• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 91
  • 91
  • 91
  • 56
  • 37
  • 25
  • 24
  • 17
  • 15
  • 14
  • 14
  • 14
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Inflation : connecting theory with observables

Kenton, Zachary January 2017 (has links)
Information about the very early universe can be accessed from observations of the cosmic microwave background (CMB) radiation and the later formation of large-scale structure (LSS) that are produced from cosmological perturbations of the early universe. The most developed theoretical explanation for the origin of these perturbations is the theory of inflation, in which the early universe undergoes a period of accelerated expansion, amplifying quantum fluctuations to macroscopic size, which act as the seeds for the CMB anisotropies and the cosmic web of the LSS. The work in this thesis aims to connect the theory of inflation to properties of these observables in a highly detailed way, suitable for future high-precision astronomical surveys. After some introductory review chapters, we begin with new research on a study of inflation from string theory, deriving an observably-large value of the tensor-to-scalar ratio, which had been previously difficult to achieve theoretically. The next study investigates the link between the observed CMB power asymmetry and non-Gaussianity, including a novel non-zero value for the trispectrum. Next we study soft limits of non-Gaussian inflationary correlation functions, focussing first on the squeezed limit of the bispectrum and then generalizing to soft limits of higher-point correlation functions, giving results valid for multi-fi eld models of inflation.
42

Interacting dark sectors in cosmology

Buen Abad Najar, Manuel Alejandro 27 November 2018 (has links)
We present two different interacting dark sector models: one in which the dark matter particle is charged under a non-abelian dark gauge group, whose gauge bosons constitute a dark radiation component; and one in which a fraction of the dark matter has efficient number-changing self-interactions that keep it warm. We find that in general the structure formation is slowed down in these models, which addresses a discrepancy in the measurement of the σ8 parameter of large-scale structure. We also perform fits to cosmological data for a generalization of the non-abelian model (in which only a fraction of the dark matter interacts with the dark gauge bosons) and show that it can ease the current experimental tension in the measurement of the Hubble expansion rate H0.
43

Toward an understanding of the large scale structure of the universe with galaxy surveys

Shoji, Masatoshi 01 February 2012 (has links)
Large-scale structures we see in the universe, such as galaxies, galaxy clusters and structures beyond the scale of clusters, result from gravitational instability of almost isotropic and homogeneous density distribution in the early universe. The degree of the initial anisotropy of the universe and the subsequent growth of gravitational instability, coupled with the expansion rate of the universe, determine the scale and abundance of the structures formed in the universe at later times. A galaxy survey directly observes a distribution of structures in the sky using galaxies as a tracer of the underlying density distribution, and yields constraints on cosmological models when compared to a physical theory of structure formation based on a given cosmological model. Among many cosmological and astronomical phenomena to be understood from a galaxy survey, the nature of the observed accelerated expansion of the universe is the most profound problem in the modern physics. Motivated by various planned and on-going galaxy surveys, including our own Hobby-Ebery Telescope Dark Energy eXperiment (HETDEX), we show the way to fully exploit the data from a galaxy survey. We improve a model of structure formation to include the effect of baryonic pressure and the free-streaming of massive neutrinos at a mildly non-linear regime. Future galaxy surveys are to reach the level of accuracy, where the effect of massive neutrinos on the observed power spectrum is no longer negligible. Proper understanding of these effects gives a way to measure the absolute masses of neutrinos: one of the most fundamental particles, which, by itself, will be a major development in the field of particle physics. Yet, most of the space (~80%) observed by galaxy surveys is occupied by voids. An ellipticity probability distribution function of voids offers yet another way of probing cosmology. Especially, a distribution of ellipticities in the redshift space provides a unique way to measure a growth rate of the structure in the universe apart from other cosmological parameters when combined with the galaxy power spectrum. / text
44

Determining the characteristic mass of DLA host haloes from 21cm fluctuations /

Petrie, Stephen. January 2010 (has links)
Thesis (MPh)--University of Melbourne, Dept. of Physics, 2010. / Typescript. Includes bibliographical references (p. 77-83)
45

Self interactive dark matter in large scale structure

Rincón Rivero, Ángel January 2016 (has links)
Magíster en Ciencias, Mención Astronomía / Cold Dark matter (ΛCDM) models have been remarkably successful to explain the observed large scale structure of our universe on scales of the order of galaxy clusters (≥ 4 Mpc) and above (therefore in this work we consider large scale beyond the aforementioned limit). However, this class of models has some problems at short scales, (∼ 1 Mpc or lower) dubbed Small Scale Controversies . It is important to remark that, for purposes of our work, we consider lower than 1 Mpc as short-scales. One of small scale issues is associated to the Dark Matter halo structure: cosmological simulations that take into account only gravity and collisionless matter, predict halos and substructures with densities much higher than those derived from galactic dynamics and observations. A possible way to conciliate theory with observations is to consider self interactive dark matter (SIDM). Models with SIDM generate predictions consistent with observations on Large Scales, the domain where ΛCDM is successful, but in addition it does not conflict with observations on "small scale". In absence of a theory that incorporates self interactive dark matter, it is possible to use the so-called Effective Field Theory (EFT) framework to investigate some aspects of dark matter. The use of effective field theory techniques to study the role of dark matter during the period of structure formation in the Universe has provided a powerful parametrization of the dark matter physics at short scales. Recently, some researchers have advocated the use of the latter approach to model the large scale structure as a fluid and considering gravity by incorporating systematically non linear terms in the theoretical treatment. In this work, we use some recent approaches [2, 12] to study analytically collisional dark matter in the form of self interactions. We derive generalized expressions of some of the equations presented in ref.[2], corresponding to corrections to the momentum equation and the effective energy equation, and discuss the implications for the behavior of dark matter and its effect on structure formation. In particular, we find that, by taking into account self interactions, some corrections terms appear both in the momentum and energy equations. These corrections arise from the non-linear effects that modify the standard equations. We show that these new terms can solve some of the small scale issues because the self interactive dark matter reduces the central densities of the galaxy dark matter halos.
46

Melhorias na predição da estrutura de larga escala do universo por meio de teorias efetivas de campo / Towards Precise Large Scale Structure Predictions with Effective Field Theories

Henrique Rubira 10 August 2018 (has links)
Com os próximos grandes projetos the observação do Universo, a cosmologia entrará em uma era de alta precisão de medidas. Novos dados trarão um novo entendimento da evolução do Universo, seus principais componentes e do comportamento da gravi- dade. Sendo assim, é fundamental também ter uma boa predição teórica para a formação de estrutura de larga escala em regime não-linear. A melhor maneira de resolver as equações hidrodinâmicas que descrevem o nosso universo é por meio de simulações cosmológicas na rede. Entretando, estas contém desafios, como a correta inclusão de física bariônica e a diminuição do alto tempo computacional. Uma outra abordagem muito usada é o cálculo das funções de cor- relação por meio de métodos perturbativos (em inglês, Standard Perturbation Theory, ou SPT). Entretanto, esta contém problemas variados: pode não convergir para algu- mas cosmologias e, caso convirja, não há certeza de convergência para o resultado correto. Além disso, há uma escala privilegiada nos limites integrais que envolvem o método perturbativo. Nós calculamos o resultado por esse método até terceira ordem e mostramos que o termo de terceira ordem é ainda maior que o de 2-loops e 3-loops. Isso evidencia alguns problemas descritos com o método perturbativo. O método de Teorias Efetivas de Campo aplicado ao estudo de LSS busca corrigir os problemas da SPT e, desta forma, complementar os resultados de simulações na rede. Em outras áreas da física, como a Cromodinâmica Quântica de baixas energias, EFTs também são usadas como um complemento a essas simulações na rede. EFTs melhoram a predição do espectro de potência da matéria por meio da inclusão dos chamados contra-termos, que precisam ser fitados em simulações. Estes contratermos, que são parâmetros livres, contém importante informação sobre como a física em pequenas escalas afeta a física nas escalas de interesse. Explicaremos os resultados para a predição em 3-loops de EFT, trabalho inédito. É possível usar as EFTs também no problema de conectar a campo de matéria com outros traçadores, como os halos e as galáxias, chamado de bias. Com as EFTs podemos construir uma base completa de operadores para parametrizar o bias. Será explicado como utilizar esses operadores para melhorar a predição do bias em escalas não-lineares. Serão calculados esses termos de EFT em simulações. Também será mostrado como renormalizar o bias em coordenadas de Lagrange. Por fim, será explicada outra importante aplicação das EFTs em cosmologia, mais especificamente em teorias de inflação. EFTs parametrizam desvios nas teorias de um campo único no chamado regime de slow-roll. / With future cosmological surveys, cosmology will enter in the precision era. New data will improve the constraints on the standard cosmological model enhancing our knowledge about the universe history, its components and the behavior of gravity. In this context, it is vital to come up with precise theoretical predictions for the formation of large-scale structure beyond the linear regime. The best way of solving the fluid equations that describe the large-scale universe is through lattice simulations, which faces difficulties in the inclusion of accurate baryonic physics and is very computationally costly. Another approach is the theoreti- cal calculation of the correlation statistics through the perturbative approach, called Standard Perturbation Theory (SPT). However, SPT has several problems: for some cosmologies, it may not converge and even when it converges, we cannot be sure it converges to the right result. Also, it contains a special scale that is the loop momenta upper-bound in the integral. In this work, we show results for the 3-loop calculation. The term of third order is larger than the terms of 2-loops and 3-loops, making explicit SPT problems. In this work, we describe the recent usage of Effective Field Theories (EFTs) on Large Scale Structure problems to correct SPT issues and complement cosmological simulations. EFTs are used in other areas of physics, such as low energy QCD, serving as a complement to lattice calculations. EFT improves the predictions for the matter power spectrum and bispectrum by adding counterterms that need to be fitted. The free parameters, instead of being a problem, bring relevant information about how the small-scale physics affects the scales for which we are trying to make statistical predictions. We show the calculation of the 3-loop EFT counterterms. EFTs are also used to explain main points connecting the matter density field with tracers like galaxies and halos. EFTs highlighted how to construct a complete basis of operators that parametrize the bias. We explain how we can use EFT to improve the bias prediction to non-linear scales. We compute the non-linear halo-bias by fitting the bias parameters in simulations. We also show the EFT renormalization in Lagrangian coordinates. Finally, we explain another critical EFT application to cosmology: in primordial physics. It can be used to parametrize deviations to the slow-roll theory within the inflationary paradigm.
47

Interacting dark energy models in Cosmology and large-scale structure observational tests / Modelos de energia escura com interação em Cosmologia e testes observacionais com estruturas em grande escala

Rafael José França Marcondes 23 September 2016 (has links)
Modern Cosmology offers us a great understanding of the universe with striking precision, made possible by the modern technologies of the newest generations of telescopes. The standard cosmological model, however, is not absent of theoretical problems and open questions. One possibility that has been put forward is the existence of a coupling between dark sectors. The idea of an interaction between the dark components could help physicists understand why we live in an epoch of the universe where dark matter and dark energy are comparable in terms of energy density, which can be regarded as a strange coincidence given that their time evolutions are completely different. Dark matter and dark energy are generally treated as perfect fluids. Interaction is introduced when we allow for a non-zero term in the right-hand side of their individual energy-momentum tensor conservation equations. We proceed with a phenomenological approach to test models of interaction with observations of redshift-space distortions. In a flat universe composed only of these two fluids, we consider separately two forms of interaction, through terms proportional to the densities of both dark energy and dark matter. An analytic expression for the growth rate approximated as f = Omega^gamma, where Omega is the percentage contribution from the dark matter to the energy content of the universe and gamma is the growth index, is derived in terms of the interaction strength and of other parameters of the model in the first case, while for the second model we show that a non-zero interaction cannot be accommodated by the index growth approximation. The successful expressions obtained are then used to compare the predictions with growth of structure observational data in a Markov Chain Monte Carlo code and we find that the current growth data alone cannot impose constraints on the interaction strength due to their large uncertainties. We also employ observations of galaxy clusters to assess their virial state via the modified Layzer-Irvine equation in order to detect signs of an interaction. We obtain measurements of observed virial ratios, interaction strength, rest virial ratio and departure from equilibrium for a set of clusters. A compounded analysis indicates an interaction strength of 0.29^{+2.25}_{-0.40}, compatible with no interaction, but a compounded rest virial ratio of 0.82^{+0.13}_{-0.14}, which means a 2 sigma confidence level detection. Despite this tension, the method produces encouraging results while still leaves room for improvement, possibly by removing the assumption of small departure from equilibrium. / A cosmologia moderna oferece um ótimo entendimento do universo com uma precisão impressionante, possibilitada pelas tecnologias modernas das gerações mais novas de telescópios. O modelo cosmológico padrão, porém, não é livre de problemas do ponto de vista teórico, deixando perguntas ainda sem respostas. Uma possibilidade que tem sido proposta é a existência de um acoplamento entre setores escuros. A ideia de uma interação entre os componentes escuros poderia ajudar os físicos a entender por que vivemos em uma época do universo na qual a matéria escura e a energia escura são comparáveis em termos de densidades de energia, o que pode ser considerado uma estranha coincidência dado que suas evoluções com o tempo são completamente diferentes. Matéria escura e energia escura são geralmente tratadas como fluidos perfeitos. A interação é introduzida ao permitirmos um tensor não nulo no lado direito das equações de conservação dos tensores de energia-momento. Prosseguimos com uma abordagem fenomenológica para testar modelos de interação com observações de distorções no espaço de redshift. Em um universo plano composto apenas por esses dois fluidos, consideramos, separadamente, duas formas de interação, através de termos proporcionais às densidades de energia escura e de matéria escura. Uma expressão analítica para a taxa de crescimento aproximada por f = Omega^gamma, onde Omega é a contribuição percentual da matéria escura para o conteúdo do universo e gamma é o índice de crescimento, é deduzida em termos da interação e de outros parâmetros do modelo no primeiro caso, enquanto para o segundo caso mostramos que uma interação não nula não pode ser acomodada pela aproximação do índice de crescimento. As expressões obtidas são então utilizadas para comparar as previsões com dados observacionais de crescimento de estruturas em um programa para Monte Carlo via cadeias de Markov. Concluímos que tais dados atuais por si só não são capazes de restringir a interação devido às suas grandes incertezas. Utilizamos também observações de aglomerados de galáxias para analisar seus estados viriais através da equação de Layzer-Irvine modificada a fim de detectar sinais de interação. Obtemos medições de taxas viriais observadas, constante de interação, taxa virial de equilíbrio e desvio do equilíbrio para um conjunto de aglomerados. Uma análise combinada indica uma constante de interação 0.29^{+2.25}_{-0.40}, compatível com zero, mas uma taxa virial de equilíbrio combinada de 0.82^{+0.13}_{-0.14}, o que significa uma detecção em um intervalo de confiança de 2 sigma. Apesar desta tensão, o método produz resultados encorajadores enquanto ainda permite melhorias, possivelmente pela remoção da suposição de pequenos desvios do equilíbrio.
48

A two-point diagnostic for the H ii galaxy Hubble diagram

Leaf, Kyle, Melia, Fulvio 03 1900 (has links)
A previous analysis of starburst-dominated HII galaxies and HII regions has demonstrated a statistically significant preference for the Friedmann-Robertson-Walker cosmology with zero active mass, known as the R-h = c(t) universe, over Lambda cold dark matter (Lambda CDM) and its related dark-matter parametrizations. In this paper, we employ a two-point diagnostic with these data to present a complementary statistical comparison of Rh = ct with Planck Lambda CDM. Our two-point diagnostic compares, in a pairwise fashion, the difference between the distance modulus measured at two redshifts with that predicted by each cosmology. Our results support the conclusion drawn by a previous comparative analysis demonstrating that Rh = ct is statistically preferred over Planck Lambda CDM. But we also find that the reported errors in the HII measurements may not be purely Gaussian, perhaps due to a partial contamination by non-Gaussian systematic effects. The use of HII galaxies and HII regions as standard candles may be improved even further with a better handling of the systematics in these sources.
49

Discovery of a Protocluster Associated with a Ly α Blob Pair at z = 2.3

Bădescu, Toma, Yang, Yujin, Bertoldi, Frank, Zabludoff, Ann, Karim, Alexander, Magnelli, Benjamin 23 August 2017 (has links)
Bright Ly alpha blobs (LABs)-extended nebulae with sizes of similar to 100 kpc and Ly alpha luminosities of similar to 10(44) erg s(-1)-often reside in overdensities of compact Ly alpha emitters (LAEs) that may be galaxy protoclusters. The number density, variance, and internal kinematics of LABs suggest that they themselves trace group-like halos. Here, we test this hierarchical picture, presenting deep, wide-field Ly alpha narrowband imaging of a 1 degrees x. 0 degrees.5 region around a LAB pair at z = 2.3 discovered previously by a blind survey. We find 183 Lya emitters, including the original LAB pair and three new LABs with Ly alpha luminosities of (0.9-1.3) x 10(43) erg s(-1) and isophotal areas of 16-24 arcsec2. Using the LAEs as tracers and a new kernel density estimation method, we discover a large-scale overdensity (Bootes J1430+3522) with a surface density contrast of delta(Sigma) = 2.7, a volume density contrast of delta similar to 10.4, and a projected diameter of approximate to 20 comoving Mpc. Comparing with cosmological simulations, we conclude that this LAE overdensity will evolve into a present-day Coma-like cluster with log(M/M-circle dot) similar to 15.1 +/- 0.2. In this and three other wide-field LAE surveys re-analyzed here, the extents and peak amplitudes of the largest LAE overdensities are similar, not increasing with survey size, and implying that they were indeed the largest structures then and today evolve into rich clusters. Intriguingly, LABs favor the outskirts of the densest LAE concentrations, i.e., intermediate LAE overdensities of delta(Sigma) = 1-2. We speculate that these LABs mark infalling protogroups being accreted by the more massive protocluster.
50

Analysing H(z) data using two-point diagnostics

Leaf, Kyle, Melia, Fulvio 09 1900 (has links)
Measurements of the Hubble constantH(z) are increasingly being used to test the expansion rate predicted by various cosmological models. But the recent application of two-point diagnostics, such as Om(zi, zj) and Omh(2)(zi, zj), has produced considerable tension between Lambda CDM's predictions and several observations, with other models faring even worse. Part of this problem is attributable to the continued mixing of truly model-independent measurements using the cosmic-chronometer approach, and model-dependent data extracted from baryon acoustic oscillations. In this paper, we advance the use of two-point diagnostics beyond their current status, and introduce new variations, which we call Delta h(zi, zj), that are more useful for model comparisons. But we restrict our analysis exclusively to cosmic-chronometer data, which are truly model independent. Even for these measurements, however, we confirm the conclusions drawn by earlier workers that the data have strongly non-Gaussian uncertainties, requiring the use of both 'median' and 'mean' statistical approaches. Our results reveal that previous analyses using two-point diagnostics greatly underestimated the errors, thereby misinterpreting the level of tension between theoretical predictions and H(z) data. Instead, we demonstrate that as of today, only Einstein-de Sitter is ruled out by the two-point diagnostics at a level of significance exceeding similar to 3s. The R-h = ct universe is slightly favoured over the remaining models, including Lambda cold dark matter and Chevalier-Polarski-Linder, though all of them (other than Einstein-de Sitter) are consistent to within 1 sigma with the measured mean of the Delta h(zi, zj) diagnostics.

Page generated in 0.0507 seconds