• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Light Weight Components for Structural Parts : A design-optimization study of a ROL-Ergo desktop stand / Lättviktskomponenter för Bärande Delar

Hansson, Albin, Atting Thorin, Samuel January 2021 (has links)
ROL Ergo is a company that belongs to the ROL Group concern. They develop and manufacture products for the office furniture market and their main focus is on electrically height adjustable desk stands. They also develop products for personal use, often in collaboration with other companies.The products that ROL Ergo develop are all quite robust and stable, which are qualities often associated with weight. As the E-commerce is increasing in popularity, ROL-Ergo will have to adapt and further improve their products to keep up with it. This means that their product needs to decrease in weight, but without compromising their other qualities. To accomplish this, well thought-out weight reductions must be made on their components.The desktop stand that this report covers consists of many different components. However, the main components consist of the foot, leg, frame, and strut. There is also a motor housing, containing the electric engine used adjust the table, that connects the leg with the frame and strut. The foot, frame and strut are some of the heaviest and least complex components of the stand, and therefore suitable to perform weight reduction on.This report covers the work that was done to analyze the current components, as well as the design and development process to generate a new weight-improved design. To begin with, the analyzing of the current components consisted of getting an understanding of their purpose and what stresses they are subject to. Simulations were done to determine this, and the results from these were the basis as well as point of comparison for the new concepts.As the project finished, new weight improved concepts for the foot, strut and frame with new designs had been developed. Combined with the current remaining parts of the desk frame, it led to a significant total weight reduction. All the new components were compared to the already existing ones through simulations.
2

Reliability-Based Assessment and Optimization of High-Speed Railway Bridges

Allahvirdizadeh, Reza January 2021 (has links)
Increasing the operational speed of trains has attracted a lot of interest in the last decades and has brought new challenges, especially in terms of infrastructure design methodology, as it may induce excessive vibrations. Such demands can damage bridges, which in turn increases maintenance costs, endangers the safety of passing trains and disrupts passenger comfort. Conventional design provisions should therefore be evaluated in the light of modern concerns; nevertheless, several previous studies have highlighted some of their shortcomings. It should be emphasized that most of these studies have neglected the uncertainties involved, which preventsthe reported results from representing a complete picture of the problem. In this respect, the present thesis is dedicated to evaluating the performance of conventional design methods, especially those related to running safety and passenger comfort, using probabilistic approaches. To achieve this objective, a preliminary study was carried out using the first-order reliability method for short/medium span bridges passed by trains at a wide range of operating speeds. Comparison of these results with the corresponding deterministic responses showed that applying a constant safety factor to the running safety threshold does not guarantee that the safety index will be identical for all bridges. It also shows that the conventional design approaches result in failure probabilities that are higher than the target values. This conclusion highlights the need to update the design methodology for running safety. However, it would be essential to determine whether running safety is the predominant design criterion before conducting further analysis. Therefore, a stochastic comparison between this criterion and passenger comfort was performed. Due to the significant computational cost of such investigations, subset simulation and crude Monte-Carlo (MC) simulation using meta-models based on polynomial chaos expansion were employed. Both methods were found to perform well, with running safety almost always dominating the passenger comfort limit state. Subsequently, classification-based meta-models, e.g. support vector machines, k-nearest neighbours and decision trees, were combined using ensemble techniques to investigate the influence of soil-structure interaction on the evaluated reliability of running safety. The obtained results showed a significant influence, highlighting the need for detailed investigations in further studies. Finally, a reliability-based design optimization was conducted to update the conventional design method of running safety by proposing minimum requirements for the mass per length and moment of inertia of bridges. It is worth mentioning that the inner loop of the method was solved by a crude MC simulation using adaptively trained Kriging meta-models. / Att öka tågens hastighet har väckt stort intresse under de senaste decennierna och har medfört nya utmaningar, särskilt när det gäller broanalyser, eftersom tågen inducerar stora vibrationer. Sådana vibrationer kan öka underhållskostnaderna, äventyra säkerheten för förbipasserande tåg och påverka passagerarkomforten. Konstruktionsbestämmelser bör därför utvärderas mot bakgrund av dessa problem; dock har flera tidigare studier belyst några av bristerna i dagens bestämmelser. Det bör understrykas att de flesta av dessa studier har försummat de osäkerheter som är involverade, vilket hindrar de rapporterade resultaten från att representera en fullständig bild av problemet. I detta avseende syftar denna avhandling till att utvärdera prestandan hos konventionella analysmetoder, särskilt de som rör körsäkerhet och passagerarkomfort, med hjälp av sannolikhetsmetoder. För att uppnå detta mål genomfördes en preliminär studie med första ordningens tillförlitlighetsnmetod för broar med kort/medellång spännvidd som passeras av tåg med ett brett hastighetsspektrum. Jämförelse av dessa resultat med motsvarande deterministiska respons visade att tillämpa en konstant säkerhetsfaktor för verifieringen av trafiksäkerhet inte garanterar att säkerhetsindexet kommer att vara identiskt för alla broar. Det visar också att de konventionella analysmetoderna resulterar i brottsannolikheter som är högre än målvärdena. Denna slutsats belyser behovet av att uppdatera analysmetoden för trafiksäkerhet. Det skulle emellertid vara viktigt att avgöra om trafiksäkerhet är det dominerande designkriteriet innan ytterligare analyser genomförs. Därför utfördes en stokastisk jämförelse mellan detta kriterium och kriteriet för passagerarkomfort. På grund av den betydande. analystiden för sådana beräkningar användes delmängdssimulering och Monte-Carlo (MC) simulering med metamodeller baserade på polynomisk kaosutvidgning. Båda metoderna visade sig fungera bra, med trafiksäkerhet som nästan alltid dominerade över gränsningstillståndet för passagerarkomfort. Därefter kombinerades klassificeringsbaserade metamodeller som stödvektormaskin och beslutsträd genom ensembletekniker, för att undersöka påverkan av jord-brointeraktion på den utvärderade tillförlitligheten gällande trafiksäkerhet. De erhållna resultaten visade en signifikant påverkan och betonade behovet av detaljerade undersökningar genom ytterligare studier. Slutligen genomfördes en tillförlitlighetsbaserad konstruktionsoptimering för att föreslå ett minimikrav på erforderlig bromassa per längdmeter och tröghetsmoment. Det är värt att nämna att metodens inre loop löstes med en MC-simulering med adaptivt tränade Kriging-metamodeller. / <p>QC 20210910</p>
3

Additive Manufacturing Applications for Suspension Systems : Part selection, concept development, and design

Waagaard, Morgan, Persson, Johan January 2020 (has links)
This project was conducted as a case study at Öhlins Racing AB, a manufacturer of suspension systems for automotive applications. Öhlins usually manufacture their components by traditional methods such as forging, casting, and machining. The project aimed to investigate how applicable Additive Manufacturing (AM) is to manufacture products for suspension systems to add value to suspension system components. For this, a proof of concept was designed and manufactured. The thesis was conducted at Öhlins in Upplands Väsby via the consultant firm Combitech.  A product catalog was searched, screened, and one part was selected. The selected part was used as a benchmark when a new part was designed for AM, using methods including Topology Optimization (TO) and Design for Additive Manufacturing (DfAM). Product requirements for the chosen part were to reduce weight, add functions, or add value in other ways.  Methods used throughout the project were based on traditional product development and DfAM, and consisted of three steps: Product Screening, Concept Development, and Part Design. The re-designed part is ready to be manufactured in titanium by L-PBF at Amexci in Karlskoga.  The thesis result shows that at least one of Öhlin's components in their product portfolio is suitable to be chosen, re-designed, and manufactured by AM. It is also shown that value can be added to the product by increased performance, in this case mainly by weight reduction. The finished product is a fork bottom, designed with hollow structures, and is ready to print by L-PBF in a titanium alloy.

Page generated in 0.0783 seconds