Spelling suggestions: "subject:"laramide"" "subject:"aramide""
21 |
Geology and Origin of the Breccias in the Morenci-Metcalf District, Greenlee County, ArizonaBennett, Kenneth Carlton January 1975 (has links)
Rocks of the Morenci-Metcalf district consist of Precambrian metaquartzite-schist, granodiorite, and granite overlain by Paleozoic and Mesozoic sediments. Intrusion of igneous rocks, emplacement of breccia masses, and associated hydrothermal activity occurred in Laramide time. Breccias of the district are associated with the youngest sialic intrusive complex. This sequence includes intrusion of the Older Granite Porphyry stock, main stage district hydrothermal alteration, quartz veining, breccia formation, main stage district hydrothermal mineralization, and intrusion of the Younger Granite Porphyry plug. Breccia formation in the Morenci-Metcalf district is similar to breccia descriptions reported in the literature for other porphyry copper deposits. Three breccia types, of separate and distinct origins, are herein described as the Morenci, Metcalf and King, and Candelaria Breccias. The Morenci Breccia is an intrusion breccia that has formed along a pre-existing structural feature during the ascent and emplacement of the Older Granite Porphyry stock. It exhibits an oblate lenticular shape with angular to subrounded fragments in a matrix of quartz, K-feldspar, biotite, and minor rock flour. The Metcalf-King Breccias and numerous smaller breccia masses are the remnants of an original Older Granite Porphyry mantle above the ascending Younger Granite Porphyry complex. The breccia masses occur as large 'xenoliths' floating within the Younger Granite Porphyry plug and were formed by surging and collapse during emplacement of this intrusive. Fragments in the Metcalf and King Breccias grade from angular in the central core to rounded at the contacts and occur in a matrix of sericite, K- feldspar, quartz, and rock flour. The Candelaria Breccia is an explosion pipe and is the largest continuous breccia mass in the district. It is oval with an inverted cone appearance consisting of angular to subangular equidimensional fragments in a matrix of sericite, quartz, specularite, and rock flour. All the breccia masses occur within and subsequent to the district phyllic (quartz-sericite-pyrite) alteration zone. Main stage district copper mineralization postdates emplacement of the Older Granite Porphyry stock and breccia formation, and is prior to the intrusion of the Younger Granite Porphyry plug. Late stage quartz-sericite-pyrite-chalcopyrite veinlets occur in the Metcalf-King Breccia group. Field mapping and laboratory studies indicate that the Older Granite Porphyry stock appears to have been the main district mineralizer.
|
22 |
A Re-Os Study of Sulfides from the Bagdad Porphyry Cu-Mo Deposit, Northern Arizona, USABarra-Pantoja, Luis Fernando January 2001 (has links)
Use of Re-Os systematics in sulfides from the Bagdad porphyry Cu-Mo deposit provide information on the timing of mineralization and the source of the ore -forming elements. Analyzed samples of pyrite, chalcopyrite and molybdenite mainly from the quartz monzonite and porphyritic quartz monzonite units are characterized by a moderate to strong potassic alteration (secondary biotite and K- feldspar). Rhenium concentrations in molybdenite are between 330 and 730 ppm. Two molybdenite samples from the quartz monzonite and porphyritic quartz monzonite provide a Re-Os isotope age of 71.7 ± 0.3 Ma. A third sample from a molybdenite vein in Precambrian rocks yields an age of 75.8 ± 0.4 Ma. These molybdenite ages support previous suggestions of two mineralization episodes in the Bagdad deposit. An early event at 76 Ma and a later episode at 72 Ma. Pyrite Os and Re concentrations range between 0.008-0.016 and 3.9-6.8 ppb, respectively. Chalcopyrite contains a wide range of Os (6 to 91 ppt) and Re (1.7 to 69 ppb) concentrations and variable ¹⁸⁷Os/¹⁸⁸Os ratios that range between 0.13 to 22.27. This variability in the chalcopyrite data may be attributed to different copper sources, one of them the Proterozoic volcanic massive sulfides in the district, or to alteration and remobilization of Re and Os. Analyses from two pyrite samples yield an eight point isochron with an age of 77 ± 15 Ma and an initial ¹⁸⁷Os/¹⁸⁸Os ratio of 2.12. This pyrite Re-Os isochron age is in good agreement with the molybdenite ages. We interpret the highly radiogenic initial 1870s/188Os as an indication that the source of Os and, by inference, the ore-forming elements for the Bagdad deposit, was mainly the crust. This conclusion agrees with previous Pb and Nd isotope studies and supports the notion that a significant part of the metals and magmas have a crustal source.
|
23 |
Geology of the Phil Pico Mountain Quadrangle, Daggett County, Utah, and Sweetwater County, WyomingAnderson, Alvin D. 25 April 2008 (has links) (PDF)
Geologic mapping in the Phil Pico Mountain quadrangle and analysis of the Carter Oil Company Carson Peak Unit 1 well have provided additional constraints on the erosional and uplift history of this section of the north flank of the Uinta Mountains. Phil Pico Mountain is largely composed of the conglomeratic facies of the early Eocene Wasatch and middle to late Eocene Bridger Formations. These formations are separated by the Henrys Fork fault which has thrust Wasatch Formation next to Bridger Formation. The Wasatch Formation is clearly synorogenic and contains an unroofing succession from the adjacent Uinta Mountains. On Phil Pico Mountain, the Wasatch Formation contains clasts eroded sequentially from the Permian Park City Formation, Permian Pennsylvanian Weber Sandstone, Pennsylvanian Morgan Formation, and the Pennsylvanian Round Valley and Mississippian Madison Limestones. Renewed uplift in the middle and late Eocene led to the erosion of Wasatch Formation and its redeposition as Bridger Formation on the down-thrown footwall of the Henrys Fork fault. Field observations and analysis of the cuttings and lithology log from Carson Peak Unit 1 well suggest that initial uplift along the Henrys Fork Fault occurred in the late early or early middle Eocene with the most active periods of uplift in the middle and late Eocene (Figure 8, Figure 24, Appendix 1). The approximate post-Paleocene throw of the Henrys Fork fault at Phil Pico Mountain is 2070 m (6800 ft). The Carson Peak Unit 1 well also reveals that just north of the Henrys Fork fault at Phil Pico Mountain the Bridger Formation (middle to late Eocene) is 520 m (1710 ft) thick; an additional 460 m (1500 ft) of Bridger Formation lies above the well on Phil Pico Mountain. Beneath the Bridger Formation are 400 m (1180 ft) of Green River Formation (early to middle Eocene), 1520 m (5010 ft) of Wasatch Formation (early Eocene), and 850 m (2800 ft) of the Fort Union Formation (Paleocene). Stratigraphic data from three sections located east to west across the Phil Pico Mountain quadrangle show that the Protero-zoic Red Pine Shale has substantially more sandstone and less shale in the eastern section of the quadrangle. Field observations suggest that the Red Pine Shale undergoes a facies change across the quadrangle. However, due to the lack of continuous stratigraphic exposures, the cause of this change is not known.
|
Page generated in 0.0642 seconds