• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 7
  • 4
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 13
  • 10
  • 9
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Experiments, Constitutive Modeling, and Multi-Scale Simulations of Large Strain Thermomechanical Behavior of Poly(methyl methacrylate) (PMMA)

Mathiesen, Danielle Samone January 2014 (has links)
No description available.
22

Mesh-Free Methods for Dynamic Problems. Incompressibility and Large Strain

Vidal Seguí, Yolanda 17 January 2005 (has links)
This thesis makes two noteworthy contributions in the are of mesh-free methods: a Pseudo-Divergence-Free (PDF) Element Free Galerkin (EFG) method which alleviates the volumetric locking and a Stabilized Updated Lagrangian formulation which allows to solve fast-transient dynamic problems involving large distortions. The thesis is organized in the following way. First of all, this thesis dedicates one chapter to the state of the art of mesh-free methods. The main reason is because there are many mesh-free methods that can be found in the literature which can be based on different ideas and with different properties. There is a real need of classifying, ordering and comparing these methods: in fact, the same or almost the same method can be found with different names in the literature. Secondly, a novel improved formulation of the (EFG) method is proposed in order to alleviate volumetric locking. It is based on a pseudo-divergence-free interpolation. Using the concept of diffuse derivatives an a convergence theorem of these derivatives to the ones of the exact solution, the new approximation proposed is obtained imposing a zero diffuse divergence. In this way is guaranteed that the method verifies asymptotically the incompressibility condition and in addition the imposition can be done a priori. This means that the main difference between standard EFG and the improved method is how is chosen the interpolation basis. Modal analysis and numerical results for two classical benchmark tests in solids corroborate that, as expected, diffuse derivatives converge to the derivatives of the exact solution when the discretization is refined (for a fixed dilation parameter) and, of course, that diffuse divergence converges to the exact divergence with the expected theoretical rate. For standard EFG the typical convergence rate is degrade as the incompressible limit is approached but with the improved method good results are obtained even for a nearly incompressible case and a moderately fine discretization. The improved method has also been used to solve the Stokes equations. In this case the LBB condition is not explicitly satisfied because the pseudo-divergence-free approximation is employed. Reasonable results are obtained in spite of the equal order interpolation for velocity and pressure. Finally, several techniques have been developed in the past to solve the well known tensile instability in the SPH (Smooth Particle Hydrodynamics) mesh-free method. It has been proved that a Lagrangian formulation removes completely the instability (but zero energy modes exist). In fact, Lagrangian SPH works even better than the Finite Element Method in problems involving distortions. Nevertheless, in problems with very large distortions a Lagrangian formulation will need of frequent updates of the reference configuration. When such updates are incorporated then zero energy modes are more likely to be activated. When few updates are carried out the error is small but when updates are performed frequently the solution is completely spoilt because of the zero energy modes. In this thesis an updated Lagrangian formulation is developed. It allows to carry out updates of the reference configuration without suffering the appearance of spurious modes. To update the Lagrangian formulation an incremental approach is used: an intermediate configuration will be the new reference configuration for the next time steps. It has been observed that this updated formulation suffers from similar numerical fracture to the Eulerian case. A modal analysis has proven that there exist zero energy modes. In the paper the updated Lagrangian method is exposed in detail, a stability analysis is performed and finally a stabilization technique is incorporated to preclude spurious modes.
23

Comportement couplé des géo-matériaux : deux approches de modélisation numérique / Objective thermo-hydro-mechanical modelling of the damaged zone around a radioactive waste storage site.

Marinelli, Ferdinando 21 January 2013 (has links)
Nous présentons deux approches différentes pour décrire le couplage hydromécanique des géomatériaux. Dans une approche de type phénoménologique nous traitons le milieu poreux comme un milieu continu équivalent dont les interactions entre la phase fluide et le squelette solide constituent le couplage du mélange à l'échelle macroscopique. En caractérisant le comportement de chaque phase nous arrivons à décrire le comportement couplé du milieu couplé saturé.Nous utilisons cette approche pour modéliser des essais expérimentaux faits sur un cylindre creux pour une roche argileuse (argile de Boom). Les résultats expérimentaux montrent de façon claire que le comportement de cette roche est fortement anisotrope. Nous avons choisi de modéliser ces essais en utilisant une lois de comportement élasto-plastique pour laquelle la partie élastique est transversalement isotrope.Le problème aux conditions aux limites étudié met en évidence des déformations localisées autour du forage intérieur. Afin de décrire de façon objective le développement de ces bandes de cisaillement nous avons considéré un milieu continu local de type second gradient qui permet d'introduire une longueur interne. De ce fait nous avons pu étudier le problème d'unicité en montrant qu'un changement de la discrétisation temporelle du problème aux limites peut conduire à des solutions différentes.Dans la deuxième approche étudiée nous caractérisons la microstructure du matériau avec des grains et un réseau de canaux pour la phase fluide. À l'aide d'un processus numérique d'homogénéisation nous arrivons à calculer numériquement la contrainte du mélange et le flux massique. Cette méthode d'homogénéisation numérique a été implémentée dans un code aux éléments finis afin d'obtenir des résultats macro. Une validation de l'implentation est proposée pour des calculs en mecanique pure et en hydromécanique. / We present two different approaches to describe the hydromechanical behaviour of geomaterials. In the first approach the porous media is studied through an equivalent continuum media where the interaction between the fluide and solid phases caracterize the coupling behaviour at the macroscale.We take into account this approach to model experimental tests performed over a hollow cylinder sample of clay rock (Boom Clay), considered for nuclear waste storage. The experimental results clearly show that the mechanical behaviour of the material is strongly anisotropic. For this reason we chose an elasto-plastic model based on Drucker-Prager criterion where the elastic part is characterized by cross anisotropy.The numerical results of boundary value problem clearly show localised strains around the inner hollow section. In order to regularize the numerical problem we consider a second gradient local continuum media with an enriched kinematic where an internal lenght can be introduced making the results mesh independent. The uniqueness study is carried out showing that changing the temporal discretization of the problem leads to different solutions.In the second approach we study the hydromechanical behaviour of a porous media that it is characterised by the microstructure of the material. The microstructure taken into account is composed by elastic grains, cohesives interfaces and a network of fluid channels. Using a periodic media a numerical homogenization (square finite element method) is considered to compute mass flux, stress and density of the mixture. In this way a pure numerical constitutive law is built from the microstructure of the media. This method has been implemented into a finite element code (Lagamine, Université de Liège) to obtain results at the macroscale. A validation of this implementation is performed for a pure mechanical boundary value problem and for a hydromechanical one.
24

Modélisation du vieillissement thermique et mécanique d’une protection externe en EPDM de jonctions rétractables à froid / Modelling of thermal and mechanical ageings of an external protection of a cold shrinkable junction made of EPDM rubber

Ben Hassine, Mouna 29 October 2013 (has links)
L'objectif de cette thèse est l'étude des conséquences de la thermo-oxydation sur la structure chimique et le comportement mécanique d'un Ethylène Propylène Diène Monomère (EPDM). Afin de déterminer les modifications à différentes échelles structurales, quatre formulations modèles sont étudiées : la gomme pure, les matrices vulcanisées stabilisée et non stabilisée et l'élastomère industriel. L'ensemble des échantillons est vieilli entre 70 et 170°C dans l'air ou sous vide puis caractérisé par divers outils analytiques. La thermogravimétrie donne accès aux variations de masse résultant de l'incorporation d'oxygène et l'émission de composés volatils. L'analyse infrarouge permet de suivre les évolutions des espèces chimiques. Les essais de gonflement, de chromatographie et de spectrométrie mécanique permettent de calculer les nombres de coupures de chaînes et d'actes de réticulation à chaque instant. Sur la base de ces résultats, un modèle cinétique général de thermo-oxydation de la matrice EPDM est proposé et en partie validé. Les conséquences du vieillissement thermique sur le comportement mécanique de l'élastomère industriel sont mises en évidence par des essais de traction uniaxiale et de multi-relaxation à température ambiante et vitesse de déformation initiale de 10-3 s-1. L'impact du vieillissement thermique sur les propriétés ultimes et les réponses à l'équilibre et hors équilibre est examiné. Un critère prédictif de rupture basé sur la mécanique de la rupture est proposé. Enfin, le couplage vieillissement thermique - contrainte mécanique est étudié par des essais relaxation de contraintes continues entre 130 et 170°C dans l'air. Les modifications de la microstructure pendant le vieillissement thermique sont intégrées dans les équations constitutives du modèle mécanique macroscopique afin de proposer un outil de prédiction du comportement à long terme de l'élastomère industriel. La simulation numérique montre une bonne adéquation avec les résultats expérimentaux. / The aim of this work is to study the consequences of the thermal oxidation on the chemical structure and mechanical behavior of an Ethylene-Propylene-Diene Monomer (EPDM). In order to determine the structural changes at different scales, four model formulations have been considered: free additive gum, stabilized and unstabilized vulcanized matrix and industrial rubber. All samples were aged between 70 and 170°C in air or vacuum and characterized by several analytical tools. Thermogravimetry gives access to weight variations due to oxygen grafting and volatile compounds release. Infrared analysis is used to follow chemical species evolutions. Swelling tests, chromatographic and mechanical spectrometry tests allow calculating the number of chain scission and cross-linking events at any time. Based on these results, a general kinetic model is proposed and partially validated for EPDM matrix thermal oxidation. The consequences of thermal ageing on the mechanical behavior of the industrial rubber are pointed out by monotonic tensile and stress relaxation tests at room temperature and a 10-3 s-1- initial strain rate. The impact of thermal ageing on ultimate properties and equilibrium and non-equilibrium response are examined. Finally, the coupling between thermal ageing and mechanical stress is studied by continuous stress relaxation tests between 130 et 170°C in air. The microstructural modifications during thermal ageing are introduced into the constitutive equations of the macroscopic mechanical model in order to propose a predictif tool of the long time behavior of the industrial rubber. The numerical simulation is in good agreement with experimental results.
25

Fast simulation of (nearly) incompressible nonlinear elastic material at large strain via adaptive mixed FEM

Balg, Martina, Meyer, Arnd 19 October 2012 (has links)
The main focus of this work lies in the simulation of the deformation of mechanical components which consist of nonlinear elastic, incompressible material and that are subject to large deformations. Starting from a nonlinear formulation one can derive a discrete problem by using linearisation techniques and an adaptive mixed finite element method. This turns out to be a saddle point problem that can be solved via a Bramble-Pasciak conjugate gradient method. With some modifications the simulation can be improved.:1. Introduction 2. Basics 3. Mixed variational formulation 4. Solution method 5. Error estimation 6. LBB conditions 7. Improvement suggestions
26

[pt] MODELAGEM NUMÉRICA DE PROBLEMAS GEOTÉCNICOS DE GRANDES DEFORMAÇÕES MEDIANTE O MÉTODO DO PONTO MATERIAL / [en] NUMERICAL MODELING OF GEOTECHNICAL PROBLEMS OF LARGE DEFORMATIONS USING THE MATERIAL POINT METHOD

FABRICIO FERNANDEZ 18 May 2021 (has links)
[pt] Os problemas geotécnicos e geológicos envolvem a descrição do comportamento de materiais tais como solo e rocha e sua eventual interação com fluidos e estruturas. Em geral, a evolução desses problemas é caracterizada por grandes deformações e deslocamentos, descontinuidades, heterogeneidades e um comportamento constitutivo complexo. A abordagem deste tipo de problemas requer técnicas numéricas que levem em conta essas características, sem apresentar inconvenientes numéricos associados à distorção dos elementos como acontece no método dos elementos finitos (FEM). A presente tese desenvolve um algoritmo computacional baseado no método do ponto material (MPM) para aproximar a solução das equações governantes dos fenômenos mencionados. O algoritmo é baseado numa formulação dinâmica tridimensional do contínuo, considerando grandes deformações. Os amortecimentos de Rayleigh o local não viscoso são incorporados para modelar problemas dinâmicos e quase-estáticos. A geração dinâmica das poro-pressões é formulada assumindo o meio poroso saturado e um ponto material para discretizar a mistura. Diversas técnicas de suavização das pressões são avaliadas em problemas de impacto sobre meios saturados. Diferentes modelos constitutivos são implementados para modelar tanto a formação da superfície de ruptura e o processo de escoamento da massa de solo durante as instabilidades, quanto a gênese, evolução e quantificação de zona de falhas nos processos geológicos. Para a abordagem da discretização de problemas de escala geológica de grande número de partículas usando o MPM, uma metodologia é proposta e verificada com a discretização do deslizamento do Daguangbao, na China. Visando à diminuição do tempo computacional, o algoritmo é implementado segundo o paradigma de programação paralela. / [en] Geotechnical and geological problems involve the description of the behavior of materials such as soil and rock, and their eventual interaction with fluids and structures. In general, the evolution of these problems is characterized by large deformations and displacements, discontinuities, heterogeneities and complex constitutive behavior. Addressing these problems requires numerical techniques that take these characteristics into account, without numerical drawbacks associated with element distortion as occurs in the finite element method (FEM). In this thesis is developed a computational algorithm based on the material point method (MPM) to approximate the solution of the governing equations to the mentioned phenomena. The algorithm is based on a three-dimensional dynamic formulation of the continuum considering large deformations. Rayleigh damping and non-viscous local damping are incorporated to model dynamic and quasi-static problems. The dynamic generation of pore pressures is formulated assuming the saturated porous medium and a single material point to discretize the mixture. Different techniques are evaluated to mitigate spurious pressure in impact problems on saturated media. Different constitutive models are implemented to model the failure surface and the soil mass flow process during slope instabilities, as well as the genesis, evolution and failure zone quantification in geological processes. To address the discretization of large-scale geological problems using MPM, a methodology is proposed and validated with the discretization of the Daguangbao landslide, in China. In order to decrease the computational time, the algorithm is implemented according to the parallel programming paradigm.
27

[en] ANALYSIS OF PNEUMATIC STRUCTURES CONSIDERING NONLINEAR MATERIAL MODELS AND PRESSURE-VOLUME COUPLING / [pt] ANÁLISE DE ESTRUTURAS PNEUMÁTICAS CONSIDERANDO MODELOS NÃO LINEARES DO MATERIAL E O ACOPLAMENTO PRESSÃO-VOLUME

MARIANNA ANSILIERO DE OLIVEIRA COELHO 27 October 2021 (has links)
[pt] Neste trabalho um estudo de estruturas pneumáticas considerando acoplamento pressão–volume e modelos constitutivos plásticos e viscoplásticos são desenvolvidos. Estruturas pneumáticas são estruturas de membrana sobre as quais atuam pressão de gases estabilizadas por tensões de tração. Essas estruturas são mais leves que estruturas convencionais resultando em soluções mais econômicas. Elas possuem ainda algumas características que contribuem para um desenvolvimento sustentável, como a utilização de luz natural e ventilação e a possibilidade de reutilização. Quando as estruturas pneumáticas são submetidas a cargas externas, essas estruturas apresentam variação da pressão internal e do volume. Este acoplamento é um dos objetos de estudo do presente trabalho. Soluções analíticas são desenvolvidas para descrever este acoplamento. Em programas convencionais de elementos finitos esse acoplamento não é considerado. Uma formulação para o acoplamento pressão–volume para câmaras fechadas é incluído no modelo de elementos finitos com grandes deformações. A variedade de modelos de material implementados tem a finalidade de abranger o comportamento de muitos tipos de materiais de membrana usados em estruturas pneumáticas. Na literatura o estudo dos materiais de membrana para estruturas pneumáticas tem foco na análise experimental. Modelos para material de membrana são incorporados no modelo de elementos finitos para pequenas e grandes deformações. Os modelos constitutivos considerados neste trabalho são hiperelástico, elastoplástico e elastoviscoplástico. A ocorrência de grandes deformações é incluída. Um novo material baseado em superfícies NURBS é proposto e validado com base em resultados experimentais e modelos clássicos de materiais. Neste trabalho ênfase é dada ao material ETFE (Etileno tetrafluoretileno), o qual é amplamente usado em estruturas pneumáticas. Os modelos desenvolvidos aqui, como o acoplamento pressão–volume e os modelos de materiais são implementados em elementos finitos no programa usado na cadeira de estática das construções da TUM (Technische Universitat Munchen), chamado CARAT++ (Computer Aided Research Analysis Tool). / [en] In this work a study of pneumatic structures considering pressure–volume coupling under plastic and viscoplastic material behavior is developed. Pneumatic structures are membrane structures acted on by air or gases stabilized by tension. These structures are lighter than conventional structures resulting in economic structural solutions. They present also some characteristics that contribute to the sustainable development, such as the utilization of natural lighting and ventilation and its possibility of reuse. When pneumatic structures are subjected to external loads these structures present both internal pressure and volume variation. This coupling is one of the objects of the present work. Analytical solutions are developed to describe this coupling. In conventional finite element systems this coupling is not considered. A formulation for pressure–volume coupling by closed chambers is included in the framework of a finite element large strain model. The variety of material models implemented has the purpose to cover the behavior of the many kinds of membrane materials used in pneumatic structures. In the literature the study of the membrane materials for pneumatic structures focuses on experimental analysis. Membrane material models are incorporated in the finite element model for small and large strains. The constitutivematerial models considered in this work are hyperelastic, elastoplastic and elastoviscoplastic. The onset of large strains is enclosed. A new material model based on NURBS surfaces is proposed an validated on hand of experimental results and classic material models. In this work emphasis is given to the material ETFE (Ethylene tetrafluoroethylene), which is widely used in pneumatic structures. The models developed here, such as the pressure-volume coupling and the material models, are implemented in finite elements on the program used in the Static Chair at TUM (Technische Universitat Munchen), which is called CARAT++ (Computer Aided Research Analysis Tool).
28

Comparison of geoenvironmental properties of caustic and noncaustic oil sand fine tailings

Miller, Warren Gregory 11 1900 (has links)
A study was conducted to evaluate the properties and processes influencing the rate and magnitude of volume decrease and strength gain for oil sand fine tailings resulting from a change in bitumen extraction process (caustic versus non-caustic) and the effect of adding a coagulant to caustic fine tailings. Laboratory flume deposition tests were carried out with the objective to hydraulically deposit oil sand tailings and compare the effects of extraction processes on the nature of beach deposits in terms of geometry, particle size distribution, and density. A good correlation exists between flume deposition tests results using oil sand tailings and the various other tailings materials. These comparisons show the reliability and effectiveness of flume deposition tests in terms of establishing general relationships and can serve as a guide to predict beach slopes. Fine tailings were collected from the various flume tests and a comprehensive description of physical and chemical characteristics of the different fine tailings was carried out. The characteristics of the fine tailings is presented in terms of index properties, mineralogy, specific surface area, water chemistry, liquid limits, particle size distribution and structure. The influence of these fundamental properties on the compressibility, hydraulic conductivity and shear strength properties of the fine tailings was assessed. Fourteen two meter and one meter high standpipe tests were instrumented to monitor the rate and magnitude of self-weight consolidation of the different fine tailings materials. Consolidation tests using slurry consolidometers were carried out to determine consolidation properties, namely compressibility and hydraulic conductivity, as well as the effect of adding a coagulant (calcium sulphate [CaSO4]) to caustic fine tailings. The thixotropic strength of the fine tailings was examined by measuring shear strength over time using a vane shear apparatus. A difference in water chemistry during bitumen extraction was concluded to be the cause of substantial differences in particle size distributions and degree of dispersion of the comparable caustic and non-caustic fine tailings. The degree of dispersion was consistent with predictions for dispersed clays established by the sodium adsorption ratio (SAR) values for these materials. The biggest advantage of non-caustic fine tailings and treating caustic fine tailings with coagulant is an increased initial settlement rate and slightly increased hydraulic conductivity at higher void ratios. Thereafter, compressibility and hydraulic conductivity are governed by effective stress. The chemical characteristics of fine tailings (water chemistry, degree of dispersion) do not have a significant impact on their compressibility behaviour and have only a small influence at high void ratio (low effective stress). Fine tailings from a caustic based extraction process had relatively higher shear strengths than comparable non-caustic fine tailings at equivalent void ratios. However, shear strength differences were small and the overall impact on consolidation behaviour, which also depends on compressibility and hydraulic conductivity, is not expected to be significant.
29

Comparison of geoenvironmental properties of caustic and noncaustic oil sand fine tailings

Miller, Warren Gregory Unknown Date
No description available.
30

Variační metody v termomechanice kontinua pevné fáze / Variational Methods in Thermomechanics of Solids

Pelech, Petr January 2020 (has links)
The thesis is devoted to study of continuum mechanics and thermodynamics and the related mathematical analysis. It consists of four self-contained chapters dealing with different aspects. The first chapter focuses on peridynamics, a non-local theory of continuum mechanics, and its relation to conventional local theory of Cauchy-Green elasticity. Similar compar- isons has been used for proving consistency and for determining some of the material coefficients in peridynamics, provided the material parameters in the local theory are known. In this chapter the formula for the non-local force-flux is computed in terms of the peridynamic interaction, relating the fundamental concepts of these two theories and establishing hence a new connection, not present in the previous works. The second and third chapters are both devoted to Rate-Independent Systems (RIS) and their applications to continuum mechanics. RIS represents a suitable approximation when the internal, viscous, and thermal effects can be neglected. RIS has been proven to be useful in modeling hysteresis, phase transitions in solids, elastoplasticity, damage, or fracture in both small and large strain regimes. In the second chapter the existence of solutions to an evolutionary rate-independ- ent model of Shape Memory Alloys (SMAs) is proven. The model...

Page generated in 0.0488 seconds