• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 2
  • 1
  • Tagged with
  • 72
  • 72
  • 72
  • 72
  • 62
  • 57
  • 28
  • 26
  • 22
  • 15
  • 14
  • 14
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Considerations in Designing Alloys for Laser-Powder Bed Fusion Additive Manufacturing

Thapliyal, Saket 05 1900 (has links)
This work identifies alloy terminal freezing range, columnar growth, grain coarsening, liquid availability towards the terminal stage of solidification, and segregation towards boundaries as primary factors affecting the hot-cracking susceptibility of fusion-based additive manufacturing (F-BAM) processed alloys. Additionally, an integrated computational materials engineering (ICME)-based approach has been formulated to design novel Al alloys, and high entropy alloys for F-BAM processing. The ICME-based approach has led to heterogeneous nucleation-induced grain refinement, terminal eutectic solidification-enabled liquid availability, and segregation-induced coalescence of solidification boundaries during laser-powder bed fusion (L-PBF) processing. In addition to exhibiting a wide crack-free L-PBF processing window, the designed alloys exhibited microstructural heterogeneity and hierarchy (MHH), and thus could leverage the unique process dynamics of L-PBF to produce a fine-tunable MHH and mechanical behavior. Furthermore, alloy chemistry-based fine tuning of the stacking fault energy has led to transformative damage tolerant alloys. Such alloys can shield defects stemming from the stochastic powder bed in L-PBF, and consequently can prevent catastrophic failure despite the solidification defects. A modified materials systems approach that explicitly includes alloy chemistry as a means to modify the printability, properties and performance with F-BAM is also presented. Overall, this work is expected to facilitate application specific manufacture with F-BAM and eventually facilitate widespread adoption of F-BAM in structural application.
62

Investigation of Structure-Property Effects on Nanoindentation and Small-Scale Mechanical Testing of Irradiated Additively Manufactured Stainless Steels

Uddin, Mohammad Jashim 08 1900 (has links)
Additively manufactured (AM) 316L and 17-4PH stainless steel parts, concretely made by laser powder bed fusion (L-PBF), are characterized and micro-mechanical properties of those steels are analyzed. This study also explored and extended to proton irradiation and small-scale mechanical testing of those materials, to investigate how irradiation affects microstructural evolution and thus mechanical properties at the surface level, which could be detrimental in the long term in nuclear applications. In-depth anisotropy analysis of L-PBF 316L stainless steel parts with the variations of volumetric energy density, a combined study of nanoindentation with EBSD (electron backscatter diffraction) mapping is shown to be an alternative methodology for enriching qualification protocols. Each grain with a different crystallographic orientation was mapped successfully by proper indentation properties. <122> and <111> oriented grains displayed higher than average indentation modulus and hardness whereas, <001>, <101>, and <210> oriented grains were found to be weaker in terms of indentation properties. Based on an extensive nanoindentation study, L-PBF 17-4 PH stainless steels are found to be very sensitive to high load rates and irradiation further escalates that sensitivity, especially after a 0.25 s-1 strain rate. 3D porosity measurement via X-ray microscope ensures L-PBF stainless steel parts are of more than 99.7% density and could be promising for many industrial applications. High percentages of increment of nanohardness, maximum theoretical shear strength, and yield strength were observed due to proton irradiation of 5 um damage depth on the surface of 17-4 PH steel parts. Small-scale mechanical testing of irradiated AM nuclear stainless steels such as 17-4 PH was carried out and investigated by micro-compression of FIB fabricated pillars of different sizes of diameter. Irradiated 17-4 PH materials have never been investigated by this kind of testing procedure to asses the stress-strain characteristics of micro-scale volumes and to explore the structure-property relationship. Both as-built and irradiated AM 17-4 PH micropillars exhibited step-ups in the early stage of load-displacement curves with a varying number of slip bands intermittently formed throughout the pillar volume while compressed by the uniaxial load. As for the radiation-damaged zone, micropillars displayed lesser slip bands compared to as-built parts as irradiation damage creates an obstacle to dislocations movement and hence hardening. It requires higher loads to initiate plastic deformation as dislocation must overcome irradiation-induced obstacles for the slip to occur and localization of strain without increasing the load for a certain amount of time during the test. Proton irradiation effects on the compressive mechanical properties of AM 17-4 PH stainless steel parts depending on the volumetric energy density (VED) used during the parts' fabrication process. On as-built parts, compressive yield strength varied from 107.27 MPa to 150.70 MPa and it was in the range of 133.43 MPa to 244.57 MPa under irradiated conditions. All 2 μm pillars were fabricated as their height falls within the radiation damage depth of 5 μm. It was expected to generate the highest yield strength and tensile strength due to the radiation hardening effect as discussed earlier. Yield and tensile strength were found to be the highest as expected as of 244.57 MPa and 375.08 MPa in irradiated 17-4 PH sample 1 (VED = 54.76 J/mm3). Samples with lower VED exhibited better micro-mechanical compressive responses than higher VED AM 17-4 PH parts in both as-built and irradiated conditions.
63

Contribution à l'optimisation des stratégies de lagase en fabrication additive LPBF / Contribution to the optimization of scanning paths in LPBF additive manufacturing

Ettaieb, Kamel 25 November 2019 (has links)
Au cours du procédé de fusion laser sur lit de poudre, la température atteinte dans une zone locale est susceptible de générer des gradients thermiques importants. Ces gradients conduisent à leur tour à l'apparition de contraintes résiduelles qui ont un effet sur les caractéristiques mécaniques de la pièce, provoquent des déformations, ainsi que des micro et macro fissures. Dans ce contexte, les trajectoires de lasage jouent un rôle fondamental sur le niveau et la distribution de la température au cours de la fabrication. Il est ainsi nécessaire de valider la génération des trajectoires au regard du comportement thermique induit par ce procédé.Cette thèse propose d'exploiter une méthode analytique pour développer un modèle qui permette d'analyser d'une manière rapide et efficace le comportement thermique dans la pièce lors de la fabrication. En effet, à partir d'une trajectoire de lasage donnée, d'un ensemble de paramètres liés au matériau de la pièce à fabriquer et de paramètres liés au procédé, l'outil développé effectue une simulation de la température en chaque point de la pièce, au cours de temps et de manière rapide, comparée aux autres logiciels de simulation thermique. En effet, afin de réduire le temps de calcul et l'espace mémoire utilisé pour une telle simulation, un ensemble de techniques d'optimisation a été mis en place.Le modèle proposé a été validé dans le cas de l'alliage Ti6Al4V par comparaison avec une simulation thermique par éléments finis obtenue par un logiciel industriel. Ensuite, les résultats de ce modèle sont confrontés aux résultats expérimentaux. Une fois le modèle validé, il a été mis en œuvre pour analyser des trajectoires couramment utilisées dans la littérature et dans l'industrie.Afin de réduire les gradients thermiques et améliorer la qualité des pièces, la solution proposée consiste à contrôler la température et la taille du bain de fusion. Pour se faire, le modèle thermique développé a été exploité pour moduler les paramètres du procédé au cours de la fabrication d'une part et pour développer une stratégie de lasage à pas adaptatif d'autre part. / During manufacturing by Laser Powder Bed Fusion (LPBF), the achieved temperatures in local areas could generate significant thermal gradients. These gradients lead to the apparition of residual stresses which affect the mechanical characteristics of the part and may cause deformation, as well as micro and macro cracks. In this context, scanning paths play a fundamental role on temperature level and distribution during manufacturing. For that reason, it is necessary to validate the generation of trajectories considering the thermal behaviour induced by this process.The purpose of this PhD thesis is to use an analytical method in order to develop a model that allows a fast and efficient analysis of thermal behaviour, during part manufacturing. Indeed, with a given scanning path, material properties and process parameters, the developed tool performs a temperature simulation at each point of the part, over time and in a fast way, compared to other thermal simulation software. In order to reduce computation time and memory storage used for such a simulation, a set of optimization techniques has been proposed.The developed model has been validated in the case of the Ti6Al4V alloy through a comparison with a finite element thermal simulation obtained by industrial software. Then, the results of this model were compared to experimental results. Once validated, it has been implemented to analyze trajectories commonly used in the literature and industry.In order to reduce thermal gradients and improve part quality, the proposed solution consists in controlling the temperature and size of melt pool. For this purpose, the developed thermal model has been used to modulate the process parameters during manufacturing on the one hand and to develop an adaptive scanning strategy on the other hand.
64

Effects of a Binary Argon-Helium Shielding Gas Mixture on Ultra-Thin Features Produced by Laser-Powder Bed Fusion Additive Manufacturing

Mendoza, Heimdall 01 October 2021 (has links)
No description available.
65

Experimental study of double-pulse laser micro sintering, ultrasound-assisted water-confined laser micromachining and laser-induced plasma

Weidong Liu (15360391) 29 April 2023 (has links)
<p>This dissertation presents research work related to laser micro sintering, laser micro machining and laser-induced plasma. Firstly, we present extensive experimental studies of double-pulse laser micro sintering (DP-LMS), which typically utilizes the high pressure generated by laser-induced plasma over the powder bed surface to promote molten flow and enhance densification. Chapter 2 shows a single-track experimental study of the DP-LMS process using cobalt powder. The related fundamental mechanisms and effects of different laser parameters on the sintering results are analyzed with the help of <em>in-situ</em> time-resolved temperature measurements. Chapter 3 shows a multi-track experimental study of the DP-LMS process using iron powder. The sintered materials are characterized via the top surface porosity, elemental composition, grain microstructure, nanohardness and metal phase. Three strategic guidelines for laser parameter selection are summarized in the end. Chapter 4 shows time-resolved imaging and OES measurements for plasma induced during DP-LMS. The plasma temperature and free electron number density are deduced by its optical emission spectra (OES). These three chapters have clearly demonstrated DP-LMS can produce much more continuous and densified materials than LMS only using the sintering or pressing laser pulses.</p> <p><br></p> <p>Then, we present laser micro grooving of silicon carbide (SiC) in Chapter 5 by ultrasound-assisted water-confined laser micromachining (UWLM), in comparison with laser machining in water without ultrasound and laser machining in air. UWLM applies <em>in-situ</em> ultrasound to the water-immersed workpiece surface to improve the machining quality and/or productivity. Time-resolved water pressure measurements are carried out to help analyze relevant mechanisms. It has been demonstrated UWLM can be a competitive approach to produce high-quality micro grooves on SiC. The crack problem appears to be effectively solved using a high pulse repetition rate.</p> <p><br></p> <p>Finally, we report a double-front phenomenon for plasma induced by high-intensity nanosecond laser ablation of aluminum in Chapter 6. An additional plasma front is observed via an intensified CCD (ICCD) camera, which propagates very fast at the beginning but stops propagating soon after the laser pulse mostly ends. Its formation could be caused by the inverse bremsstrahlung absorption of laser energy by the ionized ambient gas. Three possible mechanisms on how the ambient gas breakdown is initiated are proposed. </p>
66

Mechanical characterization of functionally graded M300 maraging steel cellular structures

Sampson, Bradley Jay 08 December 2023 (has links) (PDF)
Traditional methods for increasing the energy absorption of a structure involve using a stronger material or increasing the volume of the structure, resulting in a higher cost or additional weight. Additive manufacturing (AM) can be used to maximize the energy absorption of materials with the ability to create complex geometries such as cellular structures. Previous work has shown that the energy absorption of additively manufactured parts can be improved through functionally graded cellular structures; however, this strategy has not been applied to ultra-high strength steel materials. This work characterizes the effect of multiple functional-grading strategies (e.g. uniform, rod-graded, size-graded) on the energy absorption to weight ratio of laser powder bed fusion (L-PBF) produced M300 maraging steel lattice structures. Each structure is designed with the same average relative density to analyze the structures on an equal mass basis, to evaluate manufacturability, mechanical response, and compare experimental results with numerical simulation.
67

Customized ceramic granules for laser powder bed fusion of aluminum oxide

Pfeiffer, Stefan 04 August 2022 (has links)
Die Implementierung von Laser Powder Bed Fusion bei Aluminiumoxidkeramiken ist aufgrund einer geringen Temperaturwechselbeständigkeit, Bauteilverdichtung, Pulverfließfähigkeit und Lichtabsorption eine große Herausforderung. In dieser Arbeit wurden diese Prob-leme mit unterschiedlichen Ansätzen adressiert. Sprühgetrocknete Aluminiumoxid Granulate wurde zur Verbesserung der Laserabsorption (über 80 % Verbesserung) mit farbigen Nano-Oxidpartikeln dotiert. Es wurden verschiedene Partikelpackungstheorien und Pulverbehand-lungen getestet, um die Pulverbettdichte und damit die Dichte des endgültigen Bauteils (Dichten bis zu 98,6 %) zu erhöhen. Die Pulverqualität wurde durch Schütt und Rütteldichte, Feuchtigkeitsgehalt, Partikelgrößenverteilung, Hausner-Verhältnis, Lawinenwinkel und Oberflächenfraktal charakterisiert. Des Weiteren wurde der Zusatz geeigneter Stoffe zur Verringerung der Rissbildung durch thermische Spannungen getestet. Die In-situ-Bildung von Phasen mit geringer und negativer Wärmeausdehnung reduzierte die Rissbildung in den lasergefertigten Oxidkeramiken stark.:1 Introduction 1 1.1 Motivation 1 1.2 State of the art . 2 1.3 Aim of the project 2 2 Literature review 5 2.1 Additive manufacturing by laser powder bed fusion 5 2.1.1 Classification and process description 5 2.1.2 Advantages against other AM processes 9 2.1.3 Challenges of laser powder bed fusion 12 2.1.4 State of the art of laser powder bed fusion of aluminum oxide based ceramics 13 2.1.4.1 Powder bed preparation and impact on the process 13 2.1.4.2 Critical rating of the powder bed preparation techniques 17 2.1.4.3 Processing methods and properties 19 2.1.4.4 Part properties 26 2.2 Theoretical and experimental considerations for powder bed preparation 35 2.2.1 Spray granulation 35 2.2.2 Particle packing theories 39 2.3 Mechanisms for particle dispersing 41 2.3.1 DLVO-theory 41 2.3.2 Surface charge and electrical double layer 43 2.4 Conceptualization of new ideas for laser powder bed fusion of aluminum oxide 45 2.4.1 Densification, powder flowability and absorption issue 46 2.4.2 Reduction of crack formation 47 3 Doped spray-dried granules to solve densification and absorption issue in laser powder bed fusion of alumina 55 3.1 Dispersing of aluminum oxide, iron oxide and manganese oxide 55 3.1.1 Experimental 55 3.1.2 Particle characterization 57 3.1.3 Saturation amount evaluation of dispersant 59 3.1.4 Particle size distributions after dispersing 62 3.1.4.1 Particle size distributions of alumina powders 62 3.1.4.2 Particle size distribution of dopant 67 3.2 Packing density increase of spray-dried granules 76 3.2.1 Experimental 77 3.2.2 Influence of solid load and particle ratio on granules 83 3.2.3 Influence of dopant shape and multimodal distributions on granules 84 3.2.4 Evolution of pH-value during slurry preparation and slurry stability after mixing of all components 85 3.2.5 Influence of slurry viscosity on yield of granules 88 3.2.6 Addition of coarse alumina to spray-dried granules 89 3.2.7 Application of Andreasen model on mixtures of ceramic particles with spray-dried granules 94 3.2.8 Thermal pre-treatment of granules 98 3.2.9 Influence of surface tension of slurry on granule size and density 110 3.3 Investigation of laser manufactured parts 114 3.3.1 Experimental 115 3.3.2 Influence of different iron oxide dopants and multimodal particle distributions within granules 118 3.3.3 Influence of coarse alumina variation 121 3.3.4 Influence of thermal pre-treatment of powders 127 3.3.5 Grain structure of laser additive manufactured parts 135 3.3.6 Thermal expansion of laser processed parts 137 3.3.7 Influence of thermal pre-treatment and laser processing on manganese amount within granules and laser additive manufactured parts 138 4 Additives to reduce crack formation in selective laser melting and sintering of alumina 143 4.1 Experimental 144 4.2 Additives to reduce thermal stresses 150 4.2.1 Selective laser melting with mullite additives 150 4.2.2 Amorphous alumina formation by rare earth oxide doping 160 4.2.3 Formation of aluminum titanate by use of reduced titanium oxide 169 4.2.3.1 Dispersing of titanium oxide nanoparticles in water 170 4.2.3.2 Thermal treatment of Al2O3/TiO2 granules under argon/hydrogen atmosphere 172 4.2.3.3 Laser manufacturing of parts 178 4.2.4 In-situ formation of negative thermal expansion materials 187 4.2.4.1 Dispersing of zirconia and tungsten oxide nanoparticles 187 4.2.4.2 Influence of spray drying process parameters 191 4.2.4.3 Preparation of final powders for laser powder bed fusion 197 4.2.4.4 Laser manufacturing of layers and parts 200 4.3 Mechanical properties of laser processed parts 205 5 Flowability and inner structure of customized granules 209 5.1 Experimental 209 5.2 Comparison of flowability in terms of Hausner ratio, Avalanche angle and surface fractal measurements 211 5.2.1 Influence of coarse alumina AA18 variation 211 5.2.2 Influence of thermal pre-treatment of powders 213 5.2.3 Influence of dopant content within granules 216 5.2.4 Flowability of zirconia-tungsten oxide granules and alumina granules with mullite or rare earth oxide addition 219 5.2.5 Flowability of titanium oxide doped alumina powders 221 5.3 Cross sections of customized granules to image inner structure 224 6 Summary, conclusions and outlook 233 6.1 Summary and conclusions 233 6.2 Outlook 241 References 245 List of Figures 260 List of Tables 269 / The implementation of laser powder bed fusion of aluminum oxide ceramics is challenging due to a low thermal shock resistance, part densification, powder flowability and light absorptance. In this work, these challenges have been addressed by different approaches. Spray-dried alumina granules were doped with colored oxide nanoparticles to improve the laser absorption (improvement by over 80%). Different particle packing theories and powder treatments were tested to increase the powder bed density and therefore, the final part density (densities up to 98.6%). The powder quality was characterized by apparent and tapped density, moisture content, particle size distribution, Hausner ratio, avalanche angle and sur-face fractal. Furthermore, the addition of suitable was tested to reduce crack formation caused by thermal stresses. The in-situ formation of low and negative thermal expansion phases strongly reduced the crack formation in the laser manufactured oxide ceramic parts.:1 Introduction 1 1.1 Motivation 1 1.2 State of the art . 2 1.3 Aim of the project 2 2 Literature review 5 2.1 Additive manufacturing by laser powder bed fusion 5 2.1.1 Classification and process description 5 2.1.2 Advantages against other AM processes 9 2.1.3 Challenges of laser powder bed fusion 12 2.1.4 State of the art of laser powder bed fusion of aluminum oxide based ceramics 13 2.1.4.1 Powder bed preparation and impact on the process 13 2.1.4.2 Critical rating of the powder bed preparation techniques 17 2.1.4.3 Processing methods and properties 19 2.1.4.4 Part properties 26 2.2 Theoretical and experimental considerations for powder bed preparation 35 2.2.1 Spray granulation 35 2.2.2 Particle packing theories 39 2.3 Mechanisms for particle dispersing 41 2.3.1 DLVO-theory 41 2.3.2 Surface charge and electrical double layer 43 2.4 Conceptualization of new ideas for laser powder bed fusion of aluminum oxide 45 2.4.1 Densification, powder flowability and absorption issue 46 2.4.2 Reduction of crack formation 47 3 Doped spray-dried granules to solve densification and absorption issue in laser powder bed fusion of alumina 55 3.1 Dispersing of aluminum oxide, iron oxide and manganese oxide 55 3.1.1 Experimental 55 3.1.2 Particle characterization 57 3.1.3 Saturation amount evaluation of dispersant 59 3.1.4 Particle size distributions after dispersing 62 3.1.4.1 Particle size distributions of alumina powders 62 3.1.4.2 Particle size distribution of dopant 67 3.2 Packing density increase of spray-dried granules 76 3.2.1 Experimental 77 3.2.2 Influence of solid load and particle ratio on granules 83 3.2.3 Influence of dopant shape and multimodal distributions on granules 84 3.2.4 Evolution of pH-value during slurry preparation and slurry stability after mixing of all components 85 3.2.5 Influence of slurry viscosity on yield of granules 88 3.2.6 Addition of coarse alumina to spray-dried granules 89 3.2.7 Application of Andreasen model on mixtures of ceramic particles with spray-dried granules 94 3.2.8 Thermal pre-treatment of granules 98 3.2.9 Influence of surface tension of slurry on granule size and density 110 3.3 Investigation of laser manufactured parts 114 3.3.1 Experimental 115 3.3.2 Influence of different iron oxide dopants and multimodal particle distributions within granules 118 3.3.3 Influence of coarse alumina variation 121 3.3.4 Influence of thermal pre-treatment of powders 127 3.3.5 Grain structure of laser additive manufactured parts 135 3.3.6 Thermal expansion of laser processed parts 137 3.3.7 Influence of thermal pre-treatment and laser processing on manganese amount within granules and laser additive manufactured parts 138 4 Additives to reduce crack formation in selective laser melting and sintering of alumina 143 4.1 Experimental 144 4.2 Additives to reduce thermal stresses 150 4.2.1 Selective laser melting with mullite additives 150 4.2.2 Amorphous alumina formation by rare earth oxide doping 160 4.2.3 Formation of aluminum titanate by use of reduced titanium oxide 169 4.2.3.1 Dispersing of titanium oxide nanoparticles in water 170 4.2.3.2 Thermal treatment of Al2O3/TiO2 granules under argon/hydrogen atmosphere 172 4.2.3.3 Laser manufacturing of parts 178 4.2.4 In-situ formation of negative thermal expansion materials 187 4.2.4.1 Dispersing of zirconia and tungsten oxide nanoparticles 187 4.2.4.2 Influence of spray drying process parameters 191 4.2.4.3 Preparation of final powders for laser powder bed fusion 197 4.2.4.4 Laser manufacturing of layers and parts 200 4.3 Mechanical properties of laser processed parts 205 5 Flowability and inner structure of customized granules 209 5.1 Experimental 209 5.2 Comparison of flowability in terms of Hausner ratio, Avalanche angle and surface fractal measurements 211 5.2.1 Influence of coarse alumina AA18 variation 211 5.2.2 Influence of thermal pre-treatment of powders 213 5.2.3 Influence of dopant content within granules 216 5.2.4 Flowability of zirconia-tungsten oxide granules and alumina granules with mullite or rare earth oxide addition 219 5.2.5 Flowability of titanium oxide doped alumina powders 221 5.3 Cross sections of customized granules to image inner structure 224 6 Summary, conclusions and outlook 233 6.1 Summary and conclusions 233 6.2 Outlook 241 References 245 List of Figures 260 List of Tables 269
68

LASER CLADDING OF ALUMINUM ALLOYS AND HIGH-FIDELITY MODELING OF THE MOLTEN POOL DYNAMICS IN LASER MELTING OF METALS

Corbin M Grohol (20342745) 10 January 2025 (has links)
<p dir="ltr">This research focuses on understanding and improving various metal additive manufacturing processes. The first half is dedicated to experimental investigations and methods for improving the laser cladding of aluminum alloys. The second half is dedicated to high-fidelity modeling of the laser melting process and methods for reducing the computational burden.</p><p dir="ltr">First, laser cladding is a surface enhancement and repair process in which a high-powered laser beam is used to deposit a thin (0.05 mm to 2 mm) layer of material onto a metal substrate with no cracking, minimal porosity, and satisfactory mechanical properties. In this work, a 4 kW High Power Diode Laser (HPDL) is used with off-axis powder injection to deposit single-tracks of aluminum alloy 6061 powder on a 6061-T6511 substrate. The process parameters were varied to identify the possible processing window in which a successful clad is achieved. Geometrical characteristics were correlated to the processing parameters and the trends were discussed. Microhardness testing was employed to examine the mechanical properties of the clad in the as-deposited and precipitation heat-treated conditions. Transmission electron microscopy (TEM) was used to investigate the precipitate structures in the clad and substrate as an explanation for the hardness variations. Experiments were completed on two substrate widths to understand the effect of domain size on the process map, layer size, and hardness.</p><p dir="ltr">Second, a method to deposit quench-sensitive age-hardening aluminum alloy clads is presented, which produces a hardness similar to the T6 temper without the requirement of solution heat treatment. A high-powered diode laser is scanned across the workpiece surface and material feedstock is delivered and melted via off-axis powder injection. The cladding process is immediately followed by quenching with liquid nitrogen, which improves the cooling rate of the quench-sensitive material and increases the hardness response to subsequent precipitation heat treatment. The method was demonstrated on the laser cladding of aluminum alloy 6061 powder on 6061-T6511 extruded bar substrates of 12.7 mm thickness. Single-track single-layer clads were deposited at a laser power of 3746 W, scan speed of 5 mm/s, and powder feed rate of 18 g/min. The in-situ liquid nitrogen quenching improved the clad hardness by 15.7% from 73.1 HV to 84.6 HV and the heat-affected zone hardness by 19.3% from 87.1 HV to 103.9 HV. Extending the process to multi-track multi-layer cladding further increased the clad hardness to 89.3 HV, close to the T6 temper hardness of 90 HV. Transmission electron microscopy revealed the increased precipitate density in the liquid nitrogen quenched clads was responsible for the higher hardness.</p><p dir="ltr">Third, a high-fidelity model of the molten pool dynamics during the laser melting of metals is presented for accurate prediction of the molten pool size and morphology at operating conditions relevant to laser powder bed fusion. The goal of this research is to improve the accuracy of previous models, present a thorough experimental validation, and quantify the model's sensitivity to various properties and parameters. The model is based on an OpenFOAM compressible Volume-of-Fluid (VOF) solver that is modified to include the physics relevant to laser melting. Improvements to previous works include the utilization of a compressible solver to incorporate temperature-dependent density, implementation of temperature-dependent surface tension and viscosity, utilization of the geometric isoAdvector VOF method, selection of a least squares method for the gradient calculations, and careful selection of physically accurate material properties. These model improvements resulted in accurate prediction of the molten pool depth and width (mean absolute error of 7% and 5%, respectively) across eleven operating conditions spanning the conduction and keyhole regimes with laser powers ranging from 100 W to 325 W and scan speeds from 250 mm/s to 1,200 mm/s. The validation included in-house experiments on 304 L stainless steel and experiments from the National Institute of Standards and Technology on Inconel 718. Incorporating the large density change from the ambient temperature to vaporization temperature and utilizing a least squares scheme for the gradient calculation were identified as important factors for the predictive accuracy of the model. The model sensitivity to the wide range of literature values for laser absorptivity, liquid thermal conductivity, and vaporization temperature was quantified. Literature sources were analyzed to identify the most physically accurate property values and reduce the impact of their variability on model predictions.</p><p dir="ltr">Finally, an original surrogate model is presented for the accurate and computationally efficient prediction of molten pool size in multi-track laser melting over a large domain at operating conditions relevant to laser powder bed fusion. The thermal models available for the laser melting process range from heat conduction models to high-fidelity computational fluid dynamics (CFD) models. High-fidelity models provide a comprehensive treatment of the relevant physics of heat conduction, fluid flow, solidification, vaporization, laser propagation, etc. A carefully implemented high-fidelity model is capable of accurately predicting the molten pool dynamics in a broad range of operating conditions. However, the high computational expense limits their application to a few short tracks on small domains. Conduction models, on the other hand, are orders of magnitude cheaper to evaluate but lack the necessary physics for accurate predictions. This research presents a surrogate model that combines the computational efficiency of the conduction model with the accuracy of the high-fidelity model. A conduction model and high-fidelity model are simulated over a small scan pattern to generate training data of the highly transient molten pool depth and width. A surrogate model, consisting of a fuzzy basis function network, is trained with the aforementioned data. The conduction model is then simulated over a larger scan pattern, the results are input into the trained surrogate model, thereby outputting high-fidelity predictions of the molten pool size over a larger scan pattern. Comparison with experimental results shows this surrogate modeling framework provides reasonably accurate predictions of the molten pool size and is a valid way to extend computationally intensive high-fidelity models to larger and more industrially relevant scan patterns.</p>
69

Additive Manufacturing Applications for Suspension Systems : Part selection, concept development, and design

Waagaard, Morgan, Persson, Johan January 2020 (has links)
This project was conducted as a case study at Öhlins Racing AB, a manufacturer of suspension systems for automotive applications. Öhlins usually manufacture their components by traditional methods such as forging, casting, and machining. The project aimed to investigate how applicable Additive Manufacturing (AM) is to manufacture products for suspension systems to add value to suspension system components. For this, a proof of concept was designed and manufactured. The thesis was conducted at Öhlins in Upplands Väsby via the consultant firm Combitech.  A product catalog was searched, screened, and one part was selected. The selected part was used as a benchmark when a new part was designed for AM, using methods including Topology Optimization (TO) and Design for Additive Manufacturing (DfAM). Product requirements for the chosen part were to reduce weight, add functions, or add value in other ways.  Methods used throughout the project were based on traditional product development and DfAM, and consisted of three steps: Product Screening, Concept Development, and Part Design. The re-designed part is ready to be manufactured in titanium by L-PBF at Amexci in Karlskoga.  The thesis result shows that at least one of Öhlin's components in their product portfolio is suitable to be chosen, re-designed, and manufactured by AM. It is also shown that value can be added to the product by increased performance, in this case mainly by weight reduction. The finished product is a fork bottom, designed with hollow structures, and is ready to print by L-PBF in a titanium alloy.
70

Topology Optimized Unit Cells for Laser Powder Bed Fusion

Boos, Eugen, Ihlenfeldt, Steffen, Milaev, Nikolaus, Thielsch, Juliane, Drossel, Welf-Guntram, Bruns, Marco, Elsner, Beatrix A. M. 22 February 2024 (has links)
The rise of additive manufacturing has enabled new degrees of freedom in terms of design and functionality. In this context, this contribution addresses the design and characterization of structural unit cells that are intended as building blocks of highly porous lattice structures with tailored properties. While typical lattice structures are often composed of gyroid or diamond lattices, this study presents stackable unit cells of different sizes created by a generative design approach tomeet boundary conditions such as printability and homogeneous stress distributions under a given mechanical load. Suitable laser powder bed fusion (LPBF) parameterswere determined forAlSi10Mg to ensure high resolution and process reproducibility for all considered unit cells. Stacks of unit cells were integrated into tensile and pressure test specimens for which the mechanical performance of the cells was evaluated. Experimentally measured material properties, applied process parameters, and mechanical test results were employed for calibration and validation of finite element (FE) simulations of both the LPBF process as well as the subsequent mechanical characterization. The obtained data therefore provides the basis to combine the different unit cells into tailored lattice structures and to numerically investigate the local variation of properties in the resulting structures. / Durch die Einführung der Additiven Fertigung können neue Freiheitsgrade in Bezug auf Gestaltungsfreiheit und Funktionalität erreicht werden. In diesem Zusammenhang adressiert dieser Beitrag das Design und die Charakterisierung struktureller Einheitszellen als Bausteine für hochgradig poröse Gitterstrukturen mit maßgeschneiderten Eigenschaften. Während typische Gitterstrukturen oft auf Gyroid- oder Diamantstrukturen basieren, präsentiert dieser Beitrag stapelbare Einheitszellen unterschiedlicher Größe, die durch einen generativen Designansatz erstellt wurden. Hierdurch sollen verschiedene Randbedingungen wie eine gute Druckbarkeit und homogene Spannungsverteilung unter gegebenen mechanischen Lasten erreicht werden. Um eine hohe Auflösung und Reproduzierbarkeit der Einheitszellen zu erreichen, wurden für den verwendeten Werkstoff AlSi10Mg geeignete Druckparameter für das Laserstrahlschmelzen (LPBF) ermittelt. Stapel von Einheitszellen wurden in Zug- und Druckproben integriert, anhand derer die mechanische Stabilität der Zellen ermittelt wurde. Experimentell bestimmte Materialeigenschaften, die verwendeten Prozessparameter und die Ergebnisse der mechanischen Untersuchungen wurden anschließend für die Kalibrierung und Validierung Finiter Elemente (FE) Simulationen herangezogen, wobei simulationsseitig sowohl der Prozess des Laserstrahlschmelzens als auch die nachgelagerte mechanische Charakterisierung berücksichtigt wurden. Die hier präsentierten Ergebnisse sollen als Basis sowohl für eine gezielte Anordnung der Einheitszellen zu maßgeschneiderten Gitterstrukturen dienen als auch für die numerische Auswertung der lokal variierenden Eigenschaften der somit resultierenden Strukturen.

Page generated in 0.3171 seconds