• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 40
  • 16
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 233
  • 61
  • 43
  • 40
  • 39
  • 38
  • 36
  • 34
  • 31
  • 31
  • 26
  • 25
  • 25
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Regeneration of Lanthanum Following Precipitation of Phosphates from Waste-Waters

Wasserlauf, Mark 03 1900 (has links)
<p> Government programs now underway in Ontario aim at removing phosphates from waste-waters at sewage treatment plants. At present, removal of phosphates is commonly accomplished by chemical precipitation with lime, alum, or iron. Lanthanum, a rare earth element, has been found to be an effective precipitant of phosphates. If lanthanum precipitate can be collected, and the lanthanum then regenerated so that it could be recycled for further phosphate precipitation, a very advantageous alternative to the above schemes would result.</p> <p> In this study, phosphates were precipitated from both distilled water and secondary effluent using lanthanum. For the two cases, a regeneration scheme for lanthanum was examined. The basic regeneration reactions were carried out to evaluate the kinetics and equilibria for different ratios of reactants and different reaction temperatures. Techniques for phase separation of reacted reagents were studied. Process design calculations were carried out to obtain order of magnitude figures for amounts and costs of chemicals required, amounts of sludge produced, and reactor sizes.</p> / Thesis / Master of Engineering (MEngr)
122

XPS Study of Calcium Lanthanum Sulfide Ceramics

Butkus, Brian E 01 January 2023 (has links) (PDF)
Long wave infrared (LWIR) optics that transmit in the 8 to 14 m wavelength range and, additionally, can withstand severe physical and thermal stresses are needed for advanced remote sensing, guidance and communication-based applications. However, most non-oxide transparent LWIR optics do not have the wider transmission range, nor the hardness and resistance to thermal shock needed for extreme environments. Because of these limitations, research is circling back to a promising material, calcium lanthanum sulfide (CLS), that could meet LWIR needs for extreme environments. In this thesis, we will demonstrate the abilities of x-ray photoelectron spectroscopy (XPS) as a technique for characterizing CLS powders and ceramics for elemental analysis, valence state and stoichiometry evaluation. Three preliminary studies were conducted - a binary metal sulfide evaluation of lanthanum sulfide (La2S3) and calcium sulfide (CaS), and a calibration curve of mixtures of the two binary metal sulfide powders from a known concentration matrix. Based on these results, a methodology was developed to evaluate CLS powder and ceramics via XPS. We showcase the power of XPS to reliably determine CLS stoichiometry, identify impurities and defects as related to the presence of carbon and oxygen during processing, and predict the bonding environment of sulfur which can lead to better quality CLS ceramics. This thesis demonstrates the use of XPS as a potential characterization tool in CLS to identify contaminants, determine if stoichiometry is met, and identify the bonding environments to assist in processing improvements for producing higher-quality ceramics.
123

High pressure, high temperature syntheses of selected lanthanide-tellurium compounds

Cannon, John Francis 01 June 1969 (has links)
High pressure, high temperature technics were employed to successfully synthesize HoTe1.7, ErTe1.7, TmTe1.7, LuTe1.7, YTe1.7, and LuTe3. The pressure-temperature regions in which synthesis of each compound is successful were determined. Pressures to 100 kbars concurrently with temperatures to 1200 °C were used in an attempt to prepare ScTe1.7 and ScTe3, but these efforts met with failure. X-ray studies of these new compounds confirmed that they are extensions of the LTe2-X (0≤x
124

CHARACTERIZATION OF ORGANIC LIGHT EMITTING DIODES USING AN ALUMINUM/RARE EARTH SULFIDE BILAYER CATHODE

DRAVIAM, PHILIP R. 13 July 2005 (has links)
No description available.
125

Interactions of the Air Electrode with Electrolyte and Interconnect in Solid Oxide Cells

Jin, Tongan 31 August 2011 (has links)
The interactions between different components of solid oxide cells (SOCs) are critical issues for achieving the tens of thousands of hour's goal for long-term performance stability and lifetime. The interactions between the ceramic electrolyte, porous ceramic air electrode, and metallic interconnect materials — including solid state interfacial reactions and vaporization/deposition of some volatile elements — have been investigated in the simulated SOC operating environment. The interactions demonstrate the material degradation mechanisms of the cell components and the effects of different factors such as chemical composition and microstructure of the materials, as well as atmosphere and current load on the air electrode side. In the aspect of materials, this work contributes to the degradation mechanism on the air electrode side and provides practical material design criteria for long-term SOC operation. In this research, an yttria-stabilized zirconia electrolyte (YSZ)/strontium-doped lanthanum manganite electrode (LSM)/AISI 441 stainless steel interconnect tri-layer structure has been fabricated in order to simulate the air electrode working environment of a real cell. The tri-layer samples have been treated in dry/moist air atmospheres at 800°C for up to 500 h. The LSM air electrode shows slight grain growth, but the growth is less in moist atmospheres. The amount of Cr deposition on the LSM surface is slightly more for the samples thermally treated in the moist atmospheres. At the YSZ/LSM interface, La enrichment is significant while Mn depletion occurs. The Cr deposition at the YSZ/LSM interface is observed. The stoichiometry of the air electrode is an important factor for the interactions. The air electrode composition has been varied by changing the x value in (La0.8Sr0.2)xMnO₃ from 0.95 to 1.05 (LSM95, LSM100, and LSM105). The enrichment of La at the YSZ/LSM interface inhibits the Cr deposition. The mechanisms of Cr poisoning and LSM elemental surface segregation are discussed. A 200 mA·cm-2 current load have been applied on the simulated cells. Mn is a key element for Cr deposition under polarization. Excessive Mn in the LSM lessens the formation of La-containing phases at the YSZ/LSM interface and accelerates Cr deposition. Deficient Mn in LSM leads to extensive interfacial reaction with YSZ forming more La-containing phase and inhibiting Cr deposition. / Ph. D.
126

Separation and Properties of La₂O₃ in Molten LiF-NaF-KF Salt

Yang, Qiufeng 21 December 2018 (has links)
Studies on nuclear technology have been ongoing since nuclear power became uniquely important to meet climate change goals while phasing out fossil fuels. Research on the fluoride salt cooled high temperature reactor (FHR), which is funded by the United States Department of Energy (DOE), has developed smoothly with the ultimate goal of a 2030 deployment. One challenge presented by FHR is that the primary coolant salt can acquire contamination from fuel failure and moisture leaking into the system. If contamination happens, it will result in a low concentration of fission products, fuel, transuranic materials and oxide impurities in the coolant. These impurities will then affect the properties of the molten salt in the long term and need to be removed without introducing new impurities. Most of the research conducted recently has focused on impurity separation in chloride molten salts. More research urgently needs to be conducted to study the impurity separation method for the fluoride molten salts. In this study, the La₂O₃-LiF-NaF-KF (La₂O₃-FLiNaK) system is used to demonstrate impurity separation in molten fluoride salt. Since lanthanum oxide needs to be dissolved in the fluoride molten salt and studies in this field are still not complete, the solubility of lanthanum oxide in FLiNaK have been measured at different temperatures to obtain the temperature-dependent solubility and understand the corresponding dissolution mechanisms first. In the solubility related experiments, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is utilized to analyze the concentration of lanthanum ions in the molten FLiNaK salt, while X-ray powder diffraction (XRD) was applied to determine the phase patterns of molten salt. Second, electrochemical experiments with tungsten and graphite as working electrodes were conducted individually to demonstrate the separation of the dissolved oxide from the salt. When the tungsten working electrode was applied, the lanthanum ions were reduced to lanthanum metal at the tungsten cathode, while the fluorine ions reacted with the tungsten anode to form tungsten fluoride. In the experiments, the production of tungsten fluoride could lead to increasing current in the cell, even overload. Moreover, theoretically, tungsten fluoride WF4 is soluble in the fluoride salt thus introducing new impurities. All these issues make tungsten not the best choice when applied to the separation of oxygen ions. Therefore, another common working electrode graphite is used. It not only has all the advantages of tungsten, but also has good performance on separation of oxygen ions. When the graphite electrode was applied, the lanthanum ions were separated in the form of lanthanum carbide (LaC₂), while the oxygen ions can be removed in the form of carbon dioxide (CO₂) or carbon monoxide (CO). In addition, only graphite was consumed during the whole separation process, which is why the graphite anode electrode is called the “sacrificial electrode”. Third, First Principle Molecular Dynamics (FPMD) simulations with Vienne Ab initio Simulation Package (VASP) was conducted to study the properties of the fluoride molten salt. In this study, the structure information and enthalpy of formation were obtained. Generally, the simulation process can be divided into four steps: (1) the simulation systems are prepared by packing ions randomly via Packmol package in the simulation cell; (2) an equilibrium calculation is performed to pre-equilibrate the systems; (3) FPMD simulations in an NVT ensemble are implemented in VASP; (4) based on the FPMD simulations results, the first peak radius and the first-shell coordination number were evaluated with partial radial distribution function (PRDF) analysis to determine the statistics of molten salt structure information, while the transport properties, e.g., the self-diffusion coefficient was calculated according to the function of mean square displacement (MSD) of time generated by the Einstein-Smoluchowshi equation. The viscosity and ionic conductivity were obtained by combining the self-distribution coefficient with the Einstein-Stokes formula and Nernst-Einstein equation. / Master of Science / With the fast development of modern society and economy, more and more energy is urgently needed to meet the growth of industry. Since the traditional energy, such as nature gas, coal, has limited storage and not sustainable, nuclear energy has attracted much attention in the past few decades. Although lots of study has been conducted by thousands of researchers which has attributed to application of nuclear power, there are still some concerns in this field, among which, impurities removal is the most difficult part. Fluoride salt cooled high temperature reactor (FHR) is one of the most promising Gen IV reactor types. As the name indicates, molten salt is the coolant to serve as the heat exchanger intermedium. In addition, it’s inevitable that fission products, i.e. lanthanum, moisture, would leak into the coolant pipe, thus affect the molten salt properties, even degrade reactor performance, therefore, those impurities must be removed without introducing new impurities. In this study, the La₂O₃-LiF-NaF-KF (La₂O₃-FLiNaK) system is used to demonstrate impurity separation into molten fluoride salt. First, solubility of lanthanum oxide in FLiNaK has been measured at different temperatures to understand its dissolution mechanisms. Then, electrochemical experiments with tungsten and graphite as working electrodes were conducted individually to demonstrate the separation of the dissolved oxide from the salt. It has been concluded that tungsten performed well to separate La3+, while failed in the separation of O2-. However, graphite working electrode has succeeded in the removal of La³⁺ and O²⁻. Finally, molecular dynamic simulation with first principle was also conducted to further understand the local structure and heat of formation in the molten FLiNaK and La₂O₃-FLiNaK salt.
127

Design and fabrication of lanthanum-doped Sn-Ag-Cu lead-free solder for next generation microelectronics applications in severe environment

Sadiq, Muhammad 22 May 2012 (has links)
Sn-Pb solder has long been used in the Electronics industry. But, due to its toxic nature and environmental effects, certain restrictions are made on its use and therefore many researchers are looking to replace it. Sn-3.0Ag-0.5Cu (SAC) solders are suggested as lead-free replacements but their coarse microstructure and formation of hard and brittle Inter-Metallic Compounds (IMCs) like Ag₃Sn and Cu₆Sn₅ have limited their use in high temperature applications. In this research work, RE elements, mostly lanthanum (La), are used as potential additives to SAC alloys. They reduce the surface free energy, refine the grain size and improve the mechanical and wetting properties of SAC alloys. An extensive experimental work has been performed on the microstructure evolution, bulk mechanical properties, individual phase (matrix and IMCs) mechanical properties, creep behavior and wettability performance of the SAC and SAC-La alloys, with different (La) doping. SEM and EDS have been used to follow the continuous growth of the IMCs at 150°C and 200°C and thus provide a quantitative measure in terms of their size, spacing and volume fraction. Grain size is measured at regular intervals starting from 10 hours up to 200 hours of thermal aging using Optical Microscope with cross polarized light. Bulk mechanical properties are evaluated using tensile tests at low strain rates. Individual phase mechanical properties like Young's modulus, hardness, strain rate sensitivity index and bulge effects are characterized with nanoindentation from 100 µN up to 5000 µN loadings at different temperatures of 25°C, 45°C, 65°C and 85°C. Creep experiments are performed at elevated temperatures with good fitting of Dorn creep and back-stress creep models. Activation energy measurements are made at 40°C, 80°C and 120°C. Wettability testing on copper substrates is used for surface tension, wetting force and contact angle measurements of SAC and SAC-La doped alloys at 250°C and 260°C.
128

Electrical and physicochemical characterization of metal gate processes for work function modulation and reduction of local VTH variability in 14FDSOI technologies / Caractérisation électrique et physico-chimique des procédés de grille métallique pour modulation du travail de sortie et réduction de la variabilité locale du Vth des technologies FDSOI 14 nm

Suarez Segovia, Carlos Augusto 04 February 2016 (has links)
Cette thèse porte sur l’élaboration et la caractérisation électrique et physico-chimique des grilles métalliques des dispositifs FDSOI MOSFET 14 nm à base d’oxyde high-K fabriqués chez STMicroelectronics. Ces grilles métalliques sont composées de couches de TiN, lanthane et aluminium, déposées par pulvérisation cathodique RF. Des structures de test et un schéma d’intégration simplifié permettant l’analyse capacitive ont été mis en place pour caractériser la modulation du travail de sortie effectif des grilles métalliques en TiN avec l’incorporation d'additifs tels que le lanthane ou l’aluminium. Ces additifs ont été incorporés suivant une approche de grille sacrificielle. Par ailleurs, une méthodologie inédite basée sur la fluorescence X a été proposée et validée pour la caractérisation précise en ligne de la diffusion des additifs. Cette méthodologie permet de prouver que la dose effective de l’espèce incorporée après recuit de diffusion peut être modélisée en fonction de l’épaisseur du TiN piédestal dans la grille sacrificielle ainsi que de la température de recuit. De plus, la variation de l’épaisseur de l’oxyde interfaciel sur une seule plaquette (oxyde biseau) autorise l’identification de l’origine physique de la modulation du travail de sortie effectif, qui s’explique par un dipôle qui évolue avec la dose effective de l’espèce incorporée. En conséquence, un modèle de la diffusion des dopants de grille dans l’oxyde high-K et de leur impact sur le travail de sortie effectif des grilles métalliques a été proposé afin de moduler avec précision la tension de seuil (VTH) des dispositifs FDSOI 14 nm. En outre, l’impact de l’oxyde high-K à la fois sur la diffusion des additifs et sur la modulation du travail de sortie effectif a été mis en évidence. Enfin, un procédé innovant de dépôt métallique, permettant la modification de la microstructure du TiN, a été développé afin d’améliorer davantage la variabilité locale du VTH des dispositifs FDSOI. / This Ph.D. thesis is focused on the fabrication and electrical and physicochemical characterization of metal gates in 14 nm high-K based FDSOI MOSFET devices, manufactured at STMicroelectronics. These metal gates are composed of TiN, lanthanum and aluminum layers, deposited by RF sputtering. Test structures and a simplified integration scheme allowing C-V measurements, have been implemented in order to characterize the modulation of the effective work function of TiN metal gates with the incorporation of dopants such as lanthanum or aluminum. These additives are incorporated in a sacrificial gate-first approach. Furthermore, a new methodology based on X-ray fluorescence was proposed and validated for accurate in-line characterization of the diffusion of dopants. This methodology enables to prove that the effective dose of the species incorporated into dielectrics after diffusion annealing may be modeled as a function of the thickness of the pedestal TiN in the sacrificial gate and the annealing temperature. Moreover, the variation of the thickness of the interfacial oxide along the wafer (bevel oxide) authorizes the identification of the origin of the modulation of the effective work function, which is explained by a dipole that evolves with the effective dose of the incorporated dopant. Accordingly, a model of the diffusion of dopants into the gate dielectrics and their impact on the effective work function of metal gates has been proposed to precisely modulate the threshold voltage (VTH) of the 14 nm FDSOI devices. In addition, the influence of the high-K oxide on both the diffusion of dopants and the modulation of the effective work function was highlighted. Lastly, an innovative process for metal deposition, allowing the modification of the microstructure of TiN, was developed in order to further improve the local VTH variability in FDSOI devices.
129

Adsorption and manipulation of doped fullerenes on silicon surfaces

Butcher, Matthew James January 2000 (has links)
No description available.
130

Sol-Gel Processed Amorphous LiLaTiO3 as Solid Electrolyte for Lithium Ion Batteries

Zheng, Zhangfeng 13 May 2015 (has links)
Rechargeable lithium ion batteries have been widely used in portable consumer electronic devices, hybrid and full electric vehicles, and emergency power supply systems, because of their high energy density and long lifespan. The lithium ion battery market was approximately $11.8 billion in 2010 and is expected to grow to $53.7 billion in 2020. However, there is an intrinsic safety issue in these batteries because electrolyte contains a flammable organic solvent which may cause fire and/or even explosion. All solid-state lithium ion battery is recognized as next-generation technology for rechargeable power sources due to improved safety, high energy density, and long cycle life. Inorganic solid electrolyte replace liquid one to eliminate flammable components. The major challenge for all solid-state lithium ion batteries is to develop solid electrolytes with high ionic conductivity and good stability against both electrodes. Amorphous lithium lanthanum titanium oxide (LLTO) is very promising as solid electrolyte owing to its high ionic conductivity, good stability, and wide electrochemical stability window. In this work, amorphous LLTO thin films (or powders) were successfully prepared by sol-gel process. The thin films are smooth and crack-free. The microstructure evolution from dried gel film to fired film to annealed film was examined. The microstructure of the annealed film, either amorphous or crystalline, depends on the annealing temperature and time. Theoretical analysis was conducted to understand the microstructure evolution. Induction time determines the longest annealing time without transformation from amorphous to crystalline state. The induction time decreases with annealing temperature until the time approaches a minimum, and after that, the time increases with the temperature. Ion transport properties were investigated by Electrochemical Impedance Spectroscopy (EIS). The plateau at low frequencies results from lithium ion long-range diffusion which contributes to dc conductivity, while the observed frequency dispersion at high frequencies is attributed to short-range forward¨Cbackward hopping motion of lithium ions. The relaxation processes are non-Debye in nature. Amorphous LLTO is compatible with Li metal due to its disordered atomic configuration. Finally, a 3D structure of electrode with amorphous LLTO was successfully prepared. This electrode displays promising electrochemical performance.

Page generated in 0.1122 seconds