinės atliekos Turi būti deponuojamos regioniniuose sąvartynuose, kurie teršia aplinka filtratu iš sąvartyno išsiskiriančiomis dujomis bei kvapais, kurių veina iš sudedamųjų dalių yra sieros vandenilis (H2S). H2S matavimai buvo atlikti Jerubaičių sąvartyne. Iš sąvartyno išsiskiriantis H2S kiekis buvo tiriamas jo išsiskyrimo vietoje, t.y. sąvartyno teritorijoje. Šis matavimo metodas buvo pasirinktas remiantis tuo, kad iš sąvartyno išsiskiriančios taršos dydis ir poveikis priklauso nuo daugelio aplinkos faktorių. Matavimai, naudojant prietaisą GD/MG 7, buvo atlikti 59 matavimo taškuose ir 2 monitoringo šuliniuose, skirtingais metų laikai. Gauti tyrimų rezultatai parodė, kad šios medžiagos kiekis yra skirtingas įvairiose sąvartyno zonose bei įvairiais metų laikais. Norint ištirti H2S sklaidą buvo atliktas skaitmeninis dispersijos modeliavimas naudojant programą AERMOD. Jo metu vienu atveju buvo pasirinktos stabilios meteorologinės sąlygos, o kitu pasirinkti dominuojančios konkrečiu metų laiku vėjo kryptys ir greičiai. Modeliavimo rezultatai parodė, kad vasarą H2S didžiausia leistina koncentracija pasiekiama tik maždaug 2,5 kilometrų, rudenį ir pavasarį 1,5 kilometrų, o žiemą - už 800 metrų atstumu nuo sąvartyno teritorijos.
25

Estudo das emissões de biogás em aterro de resíduos sólidos urbanos no semiárido brasileiro.

GUEDES, Maria Josicleide Felipe. 12 September 2018 (has links)
Submitted by Lucienne Costa (lucienneferreira@ufcg.edu.br) on 2018-09-12T17:38:44Z No. of bitstreams: 1 MARIA JOSICLEIDE FELIPE GUEDES – TESE (PPGRN) 2018.pdf: 5583855 bytes, checksum: 596a8968a2b1827271eb605c4751fa06 (MD5) / Made available in DSpace on 2018-09-12T17:38:44Z (GMT). No. of bitstreams: 1 MARIA JOSICLEIDE FELIPE GUEDES – TESE (PPGRN) 2018.pdf: 5583855 bytes, checksum: 596a8968a2b1827271eb605c4751fa06 (MD5) Previous issue date: 2018-02-23 / O biogás gerado pela biodegradação anaeróbia dos Resíduos Sólidos Urbanos (RSU) se configura como uma fonte alternativa de energia, entretanto, vem sendo desperdiçado em muitos aterros sanitários, na forma de emissões de Gases do Efeito Estufa (GEE) à atmosfera. A geração e emissão de gases são influenciadas por fatores associados às características operacionais dos aterros e dos resíduos, bem como aqueles relacionados às condições meteorológicas locais; os quais podem interferir na quantidade e qualidade dos gases gerados. Nessa perspectiva, o estudo das emissões de biogás se constitui em uma importante contribuição para a gestão de aterros sanitários, permitindo avaliar a eficiência das camadas de cobertura de solo compactado, além de permitir a otimização do sistema de drenagem dos gases e a recuperação energética do metano. Dentro desse contexto, o objetivo desta pesquisa foi estudar as emissões de biogás em aterro de Resíduos Sólidos Urbanos no semiárido brasileiro, no que concerne aos aspectos qualiquantitativos, a fim de gerar uma base de dados para apoiar a gestão sustentável desses empreendimentos. Esse estudo foi conduzido em uma célula de RSU, denominada de Célula 2, que se constitui em um aterro em escala real e está localizada no Aterro Sanitário em Campina Grande-PB. A operação da Célula 2 compreendeu o período entre 27/dezembro/2015 e 8/maio/2016, quando foi executada a camada de cobertura final de solo compactado. A massa total de RSU na Célula 2 foi de, aproximadamente, 62 mil toneladas, com uma taxa média de disposição de resíduos em torno de 465 t.dia-1. A metodologia da pesquisa englobou um plano de monitoramento das emissões de gases na Célula 2, o qual consistiu em medições: i) no sistema de drenagem vertical de biogás; ii) na interface soloresíduo; e iii) na camada de cobertura de solo compactado. Por meio dos resultados obtidos nesta pesquisa, foram verificadas concentrações médias de CH4, nos 9 (nove) drenos verticais (DV) de gases, superiores a 50% no período monitorado. A vazão total de CH4 variou na faixa de 59 a 17 Nm³.h-1, no período de 270 a 570 dias após o encerramento da Célula 2, implicando em uma redução dessa vazão de 70% durante esse intervalo de tempo. A taxa de captação de biogás por tonelada de resíduos aterrados variou de 15 a 4 Nm³.t-1.ano-1 (entre 270 e 570 dias). As emissões superficiais de metano pela camada de cobertura da Célula 2 totalizaram uma vazão inferior a 2 Nm³.h-1, no período de estiagem. Porém, a vazão de CH4 pela camada de cobertura foi significativamente inferior à vazão pelos DVs, correspondendo a um percentual inferior a 9% no período em análise. Os principais fatores que contribuíram para esse desempenho foram o elevado grau de compactação médio obtido para a Célula 2, a ausência de pressões diferenciais de gases na interface solo-resíduo, a eficiência do sistema de drenagem vertical de gases e a baixa permeabilidade do solo à água e ao ar. As estimativas da vazão de CH4 realizadas para a Célula 2, por meio do Landfill Gas Emissions Model, são compatíveis com uma potência máxima de 80 kW, disponível até 2047. Entretanto, as estimativas teóricas de vazão de biogás não refletiram o comportamento dos dados experimentais, visto que, nessas avaliações, não foi identificado o decaimento expressivo da vazão de metano, decorridos 570 dias de monitoramento da Célula 2. Portanto, faz-se necessário estudar possíveis soluções para ativar o potencial energético teórico dos resíduos na célula investigada. / The biogas generated by anaerobic biodegradation of Municipal Solid Waste (MSW) is an alternative energy source, however, it has been wasted in many landfills, in the form of emissions of Greenhouse Gases (GHG) to the atmosphere. The generation and emission of gases are influenced by factors associated with the operational characteristics of landfills and waste, as well as those related to local meteorological conditions; which may interfere with the quantity and quality of the generated gases. In this perspective, the study of biogas emissions is an important contribution of landfills management, allowing to evaluate the efficiency of the compacted soil cover layers, besides allowing the optimization of the gas drainage system and the methane energy recovery. Within this context, the objective of this research was to study the biogas emissions in Municipal Solid Waste landfill in the Brazilian semi-arid region, regarding qualitative and quantitative aspects, in order to generate a database to support the sustainable management of these enterprises. This study was conducted in a MSW cell, denominated Cell 2, built in a real-scale landfill and is located in the Campina Grande-PB Landfill. The operation of Cell 2 comprised the period between December 27, 2015 to May 8, 2016, when the final soil cover layer was executed. The total MSW mass of MSW in Cell 2 was approximately 62 thousand tons, with a mean waste disposal rate of around 465 t.day-1. The research methodology encompassed a gas emissions monitoring plan in Cell 2, which consisted of measurements: i) in the vertical biogas drainage system; ii) at the soil-residue interface; iii) in the compacted soil cover layer. Through the results obtained in this research, average concentrations of CH4, in the 9 (nine) Gas Drains (DV), higher than 50% in the monitored period. The total CH4 flow ranged from 59 to 17 Nm³.h-1, in the period from 270 to 570 days after the closure of Cell 2, implying a reduction of this flow by 70% during this time interval. The rate of capture of biogas per tonne of landfill residues varied from 15 to 4 Nm³.t- 1.year-1 (from 270 to 570 days). The surface emissions of methane by the cover layer of Cell 2 totaled a flow lower than 2 Nm³.h-1, during the dry season. However, the CH4 flow through the cover layer was significantly lower than the flow rate for the DVs, corresponding to a percentage lower than 9% in the period under analysis. The main factors that contributed to this performance were the high degree of average compaction obtained for Cell 2, the absence of gas differential pressures at the soil-residue interface, the efficiency of the vertical gas drainage system and the low permeability of the soil to water and air. The CH4 flow accomplished for Cell 2, using the Landfill Gas Emissions Model, are compatible with a maximum power of 80 kW, available until 2047. However, the biogas flow theoretical estimates did not reflect in the behavior of the experimental data, since in these evaluations, the significant decay of the methane flow was not identified after 570 days of monitoring of Cell 2. Therefore, it is necessary to study possible solutions to activate the theoretical energetic potential of the residues in the investigated cell.
26

Metangasutsläpp från deponier och osäkerheter i beräkningsmodeller kring detta

Lindelöf, Åsa January 2012 (has links)
I Sverige finns uppskattningsvis mellan 4000 och 8000 stycken deponier. De flesta av deponierna är nedlagda och år 2001 fanns det 142 stycken aktiva deponier för hushållsavfall. År 2010 hade antalet minskat till 76 stycken.  Vid nedbrytning av organiskt material i deponier bildas metanhaltig deponigas som bidrar till växthuseffekten. Utsläppens omfattning prognostiseras med hjälp av beräkningsmodeller, exempelvis IPCCs. Dessa modeller fordrar att antaganden görs av exempelvis andelen gas som utvinns via gasuppsamlingsutrustningen, det organiska materialets halveringstid och avfallets sammansättning och mängd. I Sverige görs antagandet att 60 procent av deponigasen samlas upp på deponier med gasuppsamlingsutrustning. Rapportens övergripande syfte var att undersöka hur osäkerheterna i de antaganden som görs kan inverka på de prognostiserade deponigasemissionerna. Syftet var också att bedöma om metangasutsläpp från deponier utgör ett stort eller försumbart tillskott av växthusgasutsläpp i jämförelse med andra källor. Detta gjordes genom en känslighetsanalys som baserades på en litteraturstudie, IPCC- prognostiserade metanmängder samt genom intervjuer med deponiägare.   Prognostiserad metangasproduktion från landets deponier jämfördes med uppskattad metangasproduktion, där det senare baserades på utvunna mängder i landet och en uppskattad utvinningsgrad på 60 procent. Prognostiserad metangasmängd jämfördes med en uppskattad mängd metan, där den senare baserades på utvunna gasmängder i landet och uppskattad utvinningsgrad. Omfattningen av emissionerna gjordes genom känslighetsanalys där utvinningsgrad hos gasuppsamlingssystemets varierades mellan 30 och 80 procent. De utvunna gasmängderna har varit relativt konstanta de senaste tio åren trots att antalet deponier med gasuppsamlingsutrustning minskat från 75 till 47 stycken och att deponeringsförbud har instiftats. Den antagna halveringstiden på 7,5 år torde därför vara för lågt ansatt vilket också styrks av den dåliga nedbrytningen i flera äldre deponier, minskade mängder deponerat avfall samt att inget organiskt material deponeras sedan 2005. Sveriges huvudsakliga metankällor är jordbrukssektorn och deponier från avfallssektorn. År 1990 var de prognostiserade utsläppen från de två sektorerna ungefär lika stora. Fram till år 2010 har de prognostiserade utsläppen från deponier halverats medan utsläpp från jordbruket ligger på ungefär samma nivå som tidigare.   Ur den enskilda deponins perspektiv kan det konstateras att utvinningsgraden hos gasuppsamlingssystemet varierar i både ett kortsiktigt och i ett långsiktigt perspektiv. Beroende på när en mätning utförs kommer en viss variation uppvisas i gasutvinningssystemets utvinningsgrad dvs både emitterade och uppsamlade gasmängder varierar mellan mättillfällena.  Det kan konstateras att en stor osäkerhet byggs in i den beräknade årsproduktionen av metangas när metanmängderna beräknas med hjälp av medelvärden från ett fåtal mätningar utförda under korta mätperioder. Statistiska Centralbyrån har gjort beräkningar av den årliga utvinningsgraden. Dessa beräkningar har grundats på faktiska utvunna mängder som jämförts med beräknade totala mängder. För en enskild deponi kan skillnaderna mellan de beräknade och faktiska mängderna vara stora vilket medför att utvinningsgraden eller produktionen är svårbedömd både för den enskilda deponin och på nationell nivå.   Potentialen för gasutvinning i deponier bedöms i det här examensarbetet vara större än vad som har prognostiserats. Perioden för gasuttag sträcker sig längre än vad man trott med anledning av att mycket av det organiska materialet i gamla deponier fortfarande inte har brutits ner, samt att gasproduktion fortfarande sker. Med anledning av de låga driftskostnaderna bör deponigasutvinning fortskrida så länge som det är tekniskt möjligt och ekonomiskt hållbart. Genom provtagningar av avfallet i kombination med mätningar som sträcker sig över längre perioder, skulle bättre kännedom om metangasproduktionen i deponier kunna fås. / There are a large number of landfill sites in Sweden. The total number is estimated to be somewhere between 4000 to 8000 landfills. In 2007 there were 142 landfill sites still operating, three years later the number of operating landfills decreased to 76. The municipalities are at present carrying out an inventory of old landfill sites in Sweden. The focus is on the location and risk classification of the landfill sites. There is a substantial uncertainty of the content and the progress of the degradation process unless the landfill is dug out. Methane containing landfill gas is produced when the organic matter in the waste is degraded. Since methane is a potent green house gas the emissions of landfill gas will contribute to the green house effect.   The extent of the emissions is usually quantified using the IPCC model or similar. The models require certain estimations to be made such as the amount of gas that is extracted, the half-life of the organic matter and the composition of the waste. The aim of the report was therefore to look into these estimations and how these can effect the landfill gas production. The aim was also to evaluate whether the methane emissions from landfills is a major contributor to the green house gas emissions in comparison to other sources. The master thesis has been carried out through a literature study and interviews with landfill owners that resulted in a sensitivity analysis.     The plausibility of the IPCC model was studied by carrying out a sensitivity analysis of the efficiency of the gas extraction system and how this will influence the total emissions of landfill gas.  An overview of the connection between the land fill gas production and the decomposition of the organic matter could be realized by analyzing the material in the landfill through tests on different depths in the landfill when drilling new gas wells. The extracted amounts of landfill gas are also contradictive to the estimation of the half-life of 7,5 years that is assumption regularly made within the IPCC- model. This theory is supported by the inadequate decomposition of organic material in old landfill sites. The reduced amounts of waste that is landfilled and the prohibition of landfilling of organic and combustible waste in 2005 are also supporting this theory. The main methane sources in Sweden are ruminants from the agricultural sector and landfills. In 1990 the forecast of the methane emissions of the two sectors were equal. The forecast of today shows that the agricultural emissions are more or less the same but the emissions from landfill are halved.   Another conclusion was that the efficiency of the gas extraction is varying in a short- term and in a long-term perspective. Depending on when a measurement is carried out there will be a variation of the efficiency of the gas extraction system. Anyhow annual values of the extracted amounts are calculated based on a few occasional measurements over very short time periods.  Moreover, the yearly efficiency is determined based on real extracted values of methane and calculated total values of methane production that are non-comparable.   The potential of gas extraction is probably larger than what has been predicted and the period of gas extraction is probably longer than expected. Supported by the low operation costs for the gas extraction the extraction should be carried out as long as it is technically possible and economically reasonable.  Analyzing the material in the landfill site will increase the understanding of the gas production and the degradation of the waste in the landfill.
27

Effect of Hydrogen Sulfide in Landfill Gas on Anode Poisoning of Solid Oxide Fuel Cells

Khan, Feroze 06 June 2012 (has links)
No description available.
28

SYSTEMATIC POSTSYNTHETIC MODIFICATION OF NANOPOROUS ORGANIC FRAMEWORKS AND THEIR PERFORMANCE EVALUATION FOR SELECTIVE CO2 CAPTURE

Islamoglu, Timur 01 January 2016 (has links)
Porous organic polymers (POPs) with high physicochemical stability have attracted significant attention from the scientific community as promising platforms for small gas separation adsorbents. Although POPs have amorphous morphology in general, with the help of organic chemistry toolbox, ultrahigh surface area materials can be synthesized. In particular, nitrogen-rich POPs have been studied intensively due to their enhanced framework-CO2 interactions. Postsynthetic modification (PSM) of POPs has been instrumental for incorporating different functional groups into the pores of POPs which would increase the CO2 capture properties. We have shown that functionalizing the surface of POPs with nitro and amine groups increases the CO/N2 and CO2/CH4 selectivity significantly due to selective polarization of CO2 molecule. In addition, controlled postsynthetic nitration of NPOF-1, a nanoporous organic framework constructed by nickel(0)-catalyzed Yamamoto coupling of 1,3,5-tris(4-bromophenyl)benzene, has been performed and is proven to be a promising route to introduce nitro groups and to convert mesopores to micropores without compromising surface area. Reduction of the nitro groups yields aniline-like amine-functionalized NPOF-1-NH2. Adequate basicity of the amine functionalities leads to modest isosteric heats of adsorption for CO2, which allow for high regenerability. The unique combination of high surface area, microporous structure, and amine-functionalized pore walls enables NPOF-1-NH2 to have remarkable CO2 working capacity values for removal from landfill gas and flue gas. Benzimidazole-linked polymers have also been shown to have promising CO2 capture properties. Here, an amine functionalized benzimidazole-linked polymer (BILP-6-NH2) was synthesized via a combination of pre- and postsynthetic modification techniques in two steps. Experimental studies confirm enhanced CO2 uptake in BILP-6-NH2 compared to BILP-6, and DFT calculations were used to understand the interaction modes of CO2 with BILP-6-NH2. Using BILP-6-NH2, higher CO2 uptake and CO2/CH4 selectivity was achieved compared to BILP-6 showing that this material has a very promising working capacity and sorbent selection parameter for landfill gas separation under VSA settings. Additionally, the sorbent evaluation criteria of different classes of organic polymers have been compared in order to reveal structure-property relationships in those materials as solid CO2 adsorbents.
29

Model energetskog iskorišćenja deponijskog gasa na deponijama sa recirkulacijom koncentrata i procedne vode / Model of landfill gas energy utilization at landfills with concentrate and leachate recirculation

Džolev Nikola 29 September 2018 (has links)
<p>Deponijski gas koji nastaje kao rezultat anaerobnih procesa unutar<br />otpada na deponiji može da se iskoristi kao obnovljivi izvor<br />energije, smanjujući ujedno i zagađenje vazduha. Tretman procedne vode<br />u savremenim postrojenjima za prečišćavanje reverznom osmozom daje<br />neželjeni ostatak &ndash; koncentrat, koji se uobičajeno recirkuliše na<br />deponiju kao vid tretmana. Ova disertacija se bavi uticajem<br />recirkulacije na produkciju deponijskog gasa, kako bi se omogućila<br />bolja upravljivost i predikcija čitavog procesa upravljanja otpadom<br />sa ciljem održanja stabilne proizvodnje deponijskog gasa i povećanja<br />mogućnosti njegovog iskorišćenja u termo-energetskim postrojenjima.</p> / <p>Landfill gas resulting from the anaerobic processes in the waste at the landfill<br />can be used as a renewable energy source, reducing both air<br />pollution. Treatment of leachate in modern plants for the purification using<br />reverse osmosis gives unwanted residue - concentrate, which is typically<br />recirculated back to the landfill as a form of its treatment. This thesis deals<br />with the influence of recirculation in the production of landfill gas, to allow for<br />better handling and prediction of entire process of waste management in<br />order to maintain stable production of landfill gas and increasing<br />opportunities for its utilization in thermal and power plants.</p>
30

Risk Based Post Closure Care Analysis for Florida Landfills

Sizirici Yildiz, Banu 24 March 2009 (has links)
Subtitle D of the Resource Conservation and Recovery Act (RCRA) requires a post closure period of 30 years for non hazardous wastes in landfills. Post closure care (PCC) activities under Subtitle D include leachate collection and treatment, groundwater monitoring, inspection and maintenance of the final cover, and monitoring to ensure that landfill gas does not migrate off site or into on site buildings. The decision to reduce PCC duration requires exploration of a performance based methodology to Florida landfills. PCC should be based on whether the landfill is a threat to human health or the environment. Historically no risk based procedure has been available to establish an early end to PCC. Landfill stability depends on a number of factors that include variables that relate to operations both before and after the closure of a landfill cell. Therefore, PCC decisions should be based on location specific factors, operational factors, design factors, post closure performance, end use, and risk analysis. The question of appropriate PCC period for Florida’s landfills requires in depth case studies focusing on the analysis of the performance data from closed landfills in Florida. Based on data availability, Davie Landfill was identified as case study site for a case by case analysis of landfill stability. The performance based PCC decision system developed by Geosyntec Consultants was used for the assessment of site conditions to project PCC needs. The available data for leachate and gas quantity and quality, ground water quality, and cap conditions were evaluated. The quality and quantity data for leachate and gas were analyzed to project the levels of pollutants in leachate and groundwater in reference to maximum contaminant level (MCL). In addition, the projected amount of gas quantity was estimated. A set of contaminants (including metals and organics) were identified as contaminants detected in groundwater for health risk assessment. These contaminants were selected based on their detection frequency and levels in leachate and ground water; and their historical and projected trends. During the evaluations a range of discrepancies and problems that related to the collection and documentation were encountered and possible solutions made. Based on the results of PCC performance integrated with risk assessment, projection of future PCC monitoring needs and sustainable waste management options were identified. According to these results, landfill gas monitoring can be terminated, leachate and groundwater monitoring for parameters above MCL and surveying of the cap integrity should be continued. The parameters which cause longer monitoring periods can be eliminated for the future sustainable landfills. As a conclusion, 30 year PCC period can be reduced for some of the landfill components based on their potential impacts to human health and environment (HH&E).

Page generated in 0.0539 seconds