• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 2
  • 1
  • Tagged with
  • 67
  • 67
  • 67
  • 67
  • 57
  • 52
  • 28
  • 25
  • 21
  • 15
  • 14
  • 13
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Printing, characterization, and mechanical testing of additively manufactured refractory metal alloys

Sexton, Brianna M. 31 May 2022 (has links)
No description available.
42

Considerations in Designing Alloys for Laser-Powder Bed Fusion Additive Manufacturing

Thapliyal, Saket 05 1900 (has links)
This work identifies alloy terminal freezing range, columnar growth, grain coarsening, liquid availability towards the terminal stage of solidification, and segregation towards boundaries as primary factors affecting the hot-cracking susceptibility of fusion-based additive manufacturing (F-BAM) processed alloys. Additionally, an integrated computational materials engineering (ICME)-based approach has been formulated to design novel Al alloys, and high entropy alloys for F-BAM processing. The ICME-based approach has led to heterogeneous nucleation-induced grain refinement, terminal eutectic solidification-enabled liquid availability, and segregation-induced coalescence of solidification boundaries during laser-powder bed fusion (L-PBF) processing. In addition to exhibiting a wide crack-free L-PBF processing window, the designed alloys exhibited microstructural heterogeneity and hierarchy (MHH), and thus could leverage the unique process dynamics of L-PBF to produce a fine-tunable MHH and mechanical behavior. Furthermore, alloy chemistry-based fine tuning of the stacking fault energy has led to transformative damage tolerant alloys. Such alloys can shield defects stemming from the stochastic powder bed in L-PBF, and consequently can prevent catastrophic failure despite the solidification defects. A modified materials systems approach that explicitly includes alloy chemistry as a means to modify the printability, properties and performance with F-BAM is also presented. Overall, this work is expected to facilitate application specific manufacture with F-BAM and eventually facilitate widespread adoption of F-BAM in structural application.
43

Oxidation Behavior and Thermal Conductivity of Thermoelectric SnSe as well as Laser Powder Bed Fusion Process Modeling and Validation through In-situ Monitoring and Ex-situ Characterization

Li, Yi 17 June 2019 (has links)
No description available.
44

Properties of Materials Fabricated by Laser Powder Bed Fusion, Material Extrusion, and Vat Photopolymerization 3D-printing

Carradero Santiago, Carolyn 10 May 2022 (has links)
No description available.
45

Primary Processing Parameters and Their Influence on Porosity and Fatigue Life of Additively Manufactured Alloy 718

Sheridan, Luke C. 18 May 2020 (has links)
No description available.
46

Systematic Generation of Lack-of-Fusion Defects for Effects of Defects Studies in Laser Powder Bed Fusion AlSi10Mg

De Silva Jayasekera, Varthula Janya 28 August 2020 (has links)
No description available.
47

Mechanical and Fatigue Properties of Additively Manufactured Metallic Materials

Yadollahi, Aref 11 August 2017 (has links)
This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval – i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel) – on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation – i.e. the orientation in which AM parts are built – on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing – here, as-built versus machined – on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defectree AM product – immediately after fabrication – has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept. Using the FASTRAN code, the fatigue-life of L-PBF Inconel 718 was accurately calculated using the size and shape of process-induced voids in the material. In addition, the maximum valley depth of the surface profile was found to be an appropriate representative of the initial surface flaw for fatigue-life prediction of AM materials in an as-built surface condition.
48

Development of an In-Situ Alloyed Microstructure in Laser Additive Manufacturing

Ahmed, Farheen Fathima January 2020 (has links)
Additive Manufacturing (AM) processes are gaining prominence in industry as they can build parts to near-net-shape with minimal postprocessing. Metal laser AM techniques, such as Selective Laser Melting (SLM), offer rapid cooling rates on the order of 10^5-10^6 K/s. This is due to a highly-focused laser heating a microscopic volume in an otherwise lower-temperature environment. Hence, metal laser AM can manufacture novel, out-of-equilibrium microstructures that cannot be produced in near-net-shapes with other processes. It is desirable to optimize feedstocks for metal AM processes to leverage their advantages. One option of optimizing feedstocks is through in-situ alloying, or by using elemental powders. Elemental powders homogenize over the course of multiple laser passes, or intrinsic heat treatments. However, rapid cooling rates prevent the homogenization of a layer when first printed. To investigate the homogenization process, this thesis used synchrotron X-ray Diffraction (sXRD) to track the phase transformations during the SLM of a 14-layer single wall (single-hatch, multilayered) of Ti-1Al-8V-5Fe (Ti-185) from elemental Ti, Fe and an alloyed AlV powders, capturing frames at 250 Hz. Infrared imaging was performed simultaneously on the surface at 1603.5 Hz to observe the temperature changes at the surface. Post-mortem electron microscopy was performed on cross-sections of the wall perpendicular to the scanning direction to observe the changes in the microstructure with respect to the build direction. Specifically, Electron Dispersive X-Ray Spectroscopy and Electron Backscatter Diffraction were performed to observe the alloying elemental distribution and microstructure of the wall with respect to the build direction. The research performed found that in the melted zone, phase transformation times below 50 ms yielded a partially-alloyed microstructure, with regions concentrated and dilute in alloying elements. Partial mixing was diffusion-induced by laser beam heat and the exothermic heat of mixing of Ti-185 from its constituent elements. Further diffusion during reheating cycles yielded an alloyed microstructure. / Thesis / Master of Applied Science (MASc)
49

Effect of Size and Shape Parameters on Microstructure of Additively Manufactured Inconel 718

Ahsan, Showmik 08 June 2023 (has links)
No description available.
50

Investigation of Structure-Property Effects on Nanoindentation and Small-Scale Mechanical Testing of Irradiated Additively Manufactured Stainless Steels

Uddin, Mohammad Jashim 08 1900 (has links)
Additively manufactured (AM) 316L and 17-4PH stainless steel parts, concretely made by laser powder bed fusion (L-PBF), are characterized and micro-mechanical properties of those steels are analyzed. This study also explored and extended to proton irradiation and small-scale mechanical testing of those materials, to investigate how irradiation affects microstructural evolution and thus mechanical properties at the surface level, which could be detrimental in the long term in nuclear applications. In-depth anisotropy analysis of L-PBF 316L stainless steel parts with the variations of volumetric energy density, a combined study of nanoindentation with EBSD (electron backscatter diffraction) mapping is shown to be an alternative methodology for enriching qualification protocols. Each grain with a different crystallographic orientation was mapped successfully by proper indentation properties. <122> and <111> oriented grains displayed higher than average indentation modulus and hardness whereas, <001>, <101>, and <210> oriented grains were found to be weaker in terms of indentation properties. Based on an extensive nanoindentation study, L-PBF 17-4 PH stainless steels are found to be very sensitive to high load rates and irradiation further escalates that sensitivity, especially after a 0.25 s-1 strain rate. 3D porosity measurement via X-ray microscope ensures L-PBF stainless steel parts are of more than 99.7% density and could be promising for many industrial applications. High percentages of increment of nanohardness, maximum theoretical shear strength, and yield strength were observed due to proton irradiation of 5 um damage depth on the surface of 17-4 PH steel parts. Small-scale mechanical testing of irradiated AM nuclear stainless steels such as 17-4 PH was carried out and investigated by micro-compression of FIB fabricated pillars of different sizes of diameter. Irradiated 17-4 PH materials have never been investigated by this kind of testing procedure to asses the stress-strain characteristics of micro-scale volumes and to explore the structure-property relationship. Both as-built and irradiated AM 17-4 PH micropillars exhibited step-ups in the early stage of load-displacement curves with a varying number of slip bands intermittently formed throughout the pillar volume while compressed by the uniaxial load. As for the radiation-damaged zone, micropillars displayed lesser slip bands compared to as-built parts as irradiation damage creates an obstacle to dislocations movement and hence hardening. It requires higher loads to initiate plastic deformation as dislocation must overcome irradiation-induced obstacles for the slip to occur and localization of strain without increasing the load for a certain amount of time during the test. Proton irradiation effects on the compressive mechanical properties of AM 17-4 PH stainless steel parts depending on the volumetric energy density (VED) used during the parts' fabrication process. On as-built parts, compressive yield strength varied from 107.27 MPa to 150.70 MPa and it was in the range of 133.43 MPa to 244.57 MPa under irradiated conditions. All 2 μm pillars were fabricated as their height falls within the radiation damage depth of 5 μm. It was expected to generate the highest yield strength and tensile strength due to the radiation hardening effect as discussed earlier. Yield and tensile strength were found to be the highest as expected as of 244.57 MPa and 375.08 MPa in irradiated 17-4 PH sample 1 (VED = 54.76 J/mm3). Samples with lower VED exhibited better micro-mechanical compressive responses than higher VED AM 17-4 PH parts in both as-built and irradiated conditions.

Page generated in 0.0764 seconds