Spelling suggestions: "subject:"laser metal deposition"" "subject:"faser metal deposition""
1 |
Automatic monitoring and control of Laser Metal Deposition ProcessByseke, David, Thunell, Alexander January 2021 (has links)
Laser metal deposition is an additive manufacturing technique that enables the manufacturing or repair of high-quality metal parts by building fine layers one at a time. To get a stable process with a low number of flaws and irregularities the process needs a fully operational and functioning control system. At PTC in Trollhättan, a production research facility that is a department of University West, several experiments have previously been conducted with an LMD machine. The main objective of this thesis is to deliver input from available methods for automatic control and monitoring of the LMD process. The available methods are explained in the report and previous experiments that have been conducted have been documented in this thesis. Another objective of the thesis is to develop a prototype for monitoring and control of the process. Previous work has mainly used a visual-based control system that has used CMOS-, CCD-, or an infrared camera. Pyrometers and structured light scanning have also been used. Non-optical methods such as acoustical sensors and thermocouples have also been used for monitoring and control. With the gathered information about the available control methods, a prototype has been developed to automatically control the LMD machine located at PTC. The control uses a CMOS camera to gather live imaging from the machine in order to adjust machine parameters, in real-time, to automatically control the process. The different parameters have a strong correlation to the final machine output and are also explained in the thesis. The prototype and the gathering of data from the process have been made using Labview as an image-processing software. An evaluation of the developed prototype has been made and the different control methods have been discussed. The developed prototype measures the melt pool by using an algorithm that counts the number of pixels in the melt pool. However, further research needs to be made to determine if the measured width correlates with the actual width of the cladded string.
|
2 |
Characterization and Thermal Modeling of Laser Formed Ti-6Al-4VKelly, Shawn Michael 24 May 2002 (has links)
The current work focuses on three aspects of laser formed Ti-6Al-4V: an evaluation of the as-deposited and heat treated macro and microstructures and preliminary results obtained from a model developed to calculate the temperature profile resultant of the laser forming process. A "solution treat and age" heat treatment with a variable cooling rate was performed on the Laser Formed Ti-6Al-4V single line builds. Increasing the cooling rate decreases the acicular alpha grain size in the basketweave Widmanstätten alpha plus untransformed beta microstructure. Distinct features of the as-deposited macrostructure include: large columnar prior-beta grains that have grown epitaxially through multiple deposited layers; a well defined heat affected zone in the substrate; and the presence of "layer bands," a macroscopic banding present at the top of every layer except for the last three layers to be deposited. The nominal microstructure between the layer bands consists of acicular basketweave Widmanstätten alpha outlined in untransformed beta. The alpha grain width is smaller just above a layer band and larger just below a layer band. The microstructure of the layer band consists of larger colonies of acicular alpha outlined in untransformed beta. The gradient in the alpha grain size and presence of the layer band is due to thermal cycling as opposed to segregation effects which were ruled out using quantitative compositional analyses. Through analysis of the microstructural results the gradient in the nominal microstructure and formation of the layer band in layer n was caused by the deposition of layer n+2, and n+3, respectively.
A thermal model has been developed to assist in the prediction and interpretation of the as-processed microstructure. The model is used to explain that the microstructural evolution of the layer bands and gradient microstructure in layer n is due to the deposition of layer n+2. The difference in the two analyses of microstructural evolution based on microstructural observations and thermal model results are due to differences in the parameter sets used to build and model the deposit. / Master of Science
|
3 |
Powder Characterization for Additive Manufacturing Processes / Pulverkarakterisering för Additiva TillverkningsprocesserMarkusson, Lisa January 2017 (has links)
The aim of this master thesis project was to statistically correlate various powder characteristics to the quality of additively manufactured parts. An additional goal of this project was to find a potential second source supplier of powder for GKN Aerospace Sweden in Trollhättan. Five Inconel® alloy 718 powders from four individual powder suppliers have been analyzed in this project regarding powder characteristics such as: morphology, porosity, size distribution, flowability and bulk properties. One powder out of the five, Powder C, is currently used in production at GKN and functions as a reference. The five powders were additively manufactured by the process of laser metal deposition according to a pre-programmed model utilized at GKN Aerospace Sweden in Trollhättan. Five plates were produced per powder and each cut to obtain three area sections to analyze, giving a total of fifteen area sections per powder. The quality of deposited parts was assessed by means of their porosity content, powder efficiency, geometry and microstructure. The final step was to statistically evaluate the results through the analysis methods of Analysis of Variance (ANOVA) and simple linear regression with the software Minitab. The method of ANOVA found a statistical significant difference between the five powders regarding their experimental results. This made it possible to compare the five powders against each other. Statistical correlations by simple linear regression analysis were found between various powder characteristics and quality of deposited part. This led to the conclusion that GKN should consider additions to current powder material specification by powder characteristics such as: particle morphology, powder porosity and flowability measurements by a rheometer. One powder was found to have the potential of becoming a second source supplier to GKN, namely Powder A. Powder A had overall good powder properties such as smooth and spherical particles, high particle density at 99,94% and good flowability. The deposited parts with Powder A also showed the lowest amount of pores compared to Powder C, a total of 78 in all five plates, and sufficient powder efficiency at 81,6%.
|
4 |
Laser Metal Deposition using Alloy 718 Powder : Influence of Process Parameters on Material CharacteristicsSegerstark, Andreas January 2017 (has links)
Additive manufacturing (AM) is a general name used for manufacturing methods which have the capabilities of producing components directly from 3D computeraided design (CAD) data by adding material layer-by-layer until a final componentis achieved. Included here are powder bed technologies, laminated object manufacturing and deposition technologies. The latter technology is used in this study. Laser Metal Powder Deposition (LMPD) is an AM method which builds components by fusing metallic powder together with a metallic substrate, using a laser as energy source. The powder is supplied to the melt-pool, which is created by the laser, through a powder nozzle which can be lateral or coaxial. Both the powder nozzle and laser are mounted on a guiding system, normally a computer numerical control (CNC) machine or a robot. LMPD has lately gained attentionas a manufacturing method which can add features to semi-finished components or as a repair method. LMPD introduce a low heat input compared to conventional arc welding methods and is therefore well suited in, for instance, repair of sensitive parts where too much heating compromises the integrity of the part. The main part of this study has been focused on correlating the main process parameters to effects found in the material which in this project is the superalloy Alloy 718. It has been found that the most influential process parameters are the laser power, scanning speed, powder feeding rate and powder standoff distance.These process parameters have a significant effect on the temperature history ofthe material which, among others, affects the grain structure, phase transformation, and cracking susceptibility of the material. To further understand the effects found in the material, temperature measurements has been conducted using a temperature measurement method developed and evaluated in this project. This method utilizes a thin stainless steel sheet to shield the thermocouple from the laser light. This has proved to reduce the influence of the laser energy absorbed by the thermocouples.
|
5 |
Additive Manufacturing using Alloy 718 Powder : Influence of Laser Metal Deposition Process Parameters on Microstructural CharacteristicsSegerstark, Andreas January 2015 (has links)
Additive manufacturing (AM) is a general name used for production methodswhich have the capabilities of producing components directly from 3D computeraided design (CAD) data by adding material layer-by-layer until a final component is achieved. Included here are powder bed technologies, laminated object manufacturing and deposition technologies. The latter technology is used in this study.Laser metal deposition using powder as an additive (LMD-p) is an AM processwhich uses a multi-axis computer numerical control (CNC) machine or robot toguide the laser beam and powder nozzle over the deposition surface. Thecomponent is built by depositing adjacent beads layer by layer until thecomponent is completed. LMD-p has lately gained attention as a manufacturing method which can add features to semi-finished components or as a repair method. LMD-p introduce a low heat input compared to arc welding methods and is therefore well suited in applications where a low heat input is of an essence. For instance, in repair of sensitive parts where too much heating compromises the integrity of the part.The main part of this study has been focused on correlating the main processparameters to effects found in the material which in this project is the superalloy Alloy 718. It has been found that the most influential process parameters are the laser power, scanning speed, powder feeding rate and powder standoff distance and that these parameters has a significant effect on the dimensionalcharacteristics of the material such as height and width of a single deposit as wellas the straightness of the top surface and the penetration depth.To further understand the effects found in the material, temperaturemeasurements has been conducted using a temperature measurement methoddeveloped and evaluated in this project. This method utilizes a thin stainless steel sheet to shield the thermocouple from the laser light. This has proved to reduce the influence of the emitted laser light on the thermocouples.
|
6 |
Effect of oxygen concentration in build chamber during laser metal deposition of Ti-64 wireEngblom, Eyvind January 2018 (has links)
Additive manufacturing of titanium and other metals is a rapidly growing field that could potentially improve component manufacturing through optimization of geometries, less material waste and fewer process steps. Although powder-based additive manufacturing processes have so far been predominant, methods using a wire as feedstock has gained popularity due to faster deposition rates and lower porosity in deposited material. The titanium alloy Ti-6Al-4V accounts for the majority of aerospace titanium alloy consumption and as titanium is a precious and expensive resource, reducing material waste is an important factor. Laser metal deposition with wire (LMD-w) is currently used in production at GKN Aerospace in Trolhättan. One important process parameter is the oxygen level in the chamber during deposition as titanium is highly reactive with oxygen at process temperatures. Oxygen enrichment of titanium can cause embrittlement and reduced fatigue life due to formation of alpha-case, an oxygen enriched region directly beneath the surface. The oxygen level in the chamber is controlled through extensive use of protective inert gas which is a costly and time-consuming practice. The objective of this thesis was to study how elevated oxygen levels in the chamber would affect surface oxidation, chemical composition, tensile properties and microstructure. Two different sample geometries were built with Ti-6Al-4V wire at an oxygen level of 100, 500 and 850 ppm. The subsequent analysis was based around microstructural features, alpha-case formation, chemical composition in surface layers, and tensile tests. Results showed that elevated oxygen levels in the build chamber did not degrade the chemical composition or tensile properties with regard to aerospace specifications. However, significant layers of alpha-case were found in all samples indicating that subsequent processing such as machining or etching is needed.
|
7 |
Application de l’injection différentielle au procédé de fabrication additive DED-CLAD® pour la réalisation d’alliages de titane à gradients de compositions chimiques / Application of differential injection to DED-CLAD® additive manufacturing process for the fabrication of titanium alloys with gradients of chemical compositionsSchneider-Maunoury, Catherine 13 December 2018 (has links)
Depuis 1984, les matériaux à gradients de fonction (FGM) permettent de former une barrière thermique et réduire les fortes discontinuités des propriétés entre deux matériaux de nature différente. Ces multi-matériaux, qui consistent en une variation intentionnelle de la composition chimique entrainant par conséquent une modification des propriétés microstructurales, chimiques, mécaniques et thermiques, permettent de lisser la distribution des contraintes thermiques. L’élaboration in situ de ces alliages sur mesure est rendu possible grâce à l’utilisation de procédés de fabrication additive tel que le procédé par dépôt de poudres DED-CLAD®. Ces procédés connaissent un essor considérable depuis les années 1980 et sont idéaux dans la fabrication de FGM. Dans le cadre de cette thèse CIFRE, des développements techniques ont été effectués pour adapter le procédé DED-CLAD® et permettre la réalisation de FGM. Grâce à plusieurs collaborations industrielles, une étude complète a été réalisée sur les alliages titane-molybdène et titane-niobium. Ces alliages permettent dans le premier cas de réaliser des pièces résistantes à de fortes sollicitations thermiques (secteur spatial), et dans le second cas d’associer les propriétés mécaniques et la biocompatibilité (secteur biomédical). L’originalité de cette thèse repose sur l’étude d’un gradient complet, c’est-à-dire que l’ajout en élément d’alliage varie de 0% à 100%. En effet, les études reportées dans la littérature ne font pas mentions des alliages titane-matériaux réfractaire pour des taux élevés en élément réfractaire. Les analyses microstructurale (DRX, structure cristallographique par EBSD, microstructure), chimique (EDS) et mécanique (microdureté, tests de traction et essais d’indentation instrumentée) ont mis en évidence une évolution des propriétés le long du gradients de composition. La caractérisation mécanique des échantillons par indentation instrumentée s’est par ailleurs révélée particulièrement pertinente dans les cas de ces multi-matériaux / Since 1984, the Functionally Graded Material (FGM) allow to create a thermal barrier and to reduce the strong discontinuities of properties between two materials of different composition. These multimaterials,whose consist of an intentional variation in the chemical composition and, consequently, modify the microstructural, chemical, mechanical and thermal properties, lead to a smooth distribution of the thermal stress. The in-situ development of these custom-made alloys is made possible by the use of additive manufacturing processes such as the DED-CLAD® powder deposition process. These processes have grown substantially since the 1980s and are optimal for the manufacture of FGM. During this industrial thesis, technical developments have been carried out to adapt the DED-CLAD® process and to allow the manufacturing of FGM. Thanks to two industrial collaborations, a full study was carried out on titanium-molybdenum and titanium-niobium alloys. These alloys make it possible, in the first case, to produce parts resistant to strong thermal stress (space sector), and in the second case to combine mechanical properties and biocompatibility (biomedical sector). The originality of this thesis rests on the study of a complete gradient, that is the addition in alloy element varied from 0% to 100%. In fact, studies reported in the literature do not mention titanium-refractory material for high levels of refractory element. Microstructural (XRD, crystallographic analysis by EBSD technique), chemical (EDS) and mechanical (microhardness, tensile test and instrumented indentation) analyses revealed an evolution of the properties along the chemical gradient. The mechanical characterization of the sample by instrumented indentation has also proved particularly relevant in the case of these multi-materials
|
8 |
Integral Approach for Hybrid Manufacturing of Large Structural Titanium Space ComponentsSeidel, André 19 April 2022 (has links)
This thesis presents a newly developed manufacturing method, based on cyber-physically enhanced hybrid machining, regarding an optical bench (OB) made of Ti6Al4V alloy for the Advanced Telescope for High-ENergy Astrophysics (ATHENA). The method includes sophisticated hybrid laser metal deposition equipment and state-of-the-art cryogenic machining hardware. The derived strategy combines localized energy input, preheating, heat treatment, intermediate stress relief and machining. This results in a complex thermal history and remaining residual stresses, representing a considerable challenge for final precision machining. The method targets first time right machining based on iterative machining, process data-based tool path correction and spatially resolved root cause research based on process data modeling.:II. Table of Contents
I. Acknowledgement ............................................................ III
II. Table of Contents ................................................................. I
1. Introduction ........................................................................ 1
1.1 Foreword .................................................................................... 1
1.2 Research Subject Lot Size One ....................................................... 2
1.2.1 Historical Perspective ................................................................. 2
1.2.2 Going Full Cycle ......................................................................... 3
2. State of the Art in Titanium Processing ............................... 4
2.1 Conventional Processing................................................................ 4
2.2 Additive Manufacturing ................................................................. 5
2.2.1 Introduction .............................................................................. 5
2.2.2 Powder Bed Fusion ..................................................................... 6
2.2.3 Direct Energy Deposition ............................................................. 8
3. Derivation of a Flexible Hybrid Manufacturing System ...... 11
3.1 The ATHENA OB – a Large Structural Space Component ..................11
3.2 Material Constraints ....................................................................12
3.3 Solidification and Microstructural Content .......................................17
3.4 Residual Stresses and Intrinsic Heat Treatment ..............................22
3.4.1 Transient Temperature Gradients ................................................22
3.4.2 Residual Stresses and Degree of Fixity ........................................24
3.4.3 In-situ Stress Relief and Plastic Deformation ................................28
3.4.4 In-situ Martensite Decomposition and Thermal Trade-off ...............30
3.5 Melt Pool Considerations in Laser Metal Deposition ..........................36
3.6 Concept of Flexible Hybrid Manufacturing Cell .................................43
3.7 Process and Equipment Review by ESA ..........................................45
4. Realization of a Flexible Manufacturing Cell ...................... 45
4.1 Additive Processing with Hybrid Laser Metal Deposition ....................45
4.1.1 Principle Hardware ....................................................................45
4.2 Novel Local Shielding Solution ......................................................47
4.2.1 Melt Pool Observation towards Process Data Model ........................51
4.2.2 Energy Source Coupling .............................................................57
4.3 Subtractive Processing with Cryogenic Milling .................................57
4.3.1 General Considerations for Subtractive Processing ........................57
4.3.2 Cryogenic Machining Approach ...................................................58
4.3.3 Cryogenic Machining from the Materials Viewpoint ........................60
4.3.4 Cryogenic Machining of Additively Manufactured Ti-6Al-4V .............62
4.3.5 Principle Hardware for Cryogenic Milling with CO2..........................66
4.3.6 Intelligent Tool Spindle Future Part of the Process Data Model ........69
4.3.7 Carbon Dioxide Weighing Equipment and Switching Station ............70
4.3.8 Protective Measures for Safe Use of Cryogenic CO2 .......................72
4.4 Handling System .........................................................................74
4.4.1 Framework Considerations .........................................................74
4.4.2 Twin Robot System in the Initial State .........................................76
4.4.3 Integration of the ATHENA Turntable ...........................................79
4.4.4 Robot Calibration ......................................................................81
4.5 Lighting for Visual Inspection ........................................................84
4.6 Critical Design Review by ESA .......................................................84
5. Implementation and Validation ......................................... 85
5.1 Powdery Filler Material Selection ...................................................85
5.2 Basic Parameter Set for Additive Manufacturing ..............................87
5.2.1 Operating Point Selection ...........................................................87
5.2.2 Characterization and evaluation ..................................................89
5.2.3 Substrate to Structure Transition ................................................95
5.3 Energy Source Coupling ...............................................................99
5.3.1 Process Development ................................................................99
5.3.2 As-built Surface Treatment ...................................................... 103
5.3.3 Heat Treatment ...................................................................... 104
5.3.4 Mechanical Testing .................................................................. 106
5.3.5 Fractured Surfaces .................................................................. 108
5.3.6 Microstructure ........................................................................ 110
5.3.7 Linear Expansion Coefficient ..................................................... 113
5.4 Cryogenic Milling ....................................................................... 114
5.4.1 Strategy Approach .................................................................. 114
5.4.2 Milling Implementation ............................................................ 116
5.4.3 Technical Cleanliness ............................................................... 120
5.4.4 Accuracy and Duration ............................................................. 122
5.4.5 Surface Roughness.................................................................. 122
5.5 Process Data Model ................................................................... 123
6. Final Discussion and Conclusions..................................... 130
6.1 Summary ................................................................................. 130
6.2 Conclusions .............................................................................. 131
6.3 Outlook .................................................................................... 132
III. List of Figures ...................................................................... I
IV. List of Tables .................................................................. VIII
V. References ......................................................................... IX
VI. Symbols and Units ....................................................... XXXVI
VII. Abbreviations .............................................................. XXXIX
VIII. Annex I ............................................................................ XLI
IX. Annex II ....................................................................... XLIII
X. Annex III ....................................................................... XLIV
XI. Annex IV.......................................................................... XLV
XII. Annex V ......................................................................... XLVI
XIII. Annex VI....................................................................... XLVII
XIV. Annex VII ................................................................... XLVIII
|
9 |
A Feasibility Study of an Automated Repair Process using Laser Metal Deposition (LMD) with a Machine Integrated Component Measuring SolutioSäger, Florian January 2019 (has links)
The repair of worn or damaged components is becoming more attractive to manufacturers, since it enables them to save resources, like raw material and energy. With that costs can be reduced, and profit can be maximised. When enabling the re-use of components, the lifetime of a component can be extended, which leads to improved sustainability measures. However, repair is not applied widely, mainly because costs of repairing are overreaching the costs of purchasing a new component. One of the biggest expense factors of repairing a metal component is the labourintense part of identifying and quantifying worn or damages areas with the use of various external measurement systems. An automated measuring process would reduce application cost significantly and allow the applications to less cost intense component. To automate the repair process, in a one-machine solution, it is prerequisite that a measuring device is included in the machine enclosure. For that, different measuring solutions are being assessed towards applicability on the “Trumpf TruLaser Cell 3000 Series”. A machine that uses the Laser Metal Deposition (LMD) technology to print, respectively weld, metal on a target surface. After a theoretical analysis of different solutions, the most sufficient solution is being validated by applying to the machine. During the validation a surface models from a test-component is generated. The result is used to determine the capability of detecting worn areas by doing an automated target-actual comparison with a specialised CAM program. By verifying the capability of detecting worn areas and executing a successful repair, the fundamentals of a fully automated repair process can be proven as possible in a one-machine solution. / Tillverkare har börjat se stora möjligheter i att reparera slitna eller skadade komponenter som ett sätt att spara resurser, så som råmaterial och energi. Med den besparingen minskar kostnaderna och vinsten kan således maximeras. Reparation möjliggör även återanvändning av komponenter, vilket förlänger komponentens livslängd och leder till förbättrade hållbarhetsåtgärder. Dock tillämpas reparation inte i någon stor utsträckning i nuläget, främst eftersom kostnaderna för reparation överstiger kostnaderna för att köpa en ny komponent. En av de största kostnaderna för att reparera en metallkomponent är att identifiera och kvantifiera slitna eller skadade områden med hjälp av olika externa mätsystem, som är en väldigt arbetsintensiv process. En automatiserad mätprocess skulle minska avsökningskostnaden avsevärt och således reducera den totala kostnaden för komponenten. För att möjliggöra en automatiserad reparationsprocess i en enda maskinlösning är det en förutsättning att en mätanordning ingår i maskinhöljet. Därför har olika mätningslösningar utvärderats med avseende på användbarhet i "TRUMPF TruLaser Cell 3000 Series", vilket är en maskin som använder Laser Metall Deposition-teknik (LMD-teknik) för att skriva ut och svetsa metall på en definierad yta. En teoretisk analys av olika lösningar har utförts, där den teoretiskt mest lämpliga lösningen validerades genom att appliceras till maskinen. Valideringen genererade en modell av ytan av en testkomponent. Sedan utfördes en automatiserad, målrelaterad jämförelse med ett specialiserat CAM-program baserat på modellresultatet, för att bestämma möjligheten att upptäcka slitna områden. Genom att verifiera förmågan att upptäcka slitna områden samt genomförandet av en lyckad reparation kan grunden för en helt automatiserad reparationsprocess bevisas som möjlig i en enda maskinlösning. / Das reparieren von abgenutzten oder beschädigten Komponenten wird immer attraktiver für Hersteller. Es ermöglicht es Ressourcen einzusparen wie beispielsweise Rohmaterial und Energie, was die Lebenszeit einer Komponente verlängert und damit die Nachhaltigkeit verbessert. Allerdings ist Reparieren nach wie vor nicht weit verbreitet, hauptsächlich dadurch bedingt, dass die Reparaturkosten die Kosten für eine neue Komponente übersteigen. Einer der größten Kostenfaktoren des reparieren einer Metallkomponente ist der Arbeitsintensive Teil der Identifizierung und Quantifizierung des abgenutzten oder beschädigten Bereichs mit verschiedensten externen Vermessung Systemen. Ein automatisierter Vermessungsprozess würde die Kosten signifikant reduzieren und neue Applikationen ermöglichen. Das automatisieren der gesamte Prozesskette – in einer Single-Maschinenlösung – erfordert, dass eine Messeinrichtung im Bearbeitungsraum der Maschine angebracht wird. Dafür werden verschiedene Lösungen nach Anwendbarkeit an der Trumpf Laser Cell 3000 Serie hin beurteilt. Eine Maschine, welche Laser Metal Deposition (LMD) als Technologie anwendet um Material auf Oberflächen aufzubringen. Nach einer theoretischen Analyse verschiedener Lösungen wird die beste Lösung va durch anbringen an die Maschine validiert. Bei der Validierung wird ein Oberflächenmodel erzeugt. Das Ergebnis wird dann genutzt um die Fähigkeit zu belegen, dass beschädigte Stellen, durch einen Soll-Ist-Vergleich in einem speziellen CAM Programm, automatisch detektiert werden können. Basierend auf diesem Beleg und mit dem Ergebnis eine Komponente erfolgreich reparieren zu können, gilt die These eines automatisierten Reparaturprozesses in einer Single-Maschinenlösung als beweisen.
|
10 |
Phenomena in material addition to laser generated melt poolsPrasad, Himani Siva January 2019 (has links)
No description available.
|
Page generated in 0.1312 seconds