• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 184
  • 46
  • 36
  • 26
  • 10
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 359
  • 359
  • 186
  • 157
  • 93
  • 81
  • 64
  • 56
  • 55
  • 39
  • 35
  • 35
  • 34
  • 33
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

LiFeSO4F as a Cathode Material for Lithium-Ion Batteries : Synthesis, Structure, and Function

Sobkowiak, Adam January 2015 (has links)
In this thesis, two recently discovered polymorphs of LiFeSO4F, adopting a tavorite- and triplite-type structure, were investigated as potential candidates for use as cathode materials in Li-ion batteries. The studies aimed at enriching the fundamental understanding of the synthetic preparations, structural properties, and electrochemical functionality of these materials. By in situ synchrotron X-ray diffraction (XRD), the formation mechanism of the tavorite-type LiFeSO4F was followed starting from two different sets of precursors, FeSO4∙H2O + LiF, and Li2SO4 + FeF2. The results indicated that the formation of LiFeSO4F is possible only through the structurally related FeSO4∙H2O, in line with the generally recognized topotactic reaction mechanism. Moreover, an in-house solvothermal preparation of this polymorph was optimized with the combined use of XRD and Mössbauer spectroscopy (MS) to render phase pure and well-ordered samples. Additionally, the triplite-type LiFeSO4F was prepared using a facile high-energy ball milling procedure. The electrochemical performance of as-prepared tavorite LiFeSO4F was found to be severely restricted due to residual traces of the reaction medium (tetraethylene glycol (TEG)) on the surface of the synthesized particles. A significantly enhanced performance could be achieved by removing the TEG residues by thorough washing, and a subsequent application of an electronically conducting surface coating of p-doped PEDOT. The conducting polymer layer assisted the formation of a percolating network for efficient electron transport throughout the electrode, resulting in optimal redox behavior with low polarization and high capacity. In the preparation of cast electrodes suitable for use in commercial cells, reducing the electrode porosity was found to be a key parameter to obtain high-quality electrochemical performance. The triplite-type LiFeSO4F showed similar improvements upon PEDOT coating as the tavorite-type polymorph, but with lower capacity and less stable long-term cycling due to intrinsically sluggish kinetics and unfavorable particle morphology. Finally, the Li+-insertion/extraction process in tavorite LiFeSO4F was investigated. By thorough ex situ characterization of chemically and electrochemically prepared LixFeSO4F compositions (0≤x≤1), the formation of an intermediate phase, Li1/2FeSO4F, was identified for the first time. These findings helped redefine the (de)lithiation mechanism which occurs through two subsequent biphasic reactions, in contrast to a previously established single biphasic process.
202

Novel High Voltage Electrodes for Li-ion Batteries

Tripathi, Rajesh January 2013 (has links)
An alternate family of “high” voltage (where the equilibrium voltage lies between 3.6 V and 4.2 V) polyanion cathode materials is reported in this thesis with the objective of improving specific energy density (Wh/kg) and developing a better understanding of polyanion electrochemistry. The electrochemical properties, synthesis and the structure of novel fluorosulfate materials crystallizing in the tavorite and the triplite type mineral structures are described. These materials display highest discharge voltages reported for any Fe2+/Fe3+ redox couple. LiFeSO4F was prepared in both the tavorite and the triplite polymorphs using inexpensive and scalable methods. Complete structural characterization was performed using X-ray and neutron based diffraction methods. A rapid synthesis of fluorosulfates can be achieved by using microwave heating. The local rapid heating created by the microwaves generates nanocrystalline LiFeSO4F tavorite with defects that induce significant microstrain. To date, this is unique to the microwave synthesis method. Phase transformation to the more stable triplite framework, facilitated by the lattice defects which include hydroxyl groups, is therefore easily triggered. The formation of nanocrystalline tavorite leads to nanocrystalline triplite, which greatly favors its electrochemical performance because of the inherently disordered nature of the triplite structure. Direct synthesis of the electrochemically active triplite type compound can be carried out either by extending the duration of the solvothermal reactions or by the partial substitution of Fe by Mn to produce LiFe1-xMnxSO4F. This study, overall, has led to a better understanding of the transformation of tavorite to the triplite phase. To examine Li and the Na ion conduction and their correlation with the electrochemical performance of 3-D, 2-D and 1-D ion conductors, atomistic scale simulations have been used to investigate tavorite type LiFeSO4F, NaFeSO4F, olivine type NaMPO4 (M= Fe, Mn, Fe0.5Mn0.5) and layered Na2FePO4F. These calculations predict high mobility of the Li-ion in the tavorite type LiFeSO4F but sluggish Na-ion transport in iso-structural NaFeSO4F. High mobility of the Na-ion is predicted for phosphate layered and olivine structures. Finally, the synthesis and structural details of NaMSO4F (M=Fe, Mn) and NH4MSO4F (M=Fe, Mn) are presented in the last chapter to show the structural diversity present in the fluorosulfate family.
203

Characterizing ions in solution by NMR methods

Giesecke, Marianne January 2014 (has links)
NMR experiments performed under the effect of electric fields, either continuous or pulsed, can provide quantitative parameters related to ion association and ion transport in solution.  Electrophoretic NMR (eNMR) is based on a diffusion pulse-sequence with electric fields applied in the form of pulses. Magnetic field gradients enable the measurement of the electrophoretic mobility of charged species, a parameter that can be related to ionic association. The effective charge of the tetramethylammonium cation ion in water, dimethylsulphoxide (DMSO), acetonitrile, methanol and ethanol was estimated by eNMR and diffusion measurements and compared to the value predicted by the Debye-Hückel-Onsager limiting law. The difference between the predicted and measured effective charge was attributed to ion pairing which was found to be especially significant in ethanol. The association of a large set of cations to polyethylene oxide (PEO) in methanol, through the ion-dipole interaction, was quantified by eNMR. The trends found were in good agreement with the scarce data from other methods. Significant association was found for cations that have a surface charge density below a critical value. For short PEO chains, the charge per monomer was found to be significantly higher than for longer PEO chains when binding to the same cations. This was attributed to the high entropy cost required to rearrange a long chain in order to optimize the ion-dipole interactions with the cations. Moreover, it was suggested that short PEO chains may exhibit distinct binding modes in the presence of different cations, as supported by diffusion measurements, relaxation measurements and chemical shift data. The protonation state of a uranium (VI)-adenosine monophosphate (AMP) complex in aqueous solution was measured by eNMR in the alkaline pH range. The question whether or not specific oxygens in the ligand were protonated was resolved by considering the possible association of other species present in the solution to the complex. The methodology of eNMR was developed through the introduction of a new pulse-sequence which suppresses artifactual flow effects in highly conductive samples. In another experimental setup, using NMR imaging, a constant current was applied to a lithium ion (Li ion) battery model. Here, 7Li spin-echo imaging was used to probe the spin density in the electrolyte and thus visualize the development of Li+ concentration gradients. The Li+ transport number and salt diffusivity were obtained within an electrochemical transport model. The parameters obtained were in good agreement with data for similar electrolytes. The use of an alternative imaging method based on CTI (Constant Time Imaging) was explored and implemented. / <p>QC 20140825</p>
204

Premiers pas vers l'observation in situ dans un Microscope Electronique en Transmission d'une batterie en cours de cyclage électrochimique

Adrien, Brazier 15 December 2009 (has links) (PDF)
Les batteries, et en particulier les batteries lithium-ion (Li-ion), sont devenues des vecteurs de stockage de l'énergie particulièrement adaptés à l'avènement des très nombreuses applications portables (téléphones ou ordinateurs). Dans le but d'améliorer et de rendre plus sûrs ces vecteurs, il est impératif de pouvoir comprendre et caractériser de la manière la plus précise les matériaux les constituant et les interfaces les séparant. Pour cela, l'utilisation d'outils puissants et adaptés est essentielle, notamment depuis l'apparition de matériaux ayant une architecture à l'échelle nanométrique. Ainsi, l'utilisation de la Microscopie Electronique en Transmission (MET) est particulièrement prometteuse, pour sa capacité à analyser les propriétés morphologiques, structurales ou chimiques à cette échelle. Fort de ce constat, nous avons tenté de réaliser la première observation in situ dans un MET d'une batterie en cours de cyclage électrochimique. La première partie de ce manuscrit est dédiée à la présentation de la stratégie utilisée. En effet, les nombreuses difficultés liées à la fois à l'environnement du MET et à la nature même d'une batterie, nous ont forcé à faire des choix basés sur l'analyse de l'état de l'art, principalement en termes de matériaux, de technologies et d'équipements expérimentaux. Ainsi, ce projet est basé sur l'étude d'une microbatterie Li-ion tout solide. Le deuxième chapitre est lui consacré au procédé de fabrication par ablation laser de ces microbatteries tout solide, avec notamment la synthèse et la caractérisation de chacun des matériaux actifs constitutifs. La troisième partie décrit les solutions envisagées pour lever certaines des incertitudes qui avaient été identifiées. Nous avons ainsi réussi la première observation ex situ par MET d'une "nanobatteries" obtenue par découpe d'une microbatterie à l'aide d'un faisceau d'ions focalisés (FIB) dans un MEB à double faisceaux. Les analyses par MET entre des coupes de batteries après dépôt et ayant subi un cyclage électrochimique ont permis de mettre en évidence, pour la première fois, de nombreux dommages ou des mécanismes de détérioration des interfaces. Les premiers essais, et notamment la configuration utilisée, n'ayant pas permis de réaliser les premiers tests de cyclage in situ dans un MET, plusieurs modifications ont dû être opérées, qui sont présentées dans le dernier chapitre. Ce nouveau design a permis d'expérimenter un cyclage in situ sur des "nanobatteries" et de mettre en lumière les derniers challenges à relever.
205

Utilisation de procédés papetiers et de fibres cellulosiques pour l'élaboration de batteries Li-ion Elaboration of Li-ion batteries using cellulose fibers and papermaking techniques

Jabbour, Lara 29 October 2012 (has links) (PDF)
L'objectif du travail décrit dans cette thèse est de développer des batteries Li-ion peu coûteuses, respectueuses de l'environnement, facilement industrialisables et recyclables, tout en utilisant des fibres cellulosiques et un procédé en milieu aqueux. Deux approches ont été adoptées pendant ce travail expérimental. Dans un premier temps, les microfibrilles de cellulose ont été utilisées pour la production d'anodes par un procédé de casting. Puis, une approche papetière a été adoptée. La plupart des travaux expérimentaux se sont focalisés sur l'utilisation de fibres de cellulose pour la production d'électrodes papier (anodes et cathodes) et de séparateurs-papier par procédé de filtration en milieu aqueux pour obtenir des cellules complètes à base de cellulose. Les électrodes obtenues sont homogènes, souples et leurs propriétés électrochimiques comparables à celles d'électrodes de références utilisant un polymère de synthèse comme liant.
206

The Complex Nature of the Electrode/Electrolyte Interfaces in Li-ion Batteries : Towards Understanding the Role of Electrolytes and Additives Using Photoelectron Spectroscopy

Ciosek Högström, Katarzyna January 2014 (has links)
The stability of electrode/electrolyte interfaces in Li-ion batteries is crucial to the performance, lifetime and safety of the entire battery system. In this work, interface processes have been studied in LiFePO4/graphite Li-ion battery cells.  The first part has focused on improving photoelectron spectroscopy (PES) methodology for making post-mortem battery analyses. Exposure of cycled electrodes to air was shown to influence the surface chemistry of the graphite. A combination of synchrotron and in-house PES has facilitated non-destructive interface depth profiling from the outermost surfaces into the electrode bulk. A better understanding of the chemistry taking place at the anode and cathode interfaces has been achieved. The solid electrolyte interphase (SEI) on a graphite anode was found to be thicker and more inhomogeneous than films formed on cathodes. Dynamic changes in the SEI on cycling and accumulation of lithium close to the carbon surface have been observed.    Two electrolyte additives have also been studied: a film-forming additive propargyl methanesulfonate (PMS) and a flame retardant triphenyl phosphate (TPP). A detailed study was made at ambient and elevated temperature (21 and 60 °C) of interface aging for anodes and cathodes cycled with and without the PMS additive. PMS improved cell capacity retention at both temperatures. Higher SEI stability, relatively constant thickness and lower loss of cyclable lithium are suggested as the main reasons for better cell performance. PMS was also shown to influence the chemical composition on the cathode surface. The TPP flame retardant was shown to be unsuitable for high power applications. Low TPP concentrations had only a minor impact on electrolyte flammability, while larger amounts led to a significant increase in cell polarization. TPP was also shown to influence the interface chemistry at both electrodes. Although the additives studied here may not be the final solution for improved lifetime and safety of commercial batteries, increased understanding has been achieved of the degradation mechanisms in Li-ion cells. A better understanding of interface processes is of vital importance for the future development of safer and more reliable Li-ion batteries.
207

Olivin-Typ Lithiumeisenphosphat (Li1-xFePO4) - Synthese, Li-Ionentransport und Thermodynamik

Loos, Stefan 23 February 2015 (has links) (PDF)
Die vorliegende Dissertation beschäftigt sich mit der Synthese, den Li+-Transporteigenschaften und der Thermodynamik von Olivin-Typ LiFePO4. Es werden verschiedene Solvothermalsynthesen untersucht. Neben der Einstellung von Partikelgröße und Partikelmorphologie steht die Analyse der Hydrothermalsynthese aus Li3PO4 und Vivianit durch in situ Messung der elektrolytischen Leitfähigkeit im Vordergrund. Die Untersuchung des Li+-Transportes geschieht auf Basis von Redoxreaktionen. Die formalkinetische Auswertung von Lithiierungs- und Delithiierungsreaktionen und eine Nukleationsanalyse wird durch ein Modell zur Auswirkung von antisite-Defekten auf die Kapazität des Elektrodenmaterials ergänzt. Die Ramanspektroskopie wird in Verbindung mit Lösungsenthalpien zur Identifizierung reaktiver Spezies herangezogen. Schwerpunkt der thermodynamischen Charakterisierung ist die experimentelle Ermittlung der Wärmekapazität. Diese wurde unter Berücksichtigung einer magnetischen Phasenumwandlung im Bereich von 2 K bis 773 K ermittelt. Die Daten erlauben die Berechnung wichtiger thermodynamischer Funktionen.
208

Silicon Inverse Opal-based Materials as Electrodes for Lithium-ion Batteries: Synthesis, Characterisation and Electrochemical Performance

Esmanski, Alexei 19 January 2009 (has links)
Three-dimensional macroporous structures (‘opals’ and ‘inverse opals’) can be produced by colloidal crystal templating, one of the most intensively studied areas in materials science today. There are several potential advantages of lithium-ion battery electrodes based on inverse opal structures. High electrode surface, easier electrolyte access to the bulk of electrode and reduced lithium diffusion lengths allow higher discharge rates. Highly open structures provide for better mechanical stability to volume swings during cycling. Silicon is one of the most promising anode materials for lithium-ion batteries. Its theoretical capacity exceeds capacities of all other materials besides metallic lithium. Silicon is abundant, cheap, and its use would allow for incorporation of microbattery production into the semiconductor manufacturing. Performance of silicon is restricted mainly by large volume changes during cycling. The objective of this work was to investigate how the inverse opal structures influence the performance of silicon electrodes. Several types of silicon-based inverse opal films were synthesised, and their electrochemical performance was studied. Amorphous silicon inverse opals were fabricated via chemical vapour deposition and characterised by various techniques. Galvanostatic cycling of these materials confirmed the feasibility of the approach taken, since the electrodes demonstrated high capacities and decent capacity retentions. The rate performance of amorphous silicon inverse opals was unsatisfactory due to low conductivity of silicon. The conductivity of silicon inverse opals was improved by crystallisation. Nanocrystalline silicon inverse opals demonstrated much better rate capabilities, but the capacities faded to zero after several cycles. Silicon-carbon composite inverse opal materials were synthesised by depositing a thin layer of carbon via pyrolysis of a sucrose-based precursor onto the silicon inverse opals in an attempt to further increase conductivity and achieve mechanical stabilisation of the structures. The amount of carbon deposited proved to be insufficient to stabilise the structures, and silicon-carbon composites demonstrated unsatisfactory electrochemical behaviour. Carbon inverse opals were coated with amorphous silicon producing another type of macroporous composites. These electrodes demonstrated significant improvement both in capacity retentions and in rate capabilities. The inner carbon matrix not only increased the material conductivity, but also resulted in lower silicon pulverisation during cycling.
209

Stability Phenomena in Novel Electrode Materials for Lithium-ion Batteries

Stjerndahl, Mårten January 2007 (has links)
Li-ion batteries are not only a technology for the future, they are indeed already the technology of choice for today’s mobile phones, laptops and cordless power tools. Their ability to provide high energy densities inexpensively and in a way which conforms to modern environmental standards is constantly opening up new markets for these batteries. To be able to maintain this trend, it is imperative that all issues which relate safety to performance be studied in the greatest detail. The surface chemistry of the electrode-electrolyte interfaces is intrinsically crucial to Li-ion battery performance and safety. Unfortunately, the reactions occurring at these interfaces are still poorly understood. The aim of this thesis is therefore to increase our understanding of the surface chemistries and stability phenomena at the electrode-electrolyte interfaces for three novel Li-ion battery electrode materials. Photoelectron spectroscopy has been used to study the surface chemistry of the anode material AlSb and the cathode materials LiFePO4 and Li2FeSiO4. The cathode materials were both carbon-coated to improve inter-particle contact. The surface chemistry of these electrodes has been investigated in relation to their electrochemical performance and X-ray diffraction obtained structural results. Surface film formation and degradation reactions are also discussed. For AlSb, it has been shown that most of the surface layer deposition occurs between 0.50 and 0.01 V vs. Li°/Li+ and that cycling performance improves when the lower cut-off potential of 0.50 V is used instead of 0.01 V. For both LiFePO4 and Li2FeSiO4, the surface layer has been found to be very thin and does not provide complete surface coverage. Li2CO3 was also found on the surface of Li2FeSiO4 on exposure to air; this was found to disappear from the surface in a PC-based electrolyte. These results combine to give the promise of good long-term cycling with increased performance and safety for all three electrode materials studied.
210

Titanium dioxide nanomaterials as negative electrodes for rechargeable lithium-ion batteries

Gentili, Valentina January 2011 (has links)
Titanium dioxide, TiO₂, materials have received much attention in recent years due to their potential use as intercalation negative electrodes for rechargeable lithium-ion batteries. The aim of this doctoral work was to synthesise and characterise new titanium dioxide nanomaterials and to investigate their electrochemical behaviour. Three morphologies of TiO₂(B) phase: micro-sized (bulk), nanowires and nanotubes, were synthesised. All three exhibit properties which make them excellent hosts for lithium intercalation. The nanotubes show the best capability of accommodating lithium in the structure, being able to host over one molar equivalent of lithium at low current rates (5 mA g⁻¹). The lithium insertion mechanism in the TiO₂(B) was studied using powder neutron diffraction. In addition, the nature of the irreversible capacity of the nanotubes was studied and ways of reducing it proposed. Nanotubes of another titanium dioxide polymorph, anatase, were synthesised and characterised. Their electrochemical performance was compared with that of commercially available counterparts with different morphologies and particle sizes. The interrelation between particle size/morphology and electrochemical properties has been established. The insertion of lithium which leads to phase variations was studied using in situ Raman microscopy and neutron powder diffraction. It has been demonstrated that doping of the TiO₂(B) nanotubes with vanadium improves their electronic conductivity which is essential for practical applications. Remarkably good electrochemical performance is exhibited by the 6% V-doped TiO₂(B) nanotubes.

Page generated in 0.3129 seconds