• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 9
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Avancerade Stora Språk Modeller i Praktiken : En Studie av ChatGPT-4 och Google Bard inom Desinformationshantering

Ahmadi, Aref, Barakzai, Ahmad Naveed January 2023 (has links)
SammanfattningI  denna  studie  utforskas  kapaciteterna  och  begränsningarna  hos  avancerade  stora språkmodeller (SSM), med särskilt fokus på ChatGPT-4 och Google Bard. Studien inleds med att ge en historisk bakgrund till artificiell intelligens och hur denna utveckling har lett fram till skapandet av dessa modeller. Därefter genomförs en kritisk analys av deras prestanda i språkbehandling och problemlösning. Genom att evaluera deras effektivitet i hanteringen av nyhetsinnehåll och sociala medier, samt i utförandet av kreativa uppgifter som pussel, belyses deras förmåga inom språklig bearbetning samt de utmaningar de möter i att förstå nyanser och utöva kreativt tänkande.I denna studie framkom det att SSM har en avancerad förmåga att förstå och reagera på komplexa språkstrukturer. Denna förmåga är dock inte utan begränsningar, speciellt när det kommer till uppgifter som kräver en noggrann bedömning för att skilja mellan sanning och osanning. Denna observation lyfter fram en kritisk aspekt av SSM:ernas nuvarande kapacitet, de är effektiva inom många områden, men möter fortfarande utmaningar i att hantera de finare nyanserna i mänskligt språk och tänkande. Studiens resultat betonar även vikten av mänsklig tillsyn vid användning av artificiell intelligens (AI), vilket pekar på behovet av att ha realistiska förväntningar på AI:s kapacitet och betonar vidare betydelsen av en ansvarsfull utveckling  av  AI,  där  en  noggrann  uppmärksamhet  kring etiska  aspekter  är  central.  En kombination av mänsklig intelligens och AI föreslås som en lösning för att hantera komplexa utmaningar, vilket bidrar till en fördjupad förståelse av avancerade språkmodellers dynamik och deras roll inom AI:s bredare utveckling och tillämpning.
12

Applying Large Language Models in Business Processes : A contribution to Management Innovation / Tillämpning av stora språkmodeller i affärsprocesser : Ett bidrag till Management Innovation

Bergman Larsson, Niklas, Talåsen, Jonatan January 2024 (has links)
This master thesis explores the transformative potential of Large Language Models (LLMs) in enhancing business processes across various industries, with a specific focus on Management Innovation. As organizations face the pressures of digitalization, LLMs emerge as powerful tools that can revolutionize traditional business workflows through enhanced decision-making, automation of routine tasks, and improved operational efficiency. The research investigates the integration of LLMs within four key business domains: Human Resources, Tender Management, Consultancy, and Compliance. It highlights how LLMs facilitate Management Innovation by enabling new forms of workflow automation, data analysis, and compliance management, thus driving substantial improvements in efficiency and innovation. Employing a mixed-method approach, the study combines an extensive literature review with surveys and interviews with industry professionals to evaluate the impact and practical applications of LLMs. The findings reveal that LLMs not only offer significant operational benefits but also pose challenges related to data security, integration complexities, and privacy concerns. This thesis significantly contributes to the academic and practical understanding of LLMs, proposing a framework for their strategic adoption to foster Management Innovation. It underscores the need for businesses to align LLM integration with both technological capabilities and strategic business objectives, paving the way for a new era of management practices shaped by advanced technologies. / Denna masteruppsats utforskar den transformativa potentialen hos Stora Språkmodeller (LLMs) i att förbättra affärsprocesser över olika industrier, med särskilt fokus på Management Innovation. När organisationer möter digitaliseringens press, framträder LLMs som kraftfulla verktyg som kan revolutionera traditionella affärsarbetsflöden genom förbättrat beslutsfattande, automatisering av rutinuppgifter och förbättrad operationell effektivitet. Forskningen undersöker integrationen av LLMs inom fyra centrala affärsområden: Human Resources, Anbudshantering, Konsultverksamhet och Regelefterlevnad. Den belyser hur LLMs underlättar Management Innovation genom att möjliggöra nya former av arbetsflödesautomatisering, dataanalys och efterlevnadshantering, vilket driver påtagliga förbättringar i effektivitet och innovation. Genom att använda en blandad metodansats kombinerar studien en omfattande litteraturöversikt med enkäter och intervjuer med branschproffs för att utvärdera påverkan och praktiska tillämpningar av LLMs. Resultaten visar att LLMs inte bara erbjuder betydande operationella fördelar utan även medför utmaningar relaterade till datasäkerhet, integrationskomplexitet och integritetsfrågor. Denna uppsats bidrar avsevärt till den akademiska och praktiska förståelsen av LLMs, och föreslår en ram för deras strategiska antagande för att främja Management Innovation. Den understryker behovet för företag att anpassa LLM-integrationen med både teknologiska kapabiliteter och strategiska affärsmål, vilket banar väg för en ny era av ledningspraxis formad av avancerade teknologier.
13

KERMIT: Knowledge Extractive and Reasoning Model usIng Transformers

Hameed, Abed Alkarim, Mäntyniemi, Kevin January 2024 (has links)
In the rapidly advancing field of artificial intelligence, Large Language Models (LLMs) like GPT-3, GPT-4, and Gemini have revolutionized sectors by automating complex tasks. Despite their advancements, LLMs and more noticeably smaller language models (SLMs) still face challenges, such as generating unfounded content "hallucinations." This project aims to enhance SLMs for broader accessibility without extensive computational infrastructure. By supervised fine-tuning of smaller models with new datasets, SQUAD-ei and SQUAD-GPT, the resulting model, KERMIT-7B, achieved superior performance in TYDIQA-GoldP, demonstrating improved information extraction while retaining generative quality. / Inom det snabbt växande området artificiell intelligens har stora språkmodeller (LLM) som GPT-3, GPT-4 och Gemini revolutionerat sektorer genom att automatisera komplexa uppgifter. Trots sina framsteg stårdessa modeller, framför allt mindre språkmodeller (SLMs) fortfarande inför utmaningar, till exempel attgenerera ogrundat innehåll "hallucinationer". Denna studie syftar till att förbättra SLMs för bredare till-gänglighet utan krävande infrastruktur. Genom supervised fine-tuning av mindre modeller med nya data-set, SQUAD-ei och SQUAD-GPT, uppnådde den resulterande modellen, KERMIT-7B, överlägsen pre-standa i TYDIQA-GoldP, vilket visar förbättrad informationsutvinning samtidigt som den generativa kva-liteten bibehålls.
14

ANALYSIS AND MODELING OF STATE-LEVEL POLICY AND LEGISLATIVE TEXT WITH NLP AND ML TECHNIQUES

Maryam Davoodi (20378814) 05 December 2024 (has links)
<p dir="ltr">State-level policy decisions significantly influence various aspects of our daily lives, such as access to healthcare and education. Despite their importance, there is a limited understanding of how these policies and decisions are formulated within the legislative process. This dissertation aims to bridge that gap by utilizing data-driven methods and the latest advancements in machine learning (ML) and natural language processing (NLP). By leveraging data-driven approaches, we can achieve a more objective and comprehensive understanding of policy formation. The incorporation of ML and NLP techniques aids in processing and interpreting large volumes of complex legislative texts, uncovering patterns and insights that might be overlooked through manual analysis. In this dissertation, we pose new analytical questions about the state legislative process and address them in three stages:</p><p><br></p><p dir="ltr">First, we aim to understand the language of political agreement and disagreement in legislative texts. We introduce a novel NLP/ML task: predicting significant conflicts among legislators and sharp divisions in their votes on state bills, influenced by factors such as gender, rural-urban divides, and ideological differences. To achieve this, we construct a comprehensive dataset from multiple sources, linking state bills with legislators’ information, geographical data about their districts, and details about donations and donors. We then develop a shared relational and textual deep learning model that captures the interactions between the bill’s text and the legislative context in which it is presented. Our experiments demonstrate that incorporating this context enhances prediction accuracy compared to strong text-based models.</p><p><br></p><p dir="ltr">Second, we analyze the impact of legislation on relevant stakeholders, such as teachers in education bills. We introduce this as a new prediction task within our framework to better understand the state legislative process. To address this task, we enhance our modeling and expand our dataset using various techniques, including crowd-sourcing, to generate labeled data. This approach also helps us decode legislators’ decision-making processes and voting patterns. Consequently, we refine our model to predict the winners and losers of bills, using this information to more accurately forecast the legislative body’s vote breakdown based on demographic and ideological criteria.</p><p><br></p><p dir="ltr">Third, we enhance our analysis and modeling of state-level bills and policies using two techniques: We normalize the inconsistent, verbose, and complex language of state policies by leveraging Generative Large Language Models (LLMs). Additionally, we evaluate the policies within a broader network context by expanding the number of US states analyzed from 3 to 50 and incorporating new data sources, such as interest groups’ ratings of legislators and public information on legislators’ positions on various issues.</p><p><br></p><p dir="ltr">By following these steps in this dissertation, we aim to better understand the legislative processes that shape state-level policies and their far-reaching effects on society.</p>

Page generated in 0.0509 seconds