• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 41
  • 23
  • 21
  • 17
  • 16
  • 14
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Práce s textem a rozvíjení čtenářské gramotnosti minoritních skupin / Working with text and development of reading knowledge in minorit groups

Vejlupek, Michal January 2012 (has links)
Title: Working with text and development of reading knowledge in minorit groups Michal Vejlupek My diploma theme with title, Working with text and development of reading knowledge in minorit groups is about reading and reading literacy. It was concerned with the definition of these conceptions with an outline of its development. Described the historical evolution of the education methods of the first reading focused on understanding. From minority groups concentrates on Vietnamese ethnic group and on their day-to-day problems in Czech Republic emphasized on their different communication. Approaching issues of the children with different mother tongues and the education methods in Czech Republic related to this dissimilarity (OBL) which is at the beginning. In practice part of my diploma there is a research of differences between Vietnamese and Czech students. My results confirm no differences between them. Vietnamese children are worse than Czech in understanding but deficiency is low. Results of reading questionnaire show no big differences also.
52

Composition sémantique pour la langue orale / Semantic composition for spoken language understanding

Duvert, Frédéric 10 November 2010 (has links)
La thèse présentée ici a pour but de proposer des systèmes de détection, de composition de constituants sémantiques et d’interprétation dans la compréhension de la langue naturelle parlée. Cette compréhension se base sur un système de reconnaissance automatique de la parole qui traduit les signaux oraux en énoncés utilisables par la machine. Le signal de la parole, ainsi transcrit, comporte un ensemble d’erreurs liées aux erreurs de reconnaissance (bruits, parasites, mauvaise prononciation...). L’interprétation de cet énoncé est d’autant plus difficile qu’il est issu d’un discours parlé, soumis à la disfluence du discours, aux auto-corrections... L’énoncé est de plus agrammatical, car le discours parlé lui-même est agrammatical. L’application de méthodes d’analyses grammaticales ne produit pas de bons résultats d’interprétation, sur des textes issus de transcriptions de la parole. L’utilisation de méthodes d’analyses syntaxiques profondes est à éviter. De ce fait, une analyse superficielle est envisagée. Un des premiers objectifs est de proposer une représentation du sens. Il s’agit de considérer des ontologies afin de conceptualiser le monde que l’on décrit. On peut exprimer les composants sémantiques en logique du premier ordre avec des prédicats. Dans les travaux décrits ici, nous représentons les éléments sémantiques par des frames (FrameNet ). Les structures de frames sont hiérarchisées, et sont des fragments de connaissances auxquels on peut insérer, fusionner ou inférer d’autres fragments de connaissances. Les structures de frames sont dérivables en formules logiques. Nous proposons un système de compréhension de la parole à partir de règles logiques avec le support d’une ontologie, afin de pouvoir créer des liens à partir de composants sémantiques. Puis, nous avons mené une étude sur la découverte des supports syntaxiques des relations sémantiques. Nous proposons une expérience de composition sémantique afin d’enrichir les composants sémantiques de base. Enfin, nous présentons un système de détection de lambda-expression pour mettre en hypothèse les relations à trouver à travers le discours / The thesis presented here is intended to provide detection systems, composition of components and semantic interpretation in the natural spoken language understanding. This understanding is based on an automatic speech recognition system that translates the signals into oral statements used by the machine. The transcribed speech signal, contains a series of errors related to recognition errors (noise, poor pronunciation...). The interpretation of this statement is difficult because it is derived from a spoken discourse, subject to the disfluency of speech, forself-correction... The statement is more ungrammatical, because the spoken discourse itself is ungrammatical. The application of grammatical analysis methods do not produce good results interpretation, on the outcome of speech transcription. The use of deep syntactic analysis methods should be avoided. Thus, a superficial analysis is considered. A primary objective is to provide a representation of meaning. It is considered ontologies to conceptualize the world we describe. We can express the semantic components in first order logic with predicates. In the work described here, we represent the semantic elements by frames (FrameNet ). The frames are hierarchical structures, and are fragments of knowledge which can be inserted, merge or infer other fragments of knowledge. The frames are differentiable structures in logical formulas. We propose a system for speech understanding from logical rules with the support of an ontology in order to create links from semantic components. Then, we conducted a study on the discovery supports syntactic semantic relationships. We propose a compositional semantics experience to enrich the basic semantic components. Finally, we present a detection system for lambda-expression hypothesis to find the relationship through discourse
53

A Framework to Understand Emoji Meaning: Similarity and Sense Disambiguation of Emoji using EmojiNet

Wijeratne, Sanjaya January 2018 (has links)
No description available.
54

Question-answering chatbot for Northvolt IT Support

Hjelm, Daniel January 2023 (has links)
Northvolt is a Swedish battery manufacturing company that specializes in the production of sustainable lithium-ion batteries for electric vehicles and energy storage systems. Established in 2016, the company has experienced significant growth in recent years. This growth has presented a major challenge for the IT Support team, as they face a substantial volume of ITrelated inquiries. To address this challenge and allow the IT Support team to concentrate on more complex support tasks, a question-answering chatbot has been implemented as part of this thesis project. The chatbot has been developed using the Microsoft Bot Framework and leverages Microsoft cloud services, specifically Azure Cognitive Services, to provide intelligent and cognitive capabilities for answering employee questions directly within Microsoft Teams. The chatbot has undergone testing by a diverse group of employees from various teams within the organization and was evaluated based on three key metrics: effectiveness (including accuracy, precision, and intent recognition rate), efficiency (including response time and scalability), and satisfaction. The test results indicate that the accuracy, precision, and intent recognition rate fall below the required thresholds for production readiness. However, these metrics can be improved by expanding the knowledge base of the bot. The chatbot demonstrates impressive efficiency in terms of response time and scalability, and its user-friendly nature contributes to a positive user experience. Users express high levels of satisfaction with their interactions with the bot, and the majority would recommend it to their colleagues, recognizing it as a valuable service solution that will benefit all employees at Northvolt in the future. Moving forward, the primary focus should be on expanding the knowledge base and effectively communicating the bot’s purpose and scope to enhance effectiveness and satisfaction. Additionally, integrating the bot with advanced AI features, such as OpenAI’s language models available within Microsoft’s ecosystem, would elevate the bot to the next level.
55

The Effect of Data Quantity on Dialog System Input Classification Models / Datamängdens effekt på modeller för avsiktsklassificering i chattkonversationer

Lipecki, Johan, Lundén, Viggo January 2018 (has links)
This paper researches how different amounts of data affect different word vector models for classification of dialog system user input. A hypothesis is tested that there is a data threshold for dense vector models to reach the state-of-the-art performance that have been shown with recent research, and that character-level n-gram word-vector classifiers are especially suited for Swedish classifiers–because of compounding and the character-level n-gram model ability to vectorize out-of-vocabulary words. Also, a second hypothesis is put forward that models trained with single statements are more suitable for chat user input classification than models trained with full conversations. The results are not able to support neither of our hypotheses but show that sparse vector models perform very well on the binary classification tasks used. Further, the results show that 799,544 words of data is insufficient for training dense vector models but that training the models with full conversations is sufficient for single statement classification as the single-statement- trained models do not show any improvement in classifying single statements. / Detta arbete undersöker hur olika datamängder påverkar olika slags ordvektormodeller för klassificering av indata till dialogsystem. Hypotesen att det finns ett tröskelvärde för träningsdatamängden där täta ordvektormodeller när den högsta moderna utvecklingsnivån samt att n-gram-ordvektor-klassificerare med bokstavs-noggrannhet lämpar sig särskilt väl för svenska klassificerare söks bevisas med stöd i att sammansättningar är särskilt produktiva i svenskan och att bokstavs-noggrannhet i modellerna gör att tidigare osedda ord kan klassificeras. Dessutom utvärderas hypotesen att klassificerare som tränas med enkla påståenden är bättre lämpade att klassificera indata i chattkonversationer än klassificerare som tränats med hela chattkonversationer. Resultaten stödjer ingendera hypotes utan visar istället att glesa vektormodeller presterar väldigt väl i de genomförda klassificeringstesterna. Utöver detta visar resultaten att datamängden 799 544 ord inte räcker till för att träna täta ordvektormodeller väl men att konversationer räcker gott och väl för att träna modeller för klassificering av frågor och påståenden i chattkonversationer, detta eftersom de modeller som tränats med användarindata, påstående för påstående, snarare än hela chattkonversationer, inte resulterar i bättre klassificerare för chattpåståenden.
56

Réseaux de neurones profonds appliqués à la compréhension de la parole / Deep learning applied to spoken langage understanding

Simonnet, Edwin 12 February 2019 (has links)
Cette thèse s'inscrit dans le cadre de l'émergence de l'apprentissage profond et aborde la compréhension de la parole assimilée à l'extraction et à la représentation automatique du sens contenu dans les mots d'une phrase parlée. Nous étudions une tâche d'étiquetage en concepts sémantiques dans un contexte de dialogue oral évaluée sur le corpus français MEDIA. Depuis une dizaine d'années, les modèles neuronaux prennent l'ascendant dans de nombreuses tâches de traitement du langage naturel grâce à des avancées algorithmiques ou à la mise à disposition d'outils de calcul puissants comme les processeurs graphiques. De nombreux obstacles rendent la compréhension complexe, comme l'interprétation difficile des transcriptions automatiques de la parole étant donné que de nombreuses erreurs sont introduites par le processus de reconnaissance automatique en amont du module de compréhension. Nous présentons un état de l'art décrivant la compréhension de la parole puis les méthodes d'apprentissage automatique supervisé pour la résoudre en commençant par des systèmes classiques pour finir avec des techniques d'apprentissage profond. Les contributions sont ensuite exposées suivant trois axes. Premièrement, nous développons une architecture neuronale efficace consistant en un réseau récurent bidirectionnel encodeur-décodeur avec mécanisme d’attention. Puis nous abordons la gestion des erreurs de reconnaissance automatique et des solutions pour limiter leur impact sur nos performances. Enfin, nous envisageons une désambiguïsation de la tâche de compréhension permettant de rendre notre système plus performant. / This thesis is a part of the emergence of deep learning and focuses on spoken language understanding assimilated to the automatic extraction and representation of the meaning supported by the words in a spoken utterance. We study a semantic concept tagging task used in a spoken dialogue system and evaluated with the French corpus MEDIA. For the past decade, neural models have emerged in many natural language processing tasks through algorithmic advances or powerful computing tools such as graphics processors. Many obstacles make the understanding task complex, such as the difficult interpretation of automatic speech transcriptions, as many errors are introduced by the automatic recognition process upstream of the comprehension module. We present a state of the art describing spoken language understanding and then supervised automatic learning methods to solve it, starting with classical systems and finishing with deep learning techniques. The contributions are then presented along three axes. First, we develop an efficient neural architecture consisting of a bidirectional recurrent network encoder-decoder with attention mechanism. Then we study the management of automatic recognition errors and solutions to limit their impact on our performances. Finally, we envisage a disambiguation of the comprehension task making the systems more efficient.
57

Mobilní personální asistenti / Mobile personal assistants

Techl, Jan January 2013 (has links)
This thesis focuses on analysis, definition and description of mobile personal assistants as a phenomenon emerging in past few years. Mobile personal assistants are first mentioned in the context of computational linguistics and information needs, which is one of the motivations to use them. Main interest of this thesis is an introduction of the core technologies for the natural language communication between the assistant and its user, followed by an introduction of host environments and possible usage. The thesis also presents the limitations and risks resulting from using them, which are in some ways affecting their usability. Beside the analysis the main focus is on the design and implementation of the natural language understanding (NLU) system, which can be used in particular personal assistant application. This system is implemented as a web service and consists of an annotation scheme with a set of components. The results show that the system architecture and tools used are suitable solution for the construction of a basic NLU system, which has been created and which is in the compliance with the requested parameters. It is still difficult task to achieve high precision, which depends on many factors including the amount of training data, which was very small in this case. However, the resulting application is a solid starting point for its further development and extensions.
58

Advances in deep learning methods for speech recognition and understanding

Serdyuk, Dmitriy 10 1900 (has links)
Ce travail expose plusieurs études dans les domaines de la reconnaissance de la parole et compréhension du langage parlé. La compréhension sémantique du langage parlé est un sous-domaine important de l'intelligence artificielle. Le traitement de la parole intéresse depuis longtemps les chercheurs, puisque la parole est une des charactéristiques qui definit l'être humain. Avec le développement du réseau neuronal artificiel, le domaine a connu une évolution rapide à la fois en terme de précision et de perception humaine. Une autre étape importante a été franchie avec le développement d'approches bout en bout. De telles approches permettent une coadaptation de toutes les parties du modèle, ce qui augmente ainsi les performances, et ce qui simplifie la procédure d'entrainement. Les modèles de bout en bout sont devenus réalisables avec la quantité croissante de données disponibles, de ressources informatiques et, surtout, avec de nombreux développements architecturaux innovateurs. Néanmoins, les approches traditionnelles (qui ne sont pas bout en bout) sont toujours pertinentes pour le traitement de la parole en raison des données difficiles dans les environnements bruyants, de la parole avec un accent et de la grande variété de dialectes. Dans le premier travail, nous explorons la reconnaissance de la parole hybride dans des environnements bruyants. Nous proposons de traiter la reconnaissance de la parole, qui fonctionne dans un nouvel environnement composé de différents bruits inconnus, comme une tâche d'adaptation de domaine. Pour cela, nous utilisons la nouvelle technique à l'époque de l'adaptation du domaine antagoniste. En résumé, ces travaux antérieurs proposaient de former des caractéristiques de manière à ce qu'elles soient distinctives pour la tâche principale, mais non-distinctive pour la tâche secondaire. Cette tâche secondaire est conçue pour être la tâche de reconnaissance de domaine. Ainsi, les fonctionnalités entraînées sont invariantes vis-à-vis du domaine considéré. Dans notre travail, nous adoptons cette technique et la modifions pour la tâche de reconnaissance de la parole dans un environnement bruyant. Dans le second travail, nous développons une méthode générale pour la régularisation des réseaux génératif récurrents. Il est connu que les réseaux récurrents ont souvent des difficultés à rester sur le même chemin, lors de la production de sorties longues. Bien qu'il soit possible d'utiliser des réseaux bidirectionnels pour une meilleure traitement de séquences pour l'apprentissage des charactéristiques, qui n'est pas applicable au cas génératif. Nous avons développé un moyen d'améliorer la cohérence de la production de longues séquences avec des réseaux récurrents. Nous proposons un moyen de construire un modèle similaire à un réseau bidirectionnel. L'idée centrale est d'utiliser une perte L2 entre les réseaux récurrents génératifs vers l'avant et vers l'arrière. Nous fournissons une évaluation expérimentale sur une multitude de tâches et d'ensembles de données, y compris la reconnaissance vocale, le sous-titrage d'images et la modélisation du langage. Dans le troisième article, nous étudions la possibilité de développer un identificateur d'intention de bout en bout pour la compréhension du langage parlé. La compréhension sémantique du langage parlé est une étape importante vers le développement d'une intelligence artificielle de type humain. Nous avons vu que les approches de bout en bout montrent des performances élevées sur les tâches, y compris la traduction automatique et la reconnaissance de la parole. Nous nous inspirons des travaux antérieurs pour développer un système de bout en bout pour la reconnaissance de l'intention. / This work presents several studies in the areas of speech recognition and understanding. The semantic speech understanding is an important sub-domain of the broader field of artificial intelligence. Speech processing has had interest from the researchers for long time because language is one of the defining characteristics of a human being. With the development of neural networks, the domain has seen rapid progress both in terms of accuracy and human perception. Another important milestone was achieved with the development of end-to-end approaches. Such approaches allow co-adaptation of all the parts of the model thus increasing the performance, as well as simplifying the training procedure. End-to-end models became feasible with the increasing amount of available data, computational resources, and most importantly with many novel architectural developments. Nevertheless, traditional, non end-to-end, approaches are still relevant for speech processing due to challenging data in noisy environments, accented speech, and high variety of dialects. In the first work, we explore the hybrid speech recognition in noisy environments. We propose to treat the recognition in the unseen noise condition as the domain adaptation task. For this, we use the novel at the time technique of the adversarial domain adaptation. In the nutshell, this prior work proposed to train features in such a way that they are discriminative for the primary task, but non-discriminative for the secondary task. This secondary task is constructed to be the domain recognition task. Thus, the features trained are invariant towards the domain at hand. In our work, we adopt this technique and modify it for the task of noisy speech recognition. In the second work, we develop a general method for regularizing the generative recurrent networks. It is known that the recurrent networks frequently have difficulties staying on same track when generating long outputs. While it is possible to use bi-directional networks for better sequence aggregation for feature learning, it is not applicable for the generative case. We developed a way improve the consistency of generating long sequences with recurrent networks. We propose a way to construct a model similar to bi-directional network. The key insight is to use a soft L2 loss between the forward and the backward generative recurrent networks. We provide experimental evaluation on a multitude of tasks and datasets, including speech recognition, image captioning, and language modeling. In the third paper, we investigate the possibility of developing an end-to-end intent recognizer for spoken language understanding. The semantic spoken language understanding is an important step towards developing a human-like artificial intelligence. We have seen that the end-to-end approaches show high performance on the tasks including machine translation and speech recognition. We draw the inspiration from the prior works to develop an end-to-end system for intent recognition.
59

Speech-To-Model: A Framework for Creating Software Models Using Voice Commands

Bhandari, Nabin 21 July 2023 (has links)
No description available.

Page generated in 0.0757 seconds