1 |
Mechanisms for Improvement of Key Mechanical Properties in Polymer Powder Bed Fusion ProcessesAbbott, Clinton Spencer 12 April 2022 (has links) (PDF)
The purpose of this work is to understand the reasons for varied mechanical properties among three polymer Powder Bed Fusion (PBF) Additive Manufacturing (AM) processes. Parts for this work were manufactured from Polyamide 12 (PA12) using the Laser Powder Bed Fusion (L-PBF), Multi-Jet Fusion (MJF), and the recently developed Large Area Projection Sintering (LAPS) processes. Previous works have shown that LAPS parts demonstrate significantly higher density, ductility, and toughness than parts from the L-PBF and MJF processes. A hot isostatic pressing (HIP) treatment was developed to reduce porosity in L-PBF and MJF parts and determine if increasing part density would improve ductility for these processes. It is found that density is not strongly correlated with mechanical properties for high density parts (Ï > 0.98 g/cm3) for the L-PBF and MJF processes, and a following study confirms that this is the case for the LAPS process as well. Differential Scanning Calorimetry (DSC) and microtome sectioning are performed on parts from all three processes, and it is found that neither percent crystallinity nor crystalline morphology are strongly correlated with mechanical properties. A heat treatment at temperatures well over the melting point for the material is developed and is shown to improve ductility and toughness for all three processes. It is concluded that the improved ductility observed in the LAPS process stems from long exposure to high temperature, rather than increased density or a specific crystalline structure, and is associated with post-condensation reactions increasing polymer chain length. Work is also presented on the development of a production-scale LAPS system at Ascend Manufacturing. This research focuses on the results of "tiling" and "scanning" methods for producing larger parts than previously possible with prototype LAPS systems. Tensile testing showed that the methods both produced parts with similar properties, though with lower ductility than previous LAPS parts. Analysis of thermal data identifies areas for improvement of the system to attain high strength and high ductility parts. Preliminary work is done to demonstrate avenues for process improvement. Analysis of data from across the entire powder bed shows that process defects can be observed from the thermal data available in the LAPS process, and that weak spots in parts may be related to this data. Finally, the potential for process improvement through a multiple-input, multiple-output (MIMO) control scheme is discussed.
|
2 |
Evaluation of mechanical and microstructural properties for laser powder-bed fusion 316LEriksson, Philip January 2018 (has links)
This thesis work was done to get a fundamental knowledge of the mechanical and microstructural properties of 316L stainless steel fabricated with the additive manufacturing technique, laser powder-bed fusion (L-PBF). The aims of the thesis were to study the mechanical and microstructural properties in two different building orientations for samples built in two different machines, and to summarize mechanical data from previous research on additive manufactured 316L. Additive manufacturing (AM) or 3D-printing, is a manufacturing technique that in recent years has been adopted by the industry due to the complexity of parts that can be built and the wide range of materials that can be used. This have made it important to understand the behaviour and properties of the material, since the material differs from conventionally produced material. This also adds to 316L, which is an austenitic stainless steel used in corrosive environments. To study the effect of the building orientation, samples of 316L were built in different orientations on the build plate. The density and amount of pores were also measured. Tensile testing and Charpy-V testing were made at room temperature. Vickers hardness was also measured. Microstructure and fracture surfaces were examined using light optical microscope (LOM) and scanning electron microscope (SEM). The microstructure of the 316L made with L-PBF was found to have meltpools with coarser grains inside them, sometime spanning over several meltpools. Inside these coarser grains was a finer cellular/columnar sub-grain structure. The tensile properties were found to be anisotropic with higher strength values in the orientation perpendicular to the building direction. Also high dense samples had higher tensile properties than low dense samples. The impact toughness was found to be influenced negatively by high porosity. Hardness was similar in different orientations, but lower for less dense samples. Defects due to lack of fusing of particles were found on both the microstructure sample surfaces and fracture surfaces. The values from this study compare well with previous reported research findings.
|
3 |
Mechanical and Fatigue Properties of Additively Manufactured Metallic MaterialsYadollahi, Aref 11 August 2017 (has links)
This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval – i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel) – on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation – i.e. the orientation in which AM parts are built – on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing – here, as-built versus machined – on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defectree AM product – immediately after fabrication – has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept. Using the FASTRAN code, the fatigue-life of L-PBF Inconel 718 was accurately calculated using the size and shape of process-induced voids in the material. In addition, the maximum valley depth of the surface profile was found to be an appropriate representative of the initial surface flaw for fatigue-life prediction of AM materials in an as-built surface condition.
|
4 |
Fatigue Behavior of LPBF GRCop-42 Specimens with Cooling ChannelsGaurav Gandhi (20322897) 10 January 2025 (has links)
<p dir="ltr">The increasing use of additive manufacturing technologies such as Laser Powder Bed Fusion (LPBF) has enabled the manufacturing of parts with complex features such as optimized cooling channels. However, due to the layer-by-layer deposition of LPBF requiring an approximation of design intent, cooling channels manufactured by LPBF are affected by surface roughness effects and manufacturing inaccuracies. Consequently, the effect of implementing them on the mechanical properties of parts should be studied to understand their limits of applicability. This study aims to determine the effect of helical cooling channels in LPBF GRCop-42 specimens on their high-cycle fatigue properties. We present monotonic tensile testing and high-cycle fatigue testing results for three specimen types (no channel, straight channel and helical channel) of LPBF GRCop-42 under uniaxial loading, tested at two temperature conditions (room and 500°C). We show that at room temperature, the no channel specimens had the highest fatigue strength, followed by the straight channel and then helical channel specimens. The relative significance of potential causes for the detriment in fatigue life for the straight and helical channeled specimens were quantified using finite element analysis (FEA) and analytical fatigue models (based on Murakami-type defect corrections), and the findings from this analysis were validated by experimental observations from fracture surface analysis. Our results demonstrate that for the straight channel specimens, manufacturing-induced porosity around the channel is relatively a stronger driver for the detriment of fatigue life, compared to surface roughness. For the helical channel specimens, intended to simulate complex cooling channels in real-world applications, the effects of surface roughness combined with multiaxial stress concentrations around the channel were the primary driver for the lesser fatigue life. We anticipate our results will be useful for designers and manufacturers of LPBF components with complex features, and those involved in the potential implementation of LPBF GRCop-42 parts in high-cycle fatigue applications.</p>
|
5 |
Additive Manufacturing Applications for Suspension Systems : Part selection, concept development, and designWaagaard, Morgan, Persson, Johan January 2020 (has links)
This project was conducted as a case study at Öhlins Racing AB, a manufacturer of suspension systems for automotive applications. Öhlins usually manufacture their components by traditional methods such as forging, casting, and machining. The project aimed to investigate how applicable Additive Manufacturing (AM) is to manufacture products for suspension systems to add value to suspension system components. For this, a proof of concept was designed and manufactured. The thesis was conducted at Öhlins in Upplands Väsby via the consultant firm Combitech. A product catalog was searched, screened, and one part was selected. The selected part was used as a benchmark when a new part was designed for AM, using methods including Topology Optimization (TO) and Design for Additive Manufacturing (DfAM). Product requirements for the chosen part were to reduce weight, add functions, or add value in other ways. Methods used throughout the project were based on traditional product development and DfAM, and consisted of three steps: Product Screening, Concept Development, and Part Design. The re-designed part is ready to be manufactured in titanium by L-PBF at Amexci in Karlskoga. The thesis result shows that at least one of Öhlin's components in their product portfolio is suitable to be chosen, re-designed, and manufactured by AM. It is also shown that value can be added to the product by increased performance, in this case mainly by weight reduction. The finished product is a fork bottom, designed with hollow structures, and is ready to print by L-PBF in a titanium alloy.
|
6 |
ALLOY SURFACE ENGINEERING BY SOLID-REAGENTPYROLYSISIlling, Cyprian Adair William 26 August 2022 (has links)
No description available.
|
Page generated in 0.0386 seconds